ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

幾何学的トポロジー

索引 幾何学的トポロジー

数学において、幾何学的トポロジー(geometric topology)は、多様体とそれらの間の写像、特に多様体から多様体への埋め込み(embedding)の研究をする。.

42 関係: 基本群埋め込み (数学)可微分多様体向き多様体主束一意化定理幾何化予想代数幾何学代数的位相幾何学低次元トポロジー位相同型位相多様体位相空間微分幾何学微分形式圏 (数学)像 (数学)モース理論ユークリッド空間レンズ空間ヴェブレン賞ファイバー束ホモロジー代数学ホモトピーコホモロジージョン・ウィラード・ミルナースフィアサークル球面結び目結び目理論特性類相同性複素幾何学超球面部分多様体連結空間数学曲面4次元多様体

基本群

数学、特に代数トポロジーにおいて、基本群(きほんぐん、fundamental group)とは、ある固定された点を始点と終点にもつふたつのループが互いに連続変形可能かを測る点付き位相空間に付帯する群である。直観的には、それは位相空間にある穴についての情報を記述している。基本群はホモトピー群の最初で最も単純な例である。基本群は位相不変量である。つまり同相な位相空間は同じ基本群を持っている。 基本群は被覆空間の理論を用いて研究することができる。なぜなら、基本群は元の空間に付帯する普遍被覆空間の被覆変換群に一致するからである。基本群のアーベル化は、その空間の第一ホモロジー群と同一視することできる。位相空間が単体複体に同相のとき、基本群は群の生成子と関係式のことばで明示的に記述することができる。 基本群はアンリ・ポアンカレによって1895年に論文"Analysis situs"で定義された。ベルンハルト・リーマンとポアンカレとフェリックス・クラインの仕事でリーマン面の理論において基本群の概念が現れた。基本群は閉曲面の位相的な完全な分類を提供するだけでなく、複素函数のモノドロミー的性質の記述もする。.

新しい!!: 幾何学的トポロジーと基本群 · 続きを見る »

埋め込み (数学)

数学において、埋め込み(うめこみ、embedding, imbedding)とは、数学的構造間の構造を保つような単射のことである。 It is suggested by, that the word "embedding" is used instead of "imbedding" by "the English", i.e. the British.

新しい!!: 幾何学的トポロジーと埋め込み (数学) · 続きを見る »

可微分多様体

数学において、可微分多様体(かびぶんたようたい、differentiable manifold)、あるいは微分可能多様体(びぶんかのうたようたい)は、局所的に十分線型空間に似ており微積分ができるような多様体である。任意の多様体は、チャート(座標近傍、局所座標)の集まり、アトラス(座標近傍系、局所座標系)、によって記述することができる。各座標近傍は微積分の通常のルールが適用する線型空間の中にあるから、各々のチャートの中で考えるときには微積分学のアイデアを適用できる。チャートが適切に両立可能であれば(すなわち1つのチャートから別のチャートへの変換が微分可能であれば)、1つのチャートでなされた計算は任意の他の微分可能なチャートにおいても有効である。 フォーマルに言えば、可微分多様体は大域的に定義されたを持つ位相多様体である。任意の位相多様体にはアトラスの同相写像と線型空間上の標準的な微分構造を用いて局所的に微分構造を与えることができる。同相写像によって誘導された局所座標系上の大域的な微分構造を誘導するためには、アトラスのチャートの共通部分上での合成が対応する線型空間上の微分可能な関数でなければならない。言い換えると、チャートの定義域が重なっているところでは、各チャートによって定義された座標はアトラスのすべてのチャートによって定義された座標に関して微分可能であることが要求される。様々なチャートによって定義された座標を互いに結びつける写像を変換関数 (transition map/遷移写像/座標変換) と呼ぶ。 微分可能性は文脈によって連続微分可能、k 回微分可能、滑らか、正則といった異なる意味を持つ。さらに、抽象的な空間にそのような可微分構造を誘導できることによって微分可能性の定義を大域的な座標系なしの空間に拡張することができる。微分構造によって大域的に微分可能な接空間、微分可能な関数、微分可能なテンソル場やベクトル場を定義することができる。可微分多様体は物理においても非常に重要である。特別な種類の可微分多様体は古典力学、一般相対論、ヤン・ミルズ理論といった物理理論の基礎をなす。可微分多様体に対して微積分を展開することが可能である。これによって exterior calculus (外微分法/外微分学)のような数学的機構が導かれる。可微分多様体上の微積分の研究は微分幾何学と呼ばれる。.

新しい!!: 幾何学的トポロジーと可微分多様体 · 続きを見る »

向き

数学における実ベクトル空間の向き(むき、orientation) または向き付けとは、基底の順序付き組に対し「正」の向きまたは「負」の向きを指定する規約のことである。3次元ユークリッド空間における2種類の向きはそれぞれ右手系や左手系(あるいは右キラル・左キラル)と呼ばれる。しばしば右手系が正の向きにとられるものの、右手系を負の向きとするような向き付けももちろんありうる。 実ベクトル空間における向きの概念を基礎として、実多様体などの様々な幾何学的対象にも向きを考えることができる。.

新しい!!: 幾何学的トポロジーと向き · 続きを見る »

多様体

多様体(たようたい、manifold, Mannigfaltigkeit)とは、局所的にはユークリッド空間と見なせるような図形や空間(位相空間)のことである。多様体上には好きなところに局所的に座標を描き込むことができる。.

新しい!!: 幾何学的トポロジーと多様体 · 続きを見る »

主束

数学において、主束(しゅそく、principal bundle)は、枠束を抽象化した概念である。 ここで枠束(frame bundle)とは、ファイバー束であって、任意の一点上のファイバー(繊維)が、あるベクトル空間における並び順の付いた基底全体の集合からなるものである。 主束は、構造群と呼ばれるある与えられた群 G により、ファイバーが G の主等質空間(英:principal homogeneous space)(G が自由かつ推移的に作用する集合のこと。G-トルソ(英:G-torsor)ともいう)になるものとして特徴付けられる。 これは、一般枠束におけるベクトル空間の全基底に対する一般線型群の作用を一般化したものである。 さらに、主 G 束(しゅ G そく、principal G-bundle)とは、ファイバー束であって、全てのファイバーが位相群 G の群の作用により主等質空間になるものをいう。 主 G 束は、群 G が束の構造群にもなるという意味で、G 束である。 主束は、位相幾何学および微分幾何学で重要な応用を有する。 主束は物理においても、ゲージ理論の根本的枠組みの一部を構成するという応用を見出した。 構造群 G を有するすべてのファイバー束は、一意に主 G 束を決定し、この主束により元の束が再構成できるという意味で、主束は、ファイバー束の理論に統一的枠組みを与える。.

新しい!!: 幾何学的トポロジーと主束 · 続きを見る »

一意化定理

一意化定理(uniformization theorem)とは、すべての単連結リーマン面は、開円板、複素平面、リーマン球面の 3つのうちのひとつに共形同値であるという定理である。特に、単連結リーマン面は(constant curvature)のリーマン計量を持つ。この定理は普遍被覆リーマン面を楕円型(正の曲率、正の曲がった曲率をもつ)、放物型(平坦)、双曲型(負曲率)として分類する。 一意化定理はリーマンの写像定理の平面の固有な単連結開部分集合から、任意の単連結はリーマン面への一般化である。 一意化定理は、任意の連結である第二可算の面の同様な結果、定数曲率のリーマン計量を与えることができることを意味している。.

新しい!!: 幾何学的トポロジーと一意化定理 · 続きを見る »

幾何化予想

幾何化予想(きかかよそう、Geometrization conjecture)は、1982年にアメリカの数学者ウィリアム・サーストンによって提出された「コンパクト3次元多様体は、幾何構造を持つ8つの部分多様体に分解される」という命題。位相幾何学と微分幾何学を結びつけるものでありミレニアム懸賞問題にも挙げられていたポアンカレの予想問題の解法の過程として思いつかれた。2003年、グリゴリー・ペレルマンによるリッチフローを用いた証明が示され、現在ではその証明が基本的に正しいものとされている。これにより、およそ100年にわたり未解決だった3次元ポアンカレ予想が証明されることになった。.

新しい!!: 幾何学的トポロジーと幾何化予想 · 続きを見る »

代数幾何学

代数幾何学(だいすうきかがく、algebraic geometry)とは、多項式の零点のなすような図形を代数的手法を用いて(代数多様体として)研究する数学の一分野である。大別して、「多変数代数函数体に関する幾何学論」「射影空間上での複素多様体論」とに分けられる。前者は代数学の中の可換環論と関係が深く、後者は幾何学の中の多様体論と関係が深い。20世紀に入って外観を一新し、大きく発展した数学の分野といわれる。 ルネ・デカルトは、多項式の零点を曲線として幾何学的に扱う発想を生みだしたが、これが代数幾何学の始まりとなったといえる。例えば、x, y を実変数として "x2 + ay2 − 1" という多項式を考えると、これの零点のなす R2 の中の集合は a の正、零、負によってそれぞれ楕円、平行な2直線、双曲線になる。このように、多項式の係数と多様体の概形の関係は非常に深いものがある。 上記の例のように、代数幾何学において非常に重要な問題として「多項式の形から、多様体を分類せよ」という問題が挙げられる。曲線のような低次元の多様体の場合、分類は簡単にできると思われがちだが、低次元でも次数が高くなるとあっという間に分類が非常に複雑になる。 当然、次元が上がると更に複雑化し、4次元以上の代数多様体についてはあまり研究は進んでいない。 2次元の場合、多様体に含まれる(−1)カーブと呼ばれる曲線を除外していくことにより、特殊な物をのぞいて極小モデルと呼ばれる多様体が一意に定まるので、2次元の場合の分類問題は「極小モデルを分類せよ」という問題に帰着される。 3次元の場合も同じように極小モデルを分類していくという方針が立てられたが、3次元の場合は、その極小モデルが一意に定まるかどうかが大問題であった。 しかし、1988年森重文により3次元多様体の極小モデル存在定理が証明され、以降「森のプログラム」と呼ばれるプログラムに沿って分類が強力に推し進められている。 19世紀中期に、ベルンハルト・リーマンがアーベル関数論の中で双有理同値など代数幾何学の中心概念を生み出し、19世紀後半には、イタリアの直観的な代数幾何学が発展した(代数幾何学のイタリア学派)。20世紀前半には、アンドレ・ヴェイユ、オスカー・ザリスキによって、抽象的な代数幾何学の研究が進められ、1950年代以降はグロタンディークのスキーム論によって代数幾何学全体が大きく書き直された。.

新しい!!: 幾何学的トポロジーと代数幾何学 · 続きを見る »

代数的位相幾何学

代数的位相幾何学(だいすうてきいそうきかがく、英語:algebraic topology、代数的トポロジー)は代数的手法を用いる位相幾何学の分野のことをいう。 古典的な位相幾何学は、図形として取り扱い易い多面体を扱っていたが、1900年前後のポワンカレの一連の研究を契機として20世紀に発展した。 ポワンカレは 1895年に出版した "Analysis Situs" の中で、ホモトピーおよびホモロジーの概念を導入した。これらはいまや代数的位相幾何学の大きな柱であると考えられている。 多様体、基本群、ホモトピー、ホモロジー、コホモロジー、ファイバー束などの、位相空間の不変量として代数系を対応させ、位相的性質を代数的性質に移して研究する..

新しい!!: 幾何学的トポロジーと代数的位相幾何学 · 続きを見る »

低次元トポロジー

数学における低次元位相幾何学(ていじげんいそうきかがく、low-dimensional topologyは、4次元、あるいはそれ以下の次元の多様体の研究をする位相幾何学の一分野である。扱われる主題は、および4次元多様体の構造論、結び目理論および組み紐群などがある。低次元トポロジーは幾何学的位相幾何学の一部と見なすことができる。.

新しい!!: 幾何学的トポロジーと低次元トポロジー · 続きを見る »

位相同型

位相同型 (いそうどうけい、homeomorphic)、あるいは同相(どうそう)とは、2つの位相空間が位相空間として等しいことを表す概念である。 例えば、球の表面と湯飲みの表面とはある「連続」な双方向の移し方で互いに移し合うことができるので同相であり、また穴が1つ開いたドーナツの表面 (トーラス) と持ち手がひとつあるマグカップの表面も同じく同相である。よって球の表面と湯のみの表面は位相幾何学的に全く同一の性質を持ち、ドーナツの表面とマグカップの表面も同一の性質を持つ。しかし、球面とトーラスとはこのような写し方が存在しないので同相とはならない。(直観的には、連続的な変形によって穴の個数が変化することはないということである。) ここで連続な写し方とは、直観的には近いところを近いところに写すような写し方を意味する。.

新しい!!: 幾何学的トポロジーと位相同型 · 続きを見る »

位相多様体

位相幾何学という数学の分野において,位相多様体(いそうたようたい,topological manifold)とは,以下に定義される意味で実 次元空間に局所的に似ている(分離空間でもある)位相空間である.位相多様体は数学全般に応用を持つ位相空間の重要なクラスをなす. 「多様体」は位相多様体を意味することもあるし,より多くは,追加の構造を持った位相多様体を指す.例えば可微分多様体は可微分構造を備えた位相多様体である.任意の多様体は,単に追加の構造を忘れることによって得られる,台となる位相多様体を持つ.多様体の概念の概観はその記事に与えられている.この記事は純粋に多様体の位相的側面に焦点を当てる..

新しい!!: 幾何学的トポロジーと位相多様体 · 続きを見る »

位相空間

数学における位相空間(いそうくうかん, topological space)とは、集合にある種の情報(位相、topology)を付け加えたもので、この情報により、連続性や収束性といった概念が定式化可能になる。 位相空間論は位相空間の諸性質を研究する数学の分野である。.

新しい!!: 幾何学的トポロジーと位相空間 · 続きを見る »

微分幾何学

数学における微分幾何学(びぶんきかがく、ドイツ語: Differentialgeometrie、英語:differential geometry)とは微分を用いた幾何学の研究である。また、可微分多様体上の微分可能な関数を取り扱う数学の分野は微分位相幾何学(びぶんいそうきかがく、ドイツ語: Differentialtopologie、英語: differential topology)とよばれることがある。微分方程式の研究から自然に発生したこれらの分野は互いに密接に関連しており、特に一般相対性理論をはじめとして物理学に多くの応用がある。これらは可微分多様体についての幾何学を構成しているが、力学系の視点からも直接に研究される。.

新しい!!: 幾何学的トポロジーと微分幾何学 · 続きを見る »

微分形式

数学における微分形式(びぶんけいしき、differential form)とは、微分可能多様体上に定義される共変テンソル場である。微分形式によって多様体上の局所的な座標の取り方によらない関数の微分が表現され、また多様体の内在的な構造のみによる積分は微分形式に対して定義される。微分多様体上の微分形式は共変テンソルとしての座標変換性によって、あるいは接ベクトル空間上の線型形式の連続的な分布として定式化される。また、代数幾何学・数論幾何学や非可換幾何学などさまざまな幾何学の分野でそれぞれ、この類推として得られる微分形式の概念が定式化されている。.

新しい!!: 幾何学的トポロジーと微分形式 · 続きを見る »

圏 (数学)

数学の一分野である圏論において中核的な概念を成す圏(けん、category)は、数学的構造を取り扱うための枠組みであり、数学的対象をあらわす対象とそれらの間の関係を表す射の集まりによって与えられる。圏はそれ自体、群に類似した代数的構造として理解することができる 二つの圏が等しい(相等)とは、それらの対象の集まりが等しく、かつそれら対象の間の射の集まりが等しく、さらにそれら射の対の結合の仕方が相等となることを言う。圏論の目的に照らせば、圏がまったく相等しいことは非常に強すぎる条件であり(それよりも緩いでさえ強すぎる)、圏同値がしばしば考慮される(二つの圏が同値であるとは、大まかに言えば圏の相等において等式で与えられる関係を、それぞれの圏における同型で置き換えたものとして与えられる)。 圏論が初めて現れるのは Eilenberg–Mac Lane, "General Theory of Natural Equivalences" (1945) と題された論文である。古典的だが今もなお広く用いられる教科書として、マクレーンの がある。.

新しい!!: 幾何学的トポロジーと圏 (数学) · 続きを見る »

像 (数学)

'''f''' は始域 '''X''' から終域 '''Y''' への写像。'''Y''' の内側にある小さな楕円形が '''f''' の像である。 数学において、何らかの写像の像(ぞう、image)は、写像の始域(域、定義域)の部分集合上での写像の出力となるもの全てからなる、写像の終域(余域)の部分集合である。すなわち、始域の部分集合 X の各元において写像の値を評価することによって得られる集合を f による(または f に関する、f のもとでの、f を通じた)X の像という。また、写像の終域の何らかの部分集合 S の逆像(ぎゃくぞう、inverse image)あるいは原像(げんぞう、preimage)は、S の元に写ってくるような始域の元全体からなる集合である。 像および逆像は、写像のみならず一般の二項関係に対しても定義することができる。.

新しい!!: 幾何学的トポロジーと像 (数学) · 続きを見る »

モース理論

微分トポロジーにおいて、モース理論(モースりろん、Morse theory)は、多様体上の微分可能函数を研究することにより、多様体の位相的性質の分析を可能とする。 (Marston Morse) の基本的な見方に従うと、多様体上の典型的な微分可能函数はその位相的性質を極めて直接的に反映する。モース理論は、多様体上のやを見つけたり、多様体のホモロジーの本質的な情報をもたらす。 モース以前は、アーサー・ケイリー (Arthur Cayley) とジェームズ・クラーク・マクスウェル (James Clerk Maxwell) がの脈絡で、モース理論のいくつかのアイデアを考え出した。モースの元来の応用は、測地線の理論(経路上のエネルギー汎函数の臨界点への応用であった。これらのテクニックは、ラウル・ボット (Raoul Bott) のの証明に使われた。 モース理論の複素多様体での類似が、ピカール・レフシェッツ理論である。.

新しい!!: 幾何学的トポロジーとモース理論 · 続きを見る »

ユークリッド空間

数学におけるユークリッド空間(ユークリッドくうかん、Euclidean space)は、エウクレイデス(ユークリッド)が研究したような幾何学(ユークリッド幾何学)の場となる平面や空間、およびその高次元への一般化である。エウクレイデスが研究した平面や空間はそれぞれ、2次元ユークリッド空間、3次元ユークリッド空間に当たり、これらは通常、ユークリッド平面、ユークリッド空間などとも呼ばれる。「ユークリッド的」という修飾辞は、これらの空間が非ユークリッド幾何やアインシュタインの相対性理論に出てくるような曲がった空間ではないことを示唆している。 古典的なギリシャ数学では、ユークリッド平面や(三次元)ユークリッド空間は所定の公準によって定義され、そこからほかの性質が定理として演繹されるものであった。現代数学では、デカルト座標と解析幾何学の考え方にしたがってユークリッド空間を定義するほうが普通である。そうすれば、幾何学の問題に代数学や解析学の道具を持ち込んで調べることができるようになるし、三次元以上のユークリッド空間への一般化も容易になるといった利点が生まれる。 現代的な観点では、ユークリッド空間は各次元に本質的に一つだけ存在すると考えられる。たとえば一次元なら実数直線、二次元ならデカルト平面、より高次の場合は実数の組を座標にもつ実座標空間である。つまり、ユークリッド空間の「点」は実数からなる組であり、二点間の距離は二点間の距離の公式に従うものとして定まる。n-次元ユークリッド空間は、(標準的なモデルを与えるものという意味で)しばしば とかかれるが、(余分な構造を想起させない)ユークリッド空間固有の性質を備えたものということを強調する意味で と書かれることもある。ふつう、ユークリッド空間といえば有限次元であるものをいう。.

新しい!!: 幾何学的トポロジーとユークリッド空間 · 続きを見る »

レンズ空間

数学におけるレンズ空間(レンズくうかん、lens space)とは、位相空間の一種である。しばしばの特定のクラスを指す言葉として用いられるが、一般にもっと高次元のレンズ空間も定義することができる。 3次元多様体の場合、レンズ空間というのは二つのソリッドトーラス(中身の詰まったトーラス)をその境界で貼り合せる事で得られる空間として特徴付けることができる。ただし、3次元球面 S3 や S2 × S1 は、そうやって得られる空間ではあるものの、自明な場合であるとして、レンズ空間としては扱わないことも多い。 3次元レンズ空間 L(p; q) は1908年に Tietze が導入した。3次元レンズ空間はそのホモロジーおよび基本群だけからは決定することができない3次元多様体の最もよく知られた例であり、そして同相型 (homeomorphism type) がそのホモトピー型から決まらない閉多様体の最も簡単な例である。J.W. Alexander は1919年にレンズ空間 L(5; 1) と L(5; 2) が、基本群とホモロジー群が同型であるにもかかわらず互いに同相ではないことを示した。他にも同じホモトピー型を持つ(従って基本群もホモロジー群も等しい)が同相型が異なるレンズ空間というものが存在する。これにより、レンズ空間の導入を以って(代数的位相幾何学から分かれて)幾何学的位相幾何学 (geometric topology) の起こりと考えられる。 3次元レンズ空間は基本群とライデマイスタートーションによって完全に分類される。.

新しい!!: 幾何学的トポロジーとレンズ空間 · 続きを見る »

ヴェブレン賞

ワルド・ヴェブレン幾何学賞 (Oswald Veblen Prize in Geometry) は、アメリカ数学会から贈られる賞の一つ。オズワルド・ヴェブレンにちなんで創設された。 一般に「ヴェブレン賞」と略して呼ばれることが多い。 幾何学に関する研究において、過去6年間に北米の数学誌に掲載された最も優れた論文の著者に対して授与される。現在の賞金は5000ドルで、アメリカ数学会会員にのみ受賞資格がある。歴代の受賞者にはフィールズ賞受賞者も含まれており、その受賞基準の厳しさから、数学界における最も栄誉ある賞の一つに数えられる。 なお、受賞者一覧中の太字は、フィールズ賞受賞者を示す。.

新しい!!: 幾何学的トポロジーとヴェブレン賞 · 続きを見る »

ファイバー束

ファイバー束(ファイバーそく、fiber bundle, fibre bundle)とは、位相空間に定義される構造の一つで、局所的に 2 種類の位相空間の直積として表現できる構造の事である。.

新しい!!: 幾何学的トポロジーとファイバー束 · 続きを見る »

ホモロジー代数学

ホモロジー代数学(homological algebra)は、一般の代数的な設定のもとでホモロジーを研究する数学の分野である。それは比較的新しい分野であり、その起源は19世紀の終わりの、(代数トポロジーの前身)と抽象代数学(加群や の理論)の、主にアンリ・ポワンカレとダフィット・ヒルベルトによる研究にまでさかのぼる。 ホモロジー代数学の発展は圏論の出現と密接に結びついている。概して、ホモロジー代数はホモロジー的関手とそれから必然的に生じる複雑な代数的構造の研究である。数学においてきわめて有用で遍在する概念の1つはチェイン複体 (chain complex) の概念であり、これはそのホモロジーとコホモロジーの両方を通じて研究できる。ホモロジー代数は、これらの複体に含まれる情報を得、それを環、加群、位相空間や、他の 'tangible' な数学的対象のホモロジー的不変量の形で描写する手段を提供してくれる。これをするための強力な手法はによって与えられる。 まさにその起源から、ホモロジー代数学は代数トポロジーにおいて非常に多くの役割を果たしている。その影響の範囲は徐々に拡大しており現在では可換環論、代数幾何学、代数的整数論、表現論、数理物理学、作用素環論、複素解析、そして偏微分方程式論を含む。K-理論はホモロジー代数学の手法を利用する独立した分野であり、アラン・コンヌの非可換幾何もそうである。.

新しい!!: 幾何学的トポロジーとホモロジー代数学 · 続きを見る »

ホモトピー

数学におけるホモトピー (homotopy)とは、点や線や面などの幾何学的対象、あるいはそれらの間の連続写像が連続的に移りあうということを定式化した位相幾何学における概念のひとつである。位相幾何学では、2 つの対象 A と X との関係のうち、連続的な変形によって保たれるものを問題とすることが多い。これらの関係はふつう連続写像 A → X を通して定義され、ホモトピーの概念は連続的に変形する連続写像の族によって定式化される。ホモトピー的な種々の不変量は位相幾何学の研究における基本的な道具となる。 考察している幾何学的対象に「穴」が開いていれば、端を固定された曲線はそれを越えて連続的に変形することができない。したがって、ホモトピーによって「穴」の有無や、単純な構成要素に分解したときのそれらの組み合わせ的なつながり具合といった構造を調べることができる。ホモトピーが威力を発揮するのは、空間や写像といった幾何学的な対象に対し群や準同型などという代数的な対象を対応づけることであり、またそのような代数的な対象がしばしばもとの幾何学的な対象よりも単純化されているということにある。 このように、代数的な道具によって空間と写像の位相的性質を調べるという方法をとる幾何学は、代数的位相幾何学と呼ばれる。.

新しい!!: 幾何学的トポロジーとホモトピー · 続きを見る »

コホモロジー

数学、とくにホモロジー論と代数トポロジーにおいて、コホモロジー (cohomology) はコチェイン複体から定義されるアーベル群の列を意味する一般的な用語である。つまり、コホモロジーはコチェイン、コサイクル、そしてコバウンダリの抽象的な研究として定義される。コホモロジーは、を、ホモロジーがもっているよりも洗練された代数的構造をもつ位相空間に割り当てる手法と見ることができる。コホモロジーはホモロジーの構成の代数的な双対から生じる。より抽象的でない言葉で言えば、基本的な意味でのコチェインは'量'をホモロジー論のチェインに割り当てる。 位相幾何学におけるその起源から、このアイデアは20世紀後半の数学において主要な手法となった。チェインについての位相的不変関係としてのホモロジーの最初の考えから、ホモロジーとコホモロジーの理論の応用の範囲は幾何学と抽象代数学に渡って拡がった。用語によって、多くの応用においてコホモロジー、反変理論、がホモロジーよりも自然であるという事実が隠されがちである。基本的なレベルではこれは幾何学的な状況において関数とを扱う。空間 X と Y、そして Y 上のある種の関数 F が与えられたとすると、任意の写像 f: X → Y に対して、f との合成は X 上の関数 F o f を引き起こす。コホモロジー群はまたしばしば自然な積、カップ積をもっており、環の構造を与える。この特徴のために、コホモロジーはホモロジーよりも強い不変量である。ホモロジーでは区別できないある種の代数的対象を区別できるのである。.

新しい!!: 幾何学的トポロジーとコホモロジー · 続きを見る »

ジョン・ウィラード・ミルナー

ョン・ウィラード・ミルナー ジョン・ウィラード・ミルナー(John Willard Milnor, 1931年2月20日 - )はアメリカ合衆国の数学者。微分幾何学、K理論、力学系の研究および、これまで数学の名著の好例と見なされてきた数々の著書で知られる。1962年にフィールズ賞を受賞した。現在はニューヨーク州立大学ストーニブルック校で教授を務めている。妻のDusa McDuffもストーニブルック校の教授である。.

新しい!!: 幾何学的トポロジーとジョン・ウィラード・ミルナー · 続きを見る »

スフィア

フィア(sphere)は、英語で球、球体、球面、天体、星、月、範囲などの意味。.

新しい!!: 幾何学的トポロジーとスフィア · 続きを見る »

サークル

ークル (Circle).

新しい!!: 幾何学的トポロジーとサークル · 続きを見る »

円(えん、まる)(ゑん)(Yen).

新しい!!: 幾何学的トポロジーと円 · 続きを見る »

球面

球面(きゅうめん)とは球体の表面の意である。数学における球面 (sphere) は、距離の定められた空間の定点からの距離が一定であるような点の軌跡として定義される、非常に高い対称性を示す図形である。球面の囲む有界領域を球体あるいは単に球 (ball) と呼ぶ。一般には三次元ユークリッド空間 E3 内のもの、つまり二次元球面を指す場合が多い。.

新しい!!: 幾何学的トポロジーと球面 · 続きを見る »

結び目

結び目(むすびめ)とは、一般に紐や糸を結び合わせたところ、結んで作った瘤(こぶ)のことである。.

新しい!!: 幾何学的トポロジーと結び目 · 続きを見る »

結び目理論

結び目理論(むすびめりろん、knot theory)とは、紐の結び目を数学的に表現し研究する学問で、低次元位相幾何学の1種である。組合せ的位相幾何学や代数的位相幾何学とも関連が深い。.

新しい!!: 幾何学的トポロジーと結び目理論 · 続きを見る »

特性類

特性類 (Characteristic class)とは、位相空間 X の上のベクトル束やより一般に主束に対してさだまる X のコホモロジー類である。特性類は、主束の切断がどの程度存在するによって定まるもので、局所的には自明である主束の構造が大域的にどれほど非自明であるかをはかる位相不変量である。特性類は、代数多様体上のベクトル束に対しても定義され、代数トポロジー、微分幾何学や代数幾何学における統一した幾何学的な考え方の一つである。 1935年の多様体上のベクトル場についてのエドゥアルト・シュティーフェル (Eduard Stiefel) と (Hassler Whitney) の仕事より、特性類の考え方が発生した。.

新しい!!: 幾何学的トポロジーと特性類 · 続きを見る »

相同性

同性(そうどうせい)、ホモロジー (homology).

新しい!!: 幾何学的トポロジーと相同性 · 続きを見る »

複素幾何学

数学では、複素幾何学(complex geometry)は複素多様体や多変数複素函数の研究をする。複素解析における幾何学的な側面であるは代数幾何学への超越な応用は、この分野に属する。 本記事を通して、「解析的」という用語は簡単のために省略することがある。例えば、部分多様体や超曲面は、「解析的」という形容詞は省略する。また、他の記事の使いかたに従い、多様体(variety)は既約(irreducible)であることを仮定する。.

新しい!!: 幾何学的トポロジーと複素幾何学 · 続きを見る »

超球面

数学において、 次元球面(-じげんきゅうめん、n-sphere, n 球面)は普通の球面の ''n'' 次元空間への一般化である。任意の自然数 n に対して、半径 r の n 次元球面は中心点から距離 r にある (n + 1) 次元ユークリッド空間における点の集合として定義される。ここで半径 r は任意の正の実数でよい。したがって、原点を中心とする n 次元球面は によって定義される。これは (n + 1) 次元ユークリッド空間内に存在する n 次元多様体である。 特に:.

新しい!!: 幾何学的トポロジーと超球面 · 続きを見る »

部分多様体

部分多様体(submanifold)とは多様体 M の部分集合 S であって、それ自体も多様体構造を持つものを指す。このとき、包含写像 i: S → M の性質によって、部分多様体はいくつかの種類に分けられる。.

新しい!!: 幾何学的トポロジーと部分多様体 · 続きを見る »

連結空間

位相幾何学や関連する数学の分野において、連結空間(れんけつくうかん、connected space)とは、2つ以上の互いに素な空でない開部分集合の和集合として表すことのできない位相空間のことである。空間の連結性は主要なの1つであり、位相空間の区別をつけることに利用できる。より強い意味での連結性として、弧状連結 (path-connected) という概念があり、これは任意の2点が道によって結べることをいう。 位相空間 X の部分集合が連結であるとは、X の相対位相によってそれ自身を位相空間と見たときに連結であることをいう。 連結でない空間の例は、平面から直線を取り除いたものがある。非連結空間(すなわち連結でない空間)の他の例には、平面からアニュラスを取り除いたものや、2つの交わりを持たない閉円板の和集合がある。ただし、これら3つの例はいずれも、2次元ユークリッド空間から誘導される相対位相を考えている。.

新しい!!: 幾何学的トポロジーと連結空間 · 続きを見る »

数学

数学(すうがく、μαθηματικά, mathematica, math)は、量(数)、構造、空間、変化について研究する学問である。数学の範囲と定義については、数学者や哲学者の間で様々な見解がある。.

新しい!!: 幾何学的トポロジーと数学 · 続きを見る »

曲面

数学、特に位相幾何学における曲面(きょくめん、surface)は二次元位相多様体である。最もよく知られた曲面の例は、古典的な三次元ユークリッド空間 R3 内の立体の境界として得られる曲面である。例えば、球体の境界としての球面はそのようなものの例になっている。他方でクラインの壷などの、特異点や自己交叉を持つことなしに三次元ユークリッド空間に埋め込み不可能な曲面というものも存在する。 曲面が「二次元」であるというのは、それが二次元の座標系を入れた「座標付きのきれはし」の貼り合せになっているということを指し示している。例えば、「地球の表面」は(理想的には)二次元球面であり、経線と緯線はその球面上の二次元座標系を与えている(ただし、両極を180度子午線で結んだ部分を除く)。.

新しい!!: 幾何学的トポロジーと曲面 · 続きを見る »

4次元多様体

数学において、4次元多様体 (4-manifold) は 4次元の位相多様体である。滑らかな4次元多様体 (smooth 4-manifold) は、をもつ 4次元多様体である。4次元では、低次元では注目すべき対比があり、位相多様体と滑らかな多様体の間で大きな差異がある。滑らかな構造を持たない 4次元多様体が存在し、たとえ、滑らかな構造が存在したとしても、一意であるとは限らない(すなわち、同相であるが微分同相ではない滑らかな多様体が存在する。.

新しい!!: 幾何学的トポロジーと4次元多様体 · 続きを見る »

ここにリダイレクトされます:

幾何学的位相幾何学

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »