ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

懸垂 (位相幾何学)

索引 懸垂 (位相幾何学)

位相幾何学において,位相空間 の懸垂(suspension) とは, と単位区間 の積空間の商空間 である.したがって, は円柱に引き伸ばされ,そして両端が点に押しつぶされる. を端点の間に「ぶらさがっている」(suspended) と見る.懸垂を 上の2つの錐を base でもの(あるいは1つの錐の商)とも見られる. 連続写像 が与えられると, によって定義される写像 が存在する.これにより は位相空間の圏から自身への関手となる.荒っぽく言えば, は空間の次元を 1 増やす:それは に対して 次元球面を 次元球面に写す. 空間 は X\star S^0 に同相である,ただし は2点離散空間である. 空間 は,下記の約懸垂と区別するために, の unreduced, unbased, or free suspension と呼ばれることもある. 懸垂はホモトピー群の準同型を構成するのに使うことができ,それにはを適用できる.ホモトピー論では,適切な意味で懸垂で保たれる現象はを作る..

19 関係: 単位区間単位円同値類位相同型位相幾何学位相空間位相空間の圏ホモトピーホモトピー群スマッシュ積円柱 (数学)商位相空間球面積位相点付き空間随伴関手錐 (位相幾何学)関手離散空間

単位区間

数学において、単位区間(たんいくかん、unit interval)とは、閉区間, つまり 0 以上 1 以下の全ての実数からなる集合である(0 と 1 を含む)。しばしば I と表記される。実解析での役割に加えて、単位区間は位相幾何学におけるホモトピーの研究でも使われる。 書籍によっては、上記の定義以外の単位区間(0 と 1 を含むか含まないか)を使う場合もあり、(0, 1、.

新しい!!: 懸垂 (位相幾何学)と単位区間 · 続きを見る »

単位円

数学において単位円(たんいえん、unit circle)とは、半径が 1 の円のことである。解析幾何学(いわゆる“座標幾何”)では特に原点(すなわち x 軸と y 軸の交点) O(0, 0) を中心とするものをいう。これは、原点からの距離が 1 であるような点の全体が描く軌跡のことと言っても同じことである。 単位円はしばしば S1 で表される(これは n 次元の球面 (sphere) という概念の n.

新しい!!: 懸垂 (位相幾何学)と単位円 · 続きを見る »

同値類

数学において,ある集合 の元が(同値関係として定式化される)同値の概念を持つとき,集合 を同値類(どうちるい,equivalence class)たちに自然に分割できる.これらの同値類は,元 と が同じ同値類に属するのは と が同値であるとき,かつそのときに限るものとして構成される. フォーマルには,集合 と 上の同値関係 が与えられたとき,元 の における同値類は, に同値な元全体の集合 である.「同値関係」の定義から同値類は S の分割をなす.この分割,同値類たちの集合,を の による商集合 (quotient set) あるいは商空間 (quotient space) と呼び, と表記する. 集合 が(群演算や位相のような)構造を持ち,同値関係 がこの構造と適切に両立するように定義されているとき,商集合はしばしばもとの集合から類似の構造を引き継ぐ.例としては,線型代数学における商空間,位相空間論における商空間,,等質空間,商環,,など..

新しい!!: 懸垂 (位相幾何学)と同値類 · 続きを見る »

位相同型

位相同型 (いそうどうけい、homeomorphic)、あるいは同相(どうそう)とは、2つの位相空間が位相空間として等しいことを表す概念である。 例えば、球の表面と湯飲みの表面とはある「連続」な双方向の移し方で互いに移し合うことができるので同相であり、また穴が1つ開いたドーナツの表面 (トーラス) と持ち手がひとつあるマグカップの表面も同じく同相である。よって球の表面と湯のみの表面は位相幾何学的に全く同一の性質を持ち、ドーナツの表面とマグカップの表面も同一の性質を持つ。しかし、球面とトーラスとはこのような写し方が存在しないので同相とはならない。(直観的には、連続的な変形によって穴の個数が変化することはないということである。) ここで連続な写し方とは、直観的には近いところを近いところに写すような写し方を意味する。.

新しい!!: 懸垂 (位相幾何学)と位相同型 · 続きを見る »

位相幾何学

一つの面と一つの辺を持つメビウスの帯は位相幾何学で研究される対象の一種である。 自明な結び目)を三次元で描いたもの 数学の一分野、位相幾何学(いそうきかがく、topology, トポロジー)は、その名称がτόπος(「位置」「場所」)と (「言葉」「学問」) に由来し、「位置の学問」を意味している。 トポロジーは、何らかの形(かたち。あるいは「空間」)を連続変形(伸ばしたり曲げたりすることはするが切ったり貼ったりはしないこと)しても保たれる性質(または位相不変量)に焦点を当てたものである。位相的性質において重要なものには、連結性およびコンパクト性などが挙げられる。 位相幾何学は、空間、次元、変換といった概念の研究を通じて、幾何学および集合論から生じた分野である。このような考え方は、17世紀に「位置の幾何」(geometria situs)および「位置の解析」(analysis situs)を見越したゴットフリート・ライプニッツにまで遡れる。レオンハルト・オイラーの「ケーニヒスベルクの七つの橋」の問題および多面体公式がこの分野における最初の定理であるというのが定説となっている。用語 topology は19世紀にによって導入されたが、位相空間の概念が起こるのは20世紀の最初の10年まで待たねばならない。20世紀中ごろには、位相幾何学は数学の著名な一分野となっていた。 位相幾何学には様々な分科が存在する。.

新しい!!: 懸垂 (位相幾何学)と位相幾何学 · 続きを見る »

位相空間

数学における位相空間(いそうくうかん, topological space)とは、集合にある種の情報(位相、topology)を付け加えたもので、この情報により、連続性や収束性といった概念が定式化可能になる。 位相空間論は位相空間の諸性質を研究する数学の分野である。.

新しい!!: 懸垂 (位相幾何学)と位相空間 · 続きを見る »

位相空間の圏

数学の一分野である圏論における位相空間の圏(いそうくうかんのけん、category of topological spaces) あるいは \mathcal\!\!op は、位相空間を対象とし、連続写像を射とする圏を言う。ただし、しばしば対象や射を特定のものに制限したり適当なものに取り換えたりするので注意が必要である(例えば、対象はしばしばと仮定する)。これが圏を成すことは、二つの連続写像の合成がふたたび連続となることによる。圏 およびを圏論の手法を用いて研究する分野を圏論的位相空間論 (categorical topology) と言う。 注意: 記号 を位相多様体と連続写像の圏の意味で用いる文献があるので注意が必要である。必要ならば や などと書けば混乱は避けられる。.

新しい!!: 懸垂 (位相幾何学)と位相空間の圏 · 続きを見る »

ホモトピー

数学におけるホモトピー (homotopy)とは、点や線や面などの幾何学的対象、あるいはそれらの間の連続写像が連続的に移りあうということを定式化した位相幾何学における概念のひとつである。位相幾何学では、2 つの対象 A と X との関係のうち、連続的な変形によって保たれるものを問題とすることが多い。これらの関係はふつう連続写像 A → X を通して定義され、ホモトピーの概念は連続的に変形する連続写像の族によって定式化される。ホモトピー的な種々の不変量は位相幾何学の研究における基本的な道具となる。 考察している幾何学的対象に「穴」が開いていれば、端を固定された曲線はそれを越えて連続的に変形することができない。したがって、ホモトピーによって「穴」の有無や、単純な構成要素に分解したときのそれらの組み合わせ的なつながり具合といった構造を調べることができる。ホモトピーが威力を発揮するのは、空間や写像といった幾何学的な対象に対し群や準同型などという代数的な対象を対応づけることであり、またそのような代数的な対象がしばしばもとの幾何学的な対象よりも単純化されているということにある。 このように、代数的な道具によって空間と写像の位相的性質を調べるという方法をとる幾何学は、代数的位相幾何学と呼ばれる。.

新しい!!: 懸垂 (位相幾何学)とホモトピー · 続きを見る »

ホモトピー群

数学において、ホモトピー群 (homotopy group) は代数トポロジーにおいて位相空間を分類するために使われる。1次の最も簡単なホモトピー群は基本群であり、空間のについての情報がわかる。直感的には、ホモトピー群は位相空間の基本的な形、穴、についての情報を持っている。 n 次ホモトピー群を定義するために、(付き)n 次元球面から与えられた(基点付き)空間の中への基点を保つ写像はと呼ばれる同値類へと集められる。2つの写像がホモトープ (homotopic) とは、一方から他方へ連続的に変形できることをいう。これらのホモトピー類たちが基点付きの与えられた空間 X の n 次ホモトピー群 (n-th homotopy group) と呼ばれる群 n(X) をなす。異なるホモトピー群を持つ位相空間は決して同じ(同相)ではないが、逆は正しくない。 のホモトピーの概念はカミーユ・ジョルダン (Camille Jordan) によって導入された。.

新しい!!: 懸垂 (位相幾何学)とホモトピー群 · 続きを見る »

スマッシュ積

数学において,2つの基点付き空間(すなわち区別された基点を持つ位相空間) と のスマッシュ積(smash product)とは,積空間 において,すべての と に対して と と同一視した商空間である.スマッシュ積は通常 あるいは と書かれる.スマッシュ積は( と がともに等質でない限り)基点の取り方に依存する. と をそれぞれ の部分空間 と と考えることができる.これらの部分空間は一点, の基点で交わる.したがってこれらの部分空間の合併はウェッジ和 と同一視できる.するとスマッシュ積は商 である. スマッシュ積は代数的位相幾何学の一分野ホモトピー論において現れる.ホモトピー論では,すべての位相空間の圏とは異なる空間の圏でしばしば考える.これらの圏のうちスマッシュ積の定義をわずかに修正しなければならないものがある.例えば,2つののスマッシュ積は,定義において積位相ではなくCW複体の積を用いることで,CW複体である.同様の修正は他の圏においても必要である..

新しい!!: 懸垂 (位相幾何学)とスマッシュ積 · 続きを見る »

円柱 (数学)

数学において円柱(えんちゅう、cylinder)とは二次曲面(三次元空間内の曲面)の一種で、デカルト座標によって次の方程式で定義されるものである: この方程式は楕円柱を表し、a.

新しい!!: 懸垂 (位相幾何学)と円柱 (数学) · 続きを見る »

商位相空間

位相空間論およびそれに関連する数学の各分野において、等化空間(とうかくうかん、identification space)または商位相空間(しょういそうくうかん、quotient topological space)あるいは単に商空間 (quotient space) とは、直観的には与えられた空間のある種の点の集まりを「貼合せ」("gluing together") あるいは同一視してしまうことによって得られる新しい空間である。ただし、ここで貼合わせられるべき点の集まりというのは、何らかの同値関係によって決定される。 このような商空間構成は、与えられた位相空間から新たな空間を構成する方法の一つとして広く用いられる。.

新しい!!: 懸垂 (位相幾何学)と商位相空間 · 続きを見る »

球面

球面(きゅうめん)とは球体の表面の意である。数学における球面 (sphere) は、距離の定められた空間の定点からの距離が一定であるような点の軌跡として定義される、非常に高い対称性を示す図形である。球面の囲む有界領域を球体あるいは単に球 (ball) と呼ぶ。一般には三次元ユークリッド空間 E3 内のもの、つまり二次元球面を指す場合が多い。.

新しい!!: 懸垂 (位相幾何学)と球面 · 続きを見る »

積位相

位相幾何学とその周辺において、積空間(せきくうかん、product space)とは位相空間の族の直積に積位相 (product topology) と呼ばれるを入れた空間のことである。この位相は他の、もしかするとより明らかな、と呼ばれる位相とは異なる。箱位相も積空間に与えることができ、有限個の空間の直積では積位相と一致する。しかしながら、積位相は位相空間の圏における圏論的積であるという意味で「正しい」位相である。(一方箱位相は細かすぎる。)これが積位相が「自然」であるという意味である。.

新しい!!: 懸垂 (位相幾何学)と積位相 · 続きを見る »

点付き空間

数学における点付き空間(てんつきくうかん、pointed space; (基)点付き(位相)空間)は、基点 と呼ばれる区別を受ける点を備えた位相空間を言う。基点というのは、その空間内から選び出された単に特定の一点ということに過ぎないのであるが、しかしいったん選び出されたならば一連の議論の間は基点を変えることはできないし、様々な操作においてその結果として基点がどうなるのかを追うことを免れ得ない。 点付き空間の間の点付き写像 とは、基点を保つ連続写像のことを言う。すなわち、点付き空間 から への点付き写像とは、写像 が各空間の位相 に関して連続で、 を満たすときに言い、それをふつうは のように書く。点付き空間は代数的位相幾何学、特にホモトピー論において重要であり、そこでは基本群などの様々な構成が、基点の選び方に依存して定まる。 点付き集合の概念は、点付き離散空間に他ならないから、重要性はやや落ちる。 点付き空間はしばしば、部分集合が一点集合であるような相対位相の特別の場合ととられる。そうすればホモトピー論の大部分は点付き空間上でふつうに展開でき、相対位相を代数的位相幾何学に持ち込むことができる。.

新しい!!: 懸垂 (位相幾何学)と点付き空間 · 続きを見る »

随伴関手

数学の特に圏論における随伴(ずいはん、adjunction)は、二つの関手の間に考えることができる(ある種の双対的な)関係をいう。随伴の概念は数学に遍在し、最適化や効率に関する直観的概念を明らかにする。 最も簡潔な対称的定義において、圏 と の間の随伴とは、二つの関手 の対であって、全単射の族 が変数 に関して自然(あるいは函手的)となるものを言う。このとき、関手 を左随伴函手と呼び、他方 を右随伴函手と呼ぶ。また、「 は の左随伴である」 (同じことだが、「 は の右随伴である」)という関係を と書く。 以下では、この定義や他の定義を詳細化する。.

新しい!!: 懸垂 (位相幾何学)と随伴関手 · 続きを見る »

錐 (位相幾何学)

位相幾何学,特に代数的位相幾何学において,位相空間 の錐(すい,cone) とは, と単位区間 の積の商空間 である.直観的には, を円柱にし,円柱の一端を点に押しつぶす. がユークリッド空間の中にあれば, の錐は から別の一点への線分の和集合に同相である.つまり,位相幾何学的な錐は幾何学的な錐と定義されるときには一致する.しかしながら,位相幾何学的な錐の構成の方が一般的である..

新しい!!: 懸垂 (位相幾何学)と錐 (位相幾何学) · 続きを見る »

関手

圏論における関手(かんしゅ、functor)は、圏から圏への構造と両立する対応付けである。関手によって一つの数学体系から別の体系への組織的な対応が定式化される。関手は「圏の圏」における射と考えることもできる。 関手の概念の萌芽はエヴァリスト・ガロアによる群を用いた代数方程式の研究に見ることができる。20世紀はじめのエミー・ネーターらによる加群の研究において拡大加群などさまざまな関手的構成が蓄積された。20世紀半ばの代数的位相幾何学において実際に関手が定義され、図形から様々な「自然な」代数的構造を取り出す操作を定式化するために利用された。ここでは(基本群のような)代数的対象が位相空間から導かれ、位相空間の間の連続写像は基本群の間の代数的準同型を導いている。その後アレクサンドル・グロタンディークらによる代数幾何学の変革の中でさまざまな数学的対象の関手による定式化が徹底的に追求された。.

新しい!!: 懸垂 (位相幾何学)と関手 · 続きを見る »

離散空間

数学の位相空間論周辺分野における離散空間(りさんくうかん、discrete space)は、その点がすべてある意味で互いに「孤立」しているような空間で、位相空間(またはそれと同様の構造)の非常に単純で極端な例の一つを与える。.

新しい!!: 懸垂 (位相幾何学)と離散空間 · 続きを見る »

ここにリダイレクトされます:

懸垂 (トポロジー)懸垂 (位相空間論)懸垂 (数学)懸垂函手懸垂空間懸垂関手空間の懸垂約懸垂

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »