ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

点群

索引 点群

数学における点群(てんぐん、point group)とはある図形の形を保ったまま行う移動操作のうち、少なくとも1つの不動点を持つものを元とする群のこと。 このような抽象的な群の概念を導入することによって、物理学や化学における結晶や分子対称性を数学的に記述することができる。そのような応用との関係からふつう3次元ユークリッド空間における変換の範疇で考えることが多い。.

47 関係: 単位行列反転幾何学大直交性定理対称操作不動点化学マリケン記号ユークリッド空間ラマン効果トレースヘルマン・モーガン記号ヒュッケル法分子対称性分子軌道法アンモニアクラス (集合論)シェーンフリース記号商群共役類元 (数学)剰余類図形固体物理学空間群群 (数学)群の表現群論結晶結晶場理論結晶点群物理学直和鏡映行列の相似部分群赤外分光法配位子場理論電子状態集合恒等写像格子振動混成軌道振動準位指標表既約表現数学

単位行列

数学、特に線型代数学において、単位行列(たんいぎょうれつ、identity matrix)とは、単位的環上で定義される同じ型の正方行列同士の、積演算における単位元のことである。.

新しい!!: 点群と単位行列 · 続きを見る »

反転幾何学

初等幾何学における反転幾何学(はんてんきかがく、inversive geometry)は、平面幾何学において反転 (inversion) と呼ばれる種類の変換を一般化したものに関して保たれる図形の性質について研究する。 平面上の反転変換は、角を保ち(等角性)、一般化された円を一般化された円に写す(「円円対応」)ような写像になっている。ここで「一般化された円」というのは、円または(無限遠点を中心とする半径無限大の円と見做される)直線のいずれかであることを意味する。初等幾何学における難しい問題が、反転を施すと扱いやすくなるというようなことも少なくない。 このような平面上の反転の概念を、より高次元の場合に一般化することができる。.

新しい!!: 点群と反転幾何学 · 続きを見る »

大直交性定理

位数g (元の数)の群G の既約表現α のユニタリー表現行列D(α) の行列要素をD(α)ij(G)と書くと、その間には以下の直交関係がある。 ここで和記号はGのすべての元についての和を意味する。dαは表現行列の次元である。これを表現行列についての大直交性定理と呼ぶ。大直交性定理はシューアの補題から導かれる。.

新しい!!: 点群と大直交性定理 · 続きを見る »

対称操作

結晶学における対称操作とは、格子点を不変にする操作である。 対称操作には次のものがある。.

新しい!!: 点群と対称操作 · 続きを見る »

不動点

不動点を三つ持つ関数 数学において写像の不動点(ふどうてん)あるいは固定点(こていてん、fixed point, fixpoint)とは、その写像によって自分自身に写される点のことである。.

新しい!!: 点群と不動点 · 続きを見る »

化学

化学(かがく、英語:chemistry、羅語:chemia ケーミア)とは、さまざまな物質の構造・性質および物質相互の反応を研究する、自然科学の一部門である。言い換えると、物質が、何から、どのような構造で出来ているか、どんな特徴や性質を持っているか、そして相互作用や反応によってどのように別なものに変化するか、を研究する岩波理化学辞典 (1994) 、p207、【化学】。 すべての--> 日本語では同音異義の「科学」(science)との混同を避けるため、化学を湯桶読みして「ばけがく」と呼ぶこともある。.

新しい!!: 点群と化学 · 続きを見る »

マリケン記号

マリケン記号とは、点群の既約表現を表す記号のひとつである。分子などを扱う場合に便利なように工夫してある。.

新しい!!: 点群とマリケン記号 · 続きを見る »

ユークリッド空間

数学におけるユークリッド空間(ユークリッドくうかん、Euclidean space)は、エウクレイデス(ユークリッド)が研究したような幾何学(ユークリッド幾何学)の場となる平面や空間、およびその高次元への一般化である。エウクレイデスが研究した平面や空間はそれぞれ、2次元ユークリッド空間、3次元ユークリッド空間に当たり、これらは通常、ユークリッド平面、ユークリッド空間などとも呼ばれる。「ユークリッド的」という修飾辞は、これらの空間が非ユークリッド幾何やアインシュタインの相対性理論に出てくるような曲がった空間ではないことを示唆している。 古典的なギリシャ数学では、ユークリッド平面や(三次元)ユークリッド空間は所定の公準によって定義され、そこからほかの性質が定理として演繹されるものであった。現代数学では、デカルト座標と解析幾何学の考え方にしたがってユークリッド空間を定義するほうが普通である。そうすれば、幾何学の問題に代数学や解析学の道具を持ち込んで調べることができるようになるし、三次元以上のユークリッド空間への一般化も容易になるといった利点が生まれる。 現代的な観点では、ユークリッド空間は各次元に本質的に一つだけ存在すると考えられる。たとえば一次元なら実数直線、二次元ならデカルト平面、より高次の場合は実数の組を座標にもつ実座標空間である。つまり、ユークリッド空間の「点」は実数からなる組であり、二点間の距離は二点間の距離の公式に従うものとして定まる。n-次元ユークリッド空間は、(標準的なモデルを与えるものという意味で)しばしば とかかれるが、(余分な構造を想起させない)ユークリッド空間固有の性質を備えたものということを強調する意味で と書かれることもある。ふつう、ユークリッド空間といえば有限次元であるものをいう。.

新しい!!: 点群とユークリッド空間 · 続きを見る »

ラマン効果

ラマン効果(ラマンこうか)またはラマン散乱は、物質に光を入射したとき、散乱された光の中に入射された光の波長と異なる波長の光が含まれる現象。1928年インドの物理学者チャンドラセカール・ラマンとK・S・クリシュナンが発見した。.

新しい!!: 点群とラマン効果 · 続きを見る »

トレース

トレース (trace) は、すでにある物をなぞること。またはなぞるべき痕跡のこと。.

新しい!!: 点群とトレース · 続きを見る »

ヘルマン・モーガン記号

ヘルマン・モーガン記号(または国際記号)とは、結晶の点群や空間群、それらに含まれる対称要素の記述に用いられる記号である。ドイツの結晶学者カール・ヘルマンとフランスの鉱物学者シャルル=ヴィクトル・モーガンの名前に因んで名付けられた。.

新しい!!: 点群とヘルマン・モーガン記号 · 続きを見る »

ヒュッケル法

ヒュッケル法(ヒュッケルほう、Hückel method)は、ドイツのエーリヒ・ヒュッケルによって提案された分子軌道法である。エチレンや1,3-ブタジエン、ベンゼン等のπ電子共役分子に適用する例が入門用としてよく用いられる。 ヒュッケル法では電子に関する積分に対して以下のような近似を導入する。.

新しい!!: 点群とヒュッケル法 · 続きを見る »

分子対称性

ホルムアルデヒドの対称要素。C2は2回回転軸である。σvおよびσv' は2つの等価でない鏡映面である。 化学における分子の対称性(ぶんしのたいしょうせい、molecular symmetry)は、分子に存在する対称性およびその対称性に応じた分子の分類を述べる。分子対称性は化学における基本概念であり、双極子モーメントや許容分光遷移(ラポルテの規則といった選択則に基づく)といった分子の化学的性質の多くを予測あるいは説明することができる。多くの大学レベルの物理化学や量子化学、無機化学の教科書は、対称性のために一章を割いている。 分子の対称性の研究には様々な枠組みが存在するが、群論が主要な枠組みである。この枠組みは、ヒュッケル法、配位子場理論、ウッドワード・ホフマン則といった応用に伴って分子軌道の対称性の研究にも有用である。大規模な系では、固体材料の結晶学的対称性を説明するために結晶系が枠組みとして使用されている。 分子対称性を実質的に評価するためには、X線結晶構造解析や様々な分光学的手法(例えば金属カルボニルの赤外分光法)など多くの技術が存在する。.

新しい!!: 点群と分子対称性 · 続きを見る »

分子軌道法

水素分子の分子軌道ダイアグラム。 量子化学において、分子軌道法(ぶんしきどうほう、Molecular Orbital method)、通称「MO法」とは、原子に対する原子軌道の考え方を、そのまま分子に対して適用したものである。 分子軌道法では、分子中の電子が原子間結合として存在しているのではなく、原子核や他の電子の影響を受けて分子全体を動きまわるとして、分子の構造を決定する。 分子軌道法では、分子は分子軌道を持ち、分子軌道波動関数 \psi_j^\mathrmは、既知のn個の原子軌道\chi_i^\mathrmの線形結合(重ね合わせ)で表せると仮定する。 ここで展開係数 c_について、基底状態については、時間依存しないシュレーディンガー方程式にこの式を代入し、変分原理を適用することで決定できる。この方法はLCAO近似と呼ばれる。もし\chi_i^\mathrmが完全系を成すならば、任意の分子軌道を\chi_i^\mathrmで表せる。 またユニタリ変換することで、量子化学計算における収束を速くすることができる。分子軌道法はしばしば原子価結合法と比較されることがある。.

新しい!!: 点群と分子軌道法 · 続きを見る »

アンモニア

アンモニア (ammonia) は分子式が NH_3 で表される無機化合物。常温常圧では無色の気体で、特有の強い刺激臭を持つ。 水に良く溶けるため、水溶液(アンモニア水)として使用されることも多く、化学工業では基礎的な窒素源として重要である。また生体において有毒であるため、重要視される物質である。塩基の程度は水酸化ナトリウムより弱い。 窒素原子上の孤立電子対のはたらきにより、金属錯体の配位子となり、その場合はアンミンと呼ばれる。 名称の由来は、古代エジプトのアモン神殿の近くからアンモニウム塩が産出した事による。ラテン語の sol ammoniacum(アモンの塩)を語源とする。「アモンの塩」が意味する化合物は食塩と尿から合成されていた塩化アンモニウムである。アンモニアを初めて合成したのはジョゼフ・プリーストリー(1774年)である。 共役酸 (NH4+) はアンモニウムイオン、共役塩基 (NH2-) はアミドイオンである。.

新しい!!: 点群とアンモニア · 続きを見る »

クラス (集合論)

集合論及びその応用としての数学におけるクラスまたは類(るい、class)は、集合(または、しばしば別の数学的対象)の集まりで、それに属する全ての元が共通にもつ性質によって紛れなく定義されるものである。「クラス」の正確な定義は、議論の基礎となる文脈に依存する。例えば、ツエルメロ=フレンケル集合論 (ZF) ではクラスは厳密には存在しないが、他の集合論(たとえば、ノイマン=ベルナイス=ゲーデル集合論 (NBG))では、「クラス」の概念は公理化されている(NBG の例だと、別の量 (entity) の要素にならないような量としてクラスが定義される)。 (どのような定式化を選んだとしても)「全ての集合の集まり」はクラスである。(ZF では厳密な言い方ではないが)このクラスだが集合でないようなものは真のクラス (proper class) と呼ばれ、集合となるようなクラス(つまり集合)は小さいクラス (small class) とも呼ばれる。例えば、全ての順序数からなるクラスや全ての集合からなるクラスは、多くの形式体系において真のクラスである。 集合論以外の文脈では「クラス」を「集合」の同義語として使うこともある。この用法はクラスと集合が現代的な集合論の用語法に基づく区別をされていなかった時代からある。19世紀以前の多くの"クラス"に関する議論は集合のことを指していた、もしくはもっと曖昧な概念をさしていた。この意味でのクラスは「級」という訳語を当てることがある(たとえば滑らかさのクラスの C1-級など)。.

新しい!!: 点群とクラス (集合論) · 続きを見る »

シェーンフリース記号

ェーンフリース記号(シェーンフリースきごう、)とは、点群を記述、即ち、対象とする図形や物体の対称性を記述するために用いられる記法の一つである。主に分子に対して用いられることが多い。 他に、点群を記述するための記法としては、ヘルマン・モーガン記号(国際記法、)がある。これは、主に結晶の対称性を記述するのに用いられる。 ドイツの数学者、アーサー・モーリッツ・シェーンフリース(Arthur Moritz Schönflies)に因む。.

新しい!!: 点群とシェーンフリース記号 · 続きを見る »

商群

数学において,商群(しょうぐん,quotient group, factor group)あるいは剰余群,因子群とは,群構造を保つ同値関係を用いて,大きい群から似た元を集めて得られる群である.例えば,n を法とした加法の巡回群は,整数から,差が の倍数の元を同一視し,そのような各類(合同類と呼ばれる)に1つの実体として作用する群構造を定義することによって得られる.群論と呼ばれる数学の分野の一部である. 群の商において,単位元の同値類はつねにもとの群の正規部分群であり,他の同値類たちはちょうどその正規部分群の剰余類たちである.得られる商は と書かれる,ただし はもとの群で は正規部分群である.(これは「(ジーモッドエヌ)」と読まれる."mod" は modulo の略である.) 商群の重要性の多くはその準同型との関係に由来する.第一同型定理は任意の群 の準同型による像はつねに のある商と同型であると述べている.具体的には,準同型 による の像は と同型である,ただし は の核 を表す. 商群の双対概念は部分群であり,これらが大きい群から小さい群を作る2つの主要な方法である.任意の正規部分群 は,大きい群から部分群 の元の間の差異を除去して得られる,対応する商群を持つ.圏論では,商群は商対象の例であり,これは部分対象の双対である.商対象の他の例は,商環,商線型空間,商位相空間,商集合を参照..

新しい!!: 点群と商群 · 続きを見る »

共役類

数学、とくに群論において、任意の群は共役類(きょうやくるい、conjugacy class)に分割できる。同じ共役類の元は多くの性質を共有し、非アーベル群の共役類の研究はそれらの構造のたくさんの重要な特徴を明らかにする。.

新しい!!: 点群と共役類 · 続きを見る »

元 (数学)

数学において元(げん、element)とは、集合を構成する個々の数学的対象のことである。ジュゼッペ・ペアノの導入した記法に従えば、対象 が集合 の元であることを と書き表す。このとき対象 が集合 に属する(ぞくする、membership)、あるいは集合 は対象 を含むとも言う。 「属する」という二項関係は、数学的対象と集合(あるいは一般にクラス)との間に定まる非対称な関係(帰属関係)である。外延性の公理により、集合はそれに属する全ての数学的対象を指定することで特徴づけられる。 通常用いられる においては基礎の公理が述べるところによって帰属関係は整礎、すなわち任意の集合は自身を元として含むことはない(帰属関係は反対称関係である)。しかし、基礎の公理の代わりにを置くではそのような制約を受けないが存在し得る。 帰属関係は推移的でない。これは集合の包含関係がそうであることと対照的である。.

新しい!!: 点群と元 (数学) · 続きを見る »

剰余類

数学、特に群論における剰余類(じょうよるい、residue class)あるいは傍系(ぼうけい、coset; コセット)とは、特定の種類の同値関係に関する同値類である。.

新しい!!: 点群と剰余類 · 続きを見る »

図形

図形(ずけい、shape)は、一定の決まりによって定められる様々な形状のことであり、様々な幾何学における基本的な対象である。 ものの視覚認識によって得られる直観的な「かたち」を、まったく感覚によらず明確な定義と公理のみを用いて、演繹的に研究する論理的な学問としての幾何学の一つの典型は、ユークリッドの原論に見られる。ユークリッド幾何学においては、図形は定木とコンパスによって作図され、点、直線と円、また平面や球、あるいはそれらの部分から構成される。 1872年、クラインによって提出されたエルランゲン目録は、それまでの古典的なユークリッド幾何学、非ユークリッド幾何学、射影幾何学などの種々の幾何学に対して、変換という視点を通して統一的に記述することを目的とした。クラインのこの立場からは、図形は運動あるいは変換と呼ばれる操作に関して不変であるような性質によって記述される点集合のことであると言うことができる。 同時期にリーマンは、ガウスによって詳しく研究されていた曲面における曲率などの計量を基礎に、曲面をそれが存在する空間に拠らない一つの幾何学的対象として扱うことに成功し、リーマン幾何学あるいはリーマン多様体の概念の基礎を築いた。この立場において図形は、空間内の点集合という概念ではなく(一般には曲がったり重なったりした)空間そのものを指すと理解できる。.

新しい!!: 点群と図形 · 続きを見る »

固体物理学

固体物理学(こたいぶつりがく、Solid-state physics)とは物理学の一分野であり、より広い意味で使われる物性物理学に含まれる分野である。.

新しい!!: 点群と固体物理学 · 続きを見る »

積(せき)とは数学の乗法の結果を指す。平面や物体の広さや大きさは乗法によって得られるため、転じて広さや大きさという意味も持つ。 同列の言葉として加法の結果を示す和、減法の結果を示す差、除法の結果を示す商があり、まとめて和差積商と呼ぶ。 数学において 1 との乗算は演算前と演算後で値に変化が見られないことから省略される。そのため全ての実数が積であるともいうことが可能である。.

新しい!!: 点群と積 · 続きを見る »

空間群

間群(くうかんぐん、)は、結晶構造の対称性を記述するのに用いられる群である。群の元となる対称操作は、点群での対称操作(恒等操作、回転操作、鏡映操作、反転操作、回映操作、回反操作)に加え、並進操作(すべての点を平行に移動させる操作)である。 空間群は全部で230種類あり、すべての結晶はそのうちの1つに属している。ただし、原子の配列は原子の性質や化学結合によるため、大半の結晶構造は100種類程度の空間群に含まれる。 空間群を記述する方法には、ヘルマン・モーガン記号(Hermann-Mauguin)とシェーンフリース記号(Schoenflies)の2つがある。.

新しい!!: 点群と空間群 · 続きを見る »

群 (数学)

数学における群(ぐん、group)とは最も基本的と見なされる代数的構造の一つである。群はそれ自体興味深い考察対象であり、群論における主要な研究対象となっているが、数学や物理学全般にわたってさまざまな構成に対する基礎的な枠組みを与えている。.

新しい!!: 点群と群 (数学) · 続きを見る »

群の表現

数学において、群の表現(ぐんのひょうげん、group representation)とは、抽象的な群 の元 に対して具体的な線形空間 の正則な線形変換としての実現を与える準同型写像 のことである。線型空間 の基底を取ることにより、 をより具体的な正則行列として表すことができる。.

新しい!!: 点群と群の表現 · 続きを見る »

群論

群論(ぐんろん、group theory)とは、群を研究する学問。 群の概念は抽象代数学における中心的な概念。 環・体・ベクトル空間などは、演算や公理が付与された群と看做すことができる。 群論の方法は代数学の大部分に強い影響を与えている。 線形代数群とリー群の理論は群論の一分野。 特に発展を遂げており、独自の適用範囲を持っている。 結晶や、水素原子などの構造の多くは、対称性の群(symmetry group)で表現できる。このように、群論は、物理学や化学の中に多くの実例・応用例がある。 1960年代~80年代に発表された総計1万ページを超える論文によって、完全な有限単純群の分類が達成された。これは多くの数学者の共同作業の賜物であり、20世紀の数学の最も重要な業績の一つ。.

新しい!!: 点群と群論 · 続きを見る »

結晶

結晶(けっしょう、crystal)とは原子や分子が空間的に繰り返しパターンを持って配列しているような物質である。より厳密に言えば離散的な空間並進対称性をもつ理想的な物質のことである。現実の物質の大きさは有限であるため、そのような理想的な物質は厳密には存在し得ないが、物質を構成する繰り返し要素(単位胞)の数が十分大きければ(アボガドロ定数個程度になれば)結晶と見なせるのである。 この原子の並びは、X線程度の波長の光に対して回折格子として働き、X線回折と呼ばれる現象を引き起こす。このため、固体にX線を当てて回折することを確認できれば、それが結晶していると判断できる。現実に存在する結晶には格子欠陥と呼ばれる原子の配列の乱れが存在し、これによって現実の結晶は理想的な性質から外れた状態となる。格子欠陥は、文字通り「欠陥」として物性を損ねる場合もあるが、逆に物質を特徴付けることもあり、例えば、一般的な金属が比較的小さな力で塑性変形する事は、結晶欠陥の存在によって説明される。 準結晶と呼ばれる構造は、並進対称性を欠くにもかかわらず、X線を回折する高度に規則的な構造を持っている。数学的には高次元結晶の空間への射影として記述される。また、液晶は3次元のうちの一つ以上の方向について対称性が失われた状態である。そして、規則正しい構造をもたない物質をアモルファス(非晶質)と呼び、これは結晶の対義語である。.

新しい!!: 点群と結晶 · 続きを見る »

結晶場理論

結晶場理論(けっしょうばりろん)とは、金属イオンの p 軌道、 d 軌道、 f 軌道などのエネルギー準位の分裂を、配位子の持つ負電荷が作る静電場によって説明する理論。.

新しい!!: 点群と結晶場理論 · 続きを見る »

結晶点群

結晶点群()とは、結晶において許される対称操作の集まりがつくる群(点群)のこと。ただしこの対称操作には並進操作は含まれない。結晶点群は32種類存在する。.

新しい!!: 点群と結晶点群 · 続きを見る »

物理学

物理学(ぶつりがく, )は、自然科学の一分野である。自然界に見られる現象には、人間の恣意的な解釈に依らない普遍的な法則があると考え、自然界の現象とその性質を、物質とその間に働く相互作用によって理解すること(力学的理解)、および物質をより基本的な要素に還元して理解すること(原子論的理解)を目的とする。化学、生物学、地学などほかの自然科学に比べ数学との親和性が非常に強い。 古代ギリシアの自然学 にその源があり, という言葉も、元々は自然についての一般的な知識の追求を意味しており、天体現象から生物現象までを含む幅広い概念だった。現在の物理現象のみを追求する として自然哲学から独立した意味を持つようになったのは19世紀からである。 物理学の古典的な研究分野は、物体の運動、光と色彩、音響、電気と磁気、熱、波動、天体の諸現象(物理現象)である。.

新しい!!: 点群と物理学 · 続きを見る »

直和

数学における直和(ちょくわ、)は、既知の数学的対象を「貼り合わせ」て同じ種類の対象を新たに作り出す操作の一種で、歴史的経緯から対象によってやや異なる意味で用いられるが、大雑把には集合論的、代数学的、圏論的用法に大別できる。またいずれの用法においても、直和を取る対象が全て一つの大きな対象の部分となっている場合(内部直和、構造的直和)と、そのようなものを仮定しない場合(外部直和、構成的直和)を区別することができる(場合によってはそれらの記述は見かけ上大きく異なる)が、それらの間に自然な同型があるため理論上区別して扱わないこともある。そのような自然同型は、しばしば圏論的直和(あるいは双積)の普遍性によって捉えることができる。 直和を表すのに用いられる記号には \oplus, \coprod などがある。.

新しい!!: 点群と直和 · 続きを見る »

鏡映

数学における鏡映(きょうえい、reflection)あるいは鏡映変換とはユークリッド空間の超平面を固定点集合にもつ等長変換である。その名の通り、3次元空間内では、ある図形に鏡映変換を施したものは、平面鏡に映ったその図形の位置及び見え方と一致する。(この場合、鏡の位置が固定点集合となる) 例えば2次元ユークリッド空間では鏡映の固定点集合は直線であり、固定点集合を鏡映の軸という。逆に、与えられた直線を軸とする鏡映が定まり、直線による折り返しなどとも呼ばれる。同様に、3次元空間では与えられた平面による鏡映が定まる。 鏡映によって変わらない図形を鏡映対称(2次元図形の場合、特に線対称とも呼ぶ)である、あるいは鏡映対称性を持つなどという。特に軸が垂直な場合は左右対称とも言われる。例えばアルファベットの A や H などは垂直な軸に関して鏡映対称である。3次元の物体や現象(特に分子)が鏡映対称であって、合同ではないことを掌性と呼ぶ。 長さや角度は鏡映によって変わらないが、向きが変わる。また、同じ鏡映を2回続けて行うと恒等変換になるので鏡映は対合の一種である。.

新しい!!: 点群と鏡映 · 続きを見る »

行列の相似

線型代数学において、ふたつの n 次正方行列 A, B が相似(そうじ、similar)であるとは、n 次正則行列 P で となるようなものが存在するときに言う。互いに相似な行列は同じ線型写像を異なる基底に関して表現するもので、さきほどの P はそれらの基底の間の基底変換 (change of basis) を与える行列である。上記のような変換はしばしば、変換行列 P に関する相似変換 (similarity transformation) と呼ばれる。線型代数群の文脈では、行列の相似性は(群の元としての)共軛性として言及されることも多い。.

新しい!!: 点群と行列の相似 · 続きを見る »

部分群

二項演算 * に関して群 G が与えられたとする。 G の部分集合である H が G の部分群であるということは、 H が演算 * に関して群になるということである。より正確に表現すると、 H が G の部分群であるということは、群の演算 * を H×H (Hの直積)に制限したときに、 H における群の演算になっているということである。この関係は通常、 H ≤ G という記号で表現し、「 H は G の部分群である」と読む。 G の真部分群とは、部分群 H が G の真部分集合である(つまり H≠G である)ことである。任意の群 G に対し、G 自身と単位元のみからなる集合 は常に G の部分群である。 H が G の部分群であるとき、 G は H の拡大群であると表現する場合がある。 G が任意の半群であるときも、G の部分群の定義はそのまま通用するが、本項では群の部分群についてのみを扱うにとどめる。群 G は順序対 (G, &lowast) として記述されることもあるが、このように書くのは普通、G を台となる集合としてその上に演算 "∗" が代数的構造(あるいはもっとほかの構造)を定めるということを強調するためである。 以下では、通常の慣習に倣って ∗ を省略し、積 a ∗ b を単に ab と表記する。また、群の演算を単に「積」と表記する場合もある。.

新しい!!: 点群と部分群 · 続きを見る »

赤外分光法

赤外分光法(せきがいぶんこうほう、、 略称IR)とは、測定対象の物質に赤外線を照射し、透過(あるいは反射)光を分光することでスペクトルを得て、対象物の特性を知る方法のことをいう。対象物の分子構造や状態を知るために使用される。.

新しい!!: 点群と赤外分光法 · 続きを見る »

配位子場理論

配位子場理論(はいいしばりろん、ligand field theory)とは、金属錯体のd軌道の分裂を、「金属のd軌道と配位子の軌道との間の相互作用」によって説明する理論である。.

新しい!!: 点群と配位子場理論 · 続きを見る »

電子状態

電子状態(でんしじょうたい)または電子構造(でんしこうぞう)とは、物質(原子、分子なども含む)における電子の状態のこと。 「電子状態」「電子構造」に相当する英語としては、"electronic structure"、"electronic state(s)"、"electronic property" などがある。 電子状態間の遷移を電子遷移(でんしせんい)という。.

新しい!!: 点群と電子状態 · 続きを見る »

集合

数学における集合 (しゅうごう、set, ensemble, Menge) とは、大雑把に言えばいくつかの「もの」からなる「集まり」である。集合を構成する個々の「もの」のことを元 (げん、; 要素) という。 集合は、集合論のみならず現代数学全体における最も基本的な概念の一つであり、現代数学のほとんどが集合と写像の言葉で書かれていると言ってよい。 慣例的に、ある種の集合が系 (けい、) や族 (ぞく、) などと呼ばれることもある。実際には、これらの呼び名に本質的な違いはないが細かなニュアンスの違いを含むと考えられている。たとえば、方程式系(「相互に連立する」方程式の集合)、集合族(「一定の規則に基づく」集合の集合)、加法族(「加法的な性質を持つ」集合族)など。.

新しい!!: 点群と集合 · 続きを見る »

恒等写像

数学における恒等写像(こうとうしゃぞう、identity mapping, identity function)、恒等作用素(こうとうさようそ、identity operator)、恒等変換(こうとうへんかん、identity transformation)は、その引数として用いたのと同じ値を常にそのまま返すような写像である。集合論の言葉で言えば、恒等写像は恒等関係(こうとうかんけい、identity relationである。.

新しい!!: 点群と恒等写像 · 続きを見る »

格子振動

格子振動(こうししんどう、英語:lattice vibration)は、結晶中の原子(格子)の振動のこと。振動の駆動力は熱であるが、絶対零度においても、不確定性原理から原子(格子)は振動している(零点振動)。 格子振動は、熱伝導の原因の一つであり、比熱とも関係が深い(→デバイ比熱)、また格子振動によって電子が散乱される(→電気伝導に影響)。 格子振動は、従来型の超伝導と深く関わっている(→BCS理論)。 量子化された格子振動がフォノン。 振動という意味では、単独の原子や、分子、クラスター、表面などでの各原子も振動していて、これらを量子化したものもフォノンである。.

新しい!!: 点群と格子振動 · 続きを見る »

混成軌道

4つの ''sp''3混成軌道 3つの ''sp''2混成軌道 化学において、混成軌道(こんせいきどう、Hybrid orbital)は、原子価結合法において化学結合を形成する電子対を作るのに適した軌道関数(オービタル)である(これを原子価状態と呼ぶ)。混成(hybridization)は一つの原子上の原子軌道を混合する(線型結合をとる)概念であり、作られた新たな混成軌道は構成要素の原子軌道とは異なるエネルギーや形状等を持つ。混成軌道の概念は、第2周期以降の原子を含む分子の幾何構造と原子の結合の性質の説明に非常に有用である。 原子価殻電子対反発則(VSEPR則)と共に教えられることがあるものの、原子価結合および混成はVSEPRモデルとは実際に関係がない。 分子の構造は各原子と化学結合から成り立っているので、化学結合の構造が原子核と電子との量子力学でどのように解釈されるかは分子の挙動を理論的に解明していく上で基盤となる。化学結合を量子力学で扱う方法には主に、分子軌道法と原子価結合法とがある。前者は分子の原子核と電子との全体を一括して取り扱う方法であるのに対して、原子価軌道法では分子を、まず化学結合のところで切り分けた原子価状態と呼ばれる個々の原子と価電子の状態を想定する。次の段階として、分子の全体像を原子価状態を組み立てることで明らかにしてゆく。具体的には個々の原子の軌道や混成軌道をσ結合やπ結合の概念を使って組み上げることで、共有結合で構成された分子像を説明していくことになる。それゆえに、原子軌道から原子価状態を説明付ける際に利用する混成軌道の概念は原子価軌道法の根本に位置すると考えられる。 原子価結合法と分子構造.

新しい!!: 点群と混成軌道 · 続きを見る »

振動準位

振動準位(しんどうじゅんい)は分子の重心の移動を伴わず、核の相対的な位置の変位にともなう運動を表す量子状態である。分子内において核は、結合する隣接核と結合エネルギーに相当するポテンシャルの井戸を形成し、お互いバネで結ばれた様な状態にあるために、上記のような運動は振動運動によって記述される(詳細は以下の章を参照)。振動準位間の遷移は振動遷移(しんどうせんい)と呼ばれ、主に赤外分光法またはラマン分光法によって観測される。.

新しい!!: 点群と振動準位 · 続きを見る »

指標表

抽象代数学の一分野である群論において、指標表(しひょうひょう、character table)とは、与えられた群について、その全ての既約表現の指標を表にまとめたものである。これは直交関係などにより対象としている群についての比較的少ない情報から計算できて、群の性質をそこから引き出すことができる。 化学・結晶学・分光学において点群の指標表は、対称性の観点から分子振動を分類したり、2つの量子状態間の遷移が可能かどうかを考える場合に用いられる。.

新しい!!: 点群と指標表 · 続きを見る »

既約表現

数学のとくに群あるいは多元環の表現論における(代数的構造の)既約表現(きやくひょうげん、irreducible representation; irrep) とは、真の閉部分表現を持たない非零表現を言う。 複素内積ベクトル空間 V 上の任意の有限次元ユニタリ表現は、既約表現の直和である。既約表現は常に直既約である(すなわち、別の表現の直和にかくことができない)であり、この二つはしばしば混同されるが、例えば上半三角冪零行列として作用する実数の二次元表現など、一般には可約だが直既約な表現が無数に存在する。.

新しい!!: 点群と既約表現 · 続きを見る »

数学

数学(すうがく、μαθηματικά, mathematica, math)は、量(数)、構造、空間、変化について研究する学問である。数学の範囲と定義については、数学者や哲学者の間で様々な見解がある。.

新しい!!: 点群と数学 · 続きを見る »

ここにリダイレクトされます:

対称要素

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »