ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
ダウンロード
ブラウザよりも高速アクセス!
 

希釈

索引 希釈

希釈(きしゃく、稀釈)とは、濃度を下げるために媒体の量を増加することである。様々なものの濃度を調節することは、極めて多くの場面で重要である。溶液の場合、溶媒を追加することで任意に希釈を行うことが出来る。 たとえば定量分析においては、濃度が高すぎる場合にその測定が不安定になる場合があり、ある程度その濃度を下げることが重要である。 微生物の培養では、希釈平板法はごくスタンダードなものと見なされており、複数の希釈率での培養が行われた上で定量化が行われる。.

13 関係: 定量分析希釈平板法ヴィルヘルム・オストヴァルトエントロピー内部エネルギー硫酸総量規制電解質溶媒溶液濃度3He-4He希釈冷凍法

定量分析

定量分析(ていりょうぶんせき、quantitative analysis)とは、試料中にある成分量を決定するために実施する化学分析である。試料中の成分が未知である場合は、定量分析に先立って定性分析を実施する。 古典的には成分の重量を測定する重量分析〈じゅうりょうぶんせき、gravimetric analysis〉、容量を測定する容量分析〈ようりょうぶんせき、volumetric analysis〉、化学変化による色調変化を比較測定する比色分析〈ひしょくぶんせき、colorimetric analysis〉の3つの分析方法に分類される。前二者は物理的な物理量を直接測定し物質量を決定するが、比色分析は予め、含量を精密に決定した基準試料〈きじゅんしりょう、authentic sample〉を複数用意して化学変化の度合を未知試料と比較して間接的に決定する。 重量分析では、測定に先立って成分の分離を行い、その後質量を計測する必要がある。たとえば、試料中の塩化物イオンを硝酸銀を加えて塩化銀としてすべて沈澱させ、生成した塩化銀を濾過で分離捕集して乾燥重量を測定する。あるいは元素分析では炭素、水素、窒素量は重量分析で決定する。 容量分析は分離精製した気体の体積測定も含まれるが、通常は滴定法による滴下した容量を測定することを意味する。すなわち、滴下容量は試料中の成分の当量に比例するので、容量から当量を換算して成分量を決定する。 今日の機器分析では色調以外にも、電気,光学的強度,磁気,熱,放射能など多彩な物理量を測定することで定量分析が可能であるが、それらも比色分析同様に基準試料の応答と比較することで間接的に物質量を決定する。測定する物理変化量と物質量の間に、線形なグラフが成立する場合は検量線により、基準試料の空隙を補完することで精密に定量することが可能である。 今日では成分分離に高速液体クロマトグラフィー法を量測定に各測定器を組み合わせた分析機器が定量分析用機器の主流になっている。.

新しい!!: 希釈と定量分析 · 続きを見る »

希釈平板法

希釈平板法(きしゃくへいばんほう、dilution plate method)とは、微生物の分離法の一つで、調査対象とする試料を無菌の希釈液に合わせて懸濁液を作り、これを適当な割合で希釈し、寒天平板培地に広げて培養するものである。単独細胞由来のコロニーが出来ることから量的計測に利用できる利点があり、そのような目的にも用いられる。微生物の分離培養法の標準的な方法と目されている。.

新しい!!: 希釈と希釈平板法 · 続きを見る »

ヴィルヘルム・オストヴァルト

フリードリヒ・ヴィルヘルム・オストヴァルト(Friedrich Wilhelm Ostwald、Vilhelms Ostvalds、1853年9月2日 – 1932年4月4日)はドイツ(バルト・ドイツ人)の化学者。オストワルトあるいはオストワルドとも呼ばれる。1909年、触媒作用・化学平衡・反応速度に関する業績が認められ、ノーベル化学賞を受賞した。ヤコブス・ヘンリクス・ファント・ホッフやスヴァンテ・アレニウスと共に物理化学という分野を確立した1人とされている。.

新しい!!: 希釈とヴィルヘルム・オストヴァルト · 続きを見る »

エントロピー

ントロピー(entropy)は、熱力学および統計力学において定義される示量性の状態量である。熱力学において断熱条件下での不可逆性を表す指標として導入され、統計力学において系の微視的な「乱雑さ」「でたらめさ」と表現されることもある。ここでいう「でたらめ」とは、矛盾や誤りを含んでいたり、的外れであるという意味ではなく、相関がなくランダムであるという意味である。を表す物理量という意味付けがなされた。統計力学での結果から、系から得られる情報に関係があることが指摘され、情報理論にも応用されるようになった。物理学者ののようにむしろ物理学におけるエントロピーを情報理論の一応用とみなすべきだと主張する者もいる。 エントロピーはエネルギーを温度で割った次元を持ち、SIにおける単位はジュール毎ケルビン(記号: J/K)である。エントロピーと同じ次元を持つ量として熱容量がある。エントロピーはサディ・カルノーにちなんで一般に記号 を用いて表される。.

新しい!!: 希釈とエントロピー · 続きを見る »

内部エネルギー

内部エネルギー(ないぶエネルギー、)は、系の熱力学的な状態を表現する、エネルギーの次元をもつ示量性状態量の一つである。系が全体として持っている力学的エネルギー(運動エネルギーと位置エネルギー)に対する用語として、内部エネルギーと呼ばれる。 記号は や で表されることが多い。.

新しい!!: 希釈と内部エネルギー · 続きを見る »

硫酸

硫酸(りゅうさん、sulfuric acid)は、化学式 H2SO4 で示される無色、酸性の液体で硫黄のオキソ酸の一種である。古くは緑礬油(りょくばんゆ)とも呼ばれた。化学薬品として最も大量に生産されている。.

新しい!!: 希釈と硫酸 · 続きを見る »

総量規制

総量規制(そうりょうきせい)とは、1990年(平成2年)3月27日に、当時の日本の大蔵省から金融機関に対して行われた行政指導。1991年(平成3年)12月に解除されるまで、約1年9ヶ月続いた。 大蔵省銀行局長通達「土地関連融資の抑制について」のうちの、不動産向け融資の伸び率を総貸出の伸び率以下に抑えることをいう。行き過ぎた不動産価格の高騰を沈静化させることを目的とする政策であった。 ところが予想をはるかに超えた急激な景気後退の打撃(いわゆるバブル崩壊)を日本経済にもたらし、さらにはその後の「失われた20年」を日本に招来する要因の一つとなったことから、結果的にこの政策は失敗に終わる。この時の通達を出したのは、当時・大蔵省銀行局長の土田正顕。当時の大蔵大臣は橋本龍太郎であった。.

新しい!!: 希釈と総量規制 · 続きを見る »

電解質

電解質(でんかいしつ、英語:electrolyte)とは溶媒中に溶解した際に、陽イオンと陰イオンに電離する物質のことである。これに対し、溶媒中に溶解しても電離しない物質を非電解質という。 一般に電解液は電気分解が起こる以上の電圧をかければ電気伝導性を示すが、電解液でないものは電気抵抗が大きい。また、ほとんど溶媒中に溶解しないものは電解質にも非電解質にも含まれない。 溶融した電解質や固体の電解質というものも存在する。 つまり、物質を水に溶かしたとき、イオンになるものとならないものがあり、電気を通す物質はイオンになるものである。これを電解質という。 電解質溶液は十分に高い電圧(一般に数ボルト程度)をかけると電気分解することが可能である。「電解質」という名称はこのことから付けられた。電気分解を起こすことのできる理論分解電圧 V ′ はギブス自由エネルギー変化と以下の関係にある。実際には過電圧のため理論分解電圧より高い電圧を必要とする。.

新しい!!: 希釈と電解質 · 続きを見る »

水面から跳ね返っていく水滴 海水 水(みず)とは、化学式 HO で表される、水素と酸素の化合物である広辞苑 第五版 p. 2551 【水】。特に湯と対比して用いられ、温度が低く、かつ凝固して氷にはなっていないものをいう。また、液状のもの全般を指すエンジンの「冷却水」など水以外の物質が多く含まれているものも水と呼ばれる場合がある。日本語以外でも、しばしば液体全般を指している。例えば、フランス語ではeau de vie(オー・ドゥ・ヴィ=命の水)がブランデー類を指すなど、eau(水)はしばしば液体全般を指している。そうした用法は、様々な言語でかなり一般的である。。 この項目では、HO の意味での水を中心としながら、幅広い意味の水について解説する。.

新しい!!: 希釈と水 · 続きを見る »

溶媒

水は最も身近で代表的な溶媒である。 溶媒(ようばい、solvent)は、他の物質を溶かす物質の呼称。工業分野では溶剤(ようざい)と呼ばれることも多い。最も一般的に使用される水のほか、アルコールやアセトン、ヘキサンのような有機物も多く用いられ、これらは特に有機溶媒(有機溶剤)と呼ばれる。 溶媒に溶かされるものを溶質(solute)といい、溶媒と溶質を合わせて溶液(solution)という。溶媒としては、目的とする物質を良く溶かすこと(溶解度が高い)、化学的に安定で溶質と化学反応しないことが最も重要である。目的によっては沸点が低く除去しやすいことや、可燃性や毒性、環境への影響などを含めた安全性も重視される。水以外の多くの溶媒は、きわめて燃えやすく、毒性の強い蒸気を出す。また、化学反応では、溶媒の種類によって反応の進み方が著しく異なることが知られている(溶媒和効果)。 一般的に溶媒として扱われる物質は常温常圧では無色の液体であり、独特の臭気を持つものも多い。有機溶媒は一般用途としてドライクリーニング(テトラクロロエチレン)、シンナー(トルエン、テルピン油)、マニキュア除去液や接着剤(アセトン、酢酸メチル、酢酸エチル)、染み抜き(ヘキサン、石油エーテル)、合成洗剤(オレンジオイル)、香水(エタノール)あるいは化学合成や樹脂製品の加工に使用される。また抽出に用いる。.

新しい!!: 希釈と溶媒 · 続きを見る »

溶液

溶液(ようえき、solution)とは、2つ以上の物質から構成される液体状態の混合物である。一般的には主要な液体成分の溶媒(ようばい、solvent)と、その他の気体、液体、固体の成分である溶質(ようしつ、solute)とから構成される。 溶液は巨視状態においては安定な単一、且つ均一な液相を呈するが、溶質成分と溶媒成分とは単分子が無秩序に互いに分散、混合しているとは限らない。すなわち溶質物質が分子間の相互作用により引き合った次に示す集合体.

新しい!!: 希釈と溶液 · 続きを見る »

濃度

濃度(のうど)は、従来、「溶液中の溶質の割合を濃度という、いろいろな表し方がある。質量パーセント濃度、モル濃度等」(日本化学会編 第2版標準化学用語辞典)と定義されている。しかし、濃度をより狭く「特に混合物中の物質を対象に、量を全体積で除した商を示すための量の名称に追加する用語」(日本工業規格(JIS))『JISハンドブック 49 化学分析』日本規格協会;2008年と定義している場合がある。 後者に従えば「質量モル濃度」と訳されているMolarityは「濃度」ではない。しかし、MolarityやMolalityにそれぞれ「質量モル濃度」「重量モル濃度」等「~濃度」以外の訳語は見られない。.

新しい!!: 希釈と濃度 · 続きを見る »

3He-4He希釈冷凍法

He濃厚相(C相)、緑色が希薄相(D相)にあたる -希釈冷凍法(-きしゃくれいとうほう、)とは、ヘリウムの二つの同位体、HeとHeをそれぞれ液化し、相を相に注ぎ希釈する際の希釈熱を利用する冷却法である。極低温領域での冷却法のひとつ。液体ヘリウムの蒸発潜熱を使った冷却では到達できない、さらに低温の冷却を行う。現在 以下の極低温を連続的に実現する唯一の方法である。 中へのの溶解度はおよそ6.6%である。極低温では、との蒸気圧は異なり、溶媒のの中から選択的にを蒸発させる事ができる。すると、中の濃度が低下するので、は引き続きを溶解させることができ、-混合液が潜熱を奪い続けて、冷却をする。蒸発させたは回収し、液化させたのち、再びに溶解させて繰り返し使うことができる。.

新しい!!: 希釈と3He-4He希釈冷凍法 · 続きを見る »

ここにリダイレクトされます:

稀釈

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »