ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

群作用

索引 群作用

数学における群作用(ぐんさよう、group action)は、群を用いて物体の対称性を記述する方法である。.

83 関係: 加群の圏力学系基本群単位元古典力学同型写像同値同値類同値関係多面体変換 (数学)実数対称群対称性導来函手射 (圏論)局所コンパクト空間一般線型群二項演算位相空間位相空間 (物理学)位相群作用 (数学)作用を持つ群体の拡大余像圏 (数学)像 (数学)バーンサイドの補題モノイドラグランジュの定理 (群論)リー群ベクトル空間ガロア群冪集合内部自己同型写像の合成商位相空間商群全単射共通部分 (数学)剰余類回転群固有写像四元数積位相空集合線型写像置換 (数学)群 (数学)...群のコホモロジー群の表現群上の加群群準同型絶対値環 (数学)環上の加群特殊線型群直交群直積集合非交和面 (幾何学)頂点被覆空間部分群部分集合関手自己同型離散空間離散群集合集合の圏集合の分割連続写像連結空間逆写像恒等写像核 (代数学)正規部分群有限幾何学有限集合数学 インデックスを展開 (33 もっと) »

加群の圏

数学の一分野である圏論において加群の圏(かぐんのけん、category of modules)Mod は、すべての加群を対象としすべての加群準同型を射とする圏である。.

新しい!!: 群作用と加群の圏 · 続きを見る »

力学系

力学系(りきがくけい、英語:dynamical system)とは、一定の規則に従って時間の経過とともに状態が変化するシステム(系)、あるいはそのシステムを記述するための数学的なモデルのことである。一般には状態の変化に影響を与える数個の要素を変数として取り出し、要素間の相互作用を微分方程式または差分方程式として記述することによってモデル化される。 力学系では、システムの状態を実数の集合によって定義している。各々の状態の違いは、その状態を代表する変数の差のみによって表現される。システムの状態の変化は関数によって与えられ、現在の状態から将来の状態を一意に決定することができる。この関数は、状態の発展規則と呼ばれる。 力学系の例としては、振り子の振動や自然界に存在する生物の個体数の変動、惑星の軌道などが挙げられるが、この世界の現象すべてを力学系と見なすこともできる。システムの振る舞いは、対象とする現象や記述のレベルによって多種多様である。;力学系の具体例.

新しい!!: 群作用と力学系 · 続きを見る »

基本群

数学、特に代数トポロジーにおいて、基本群(きほんぐん、fundamental group)とは、ある固定された点を始点と終点にもつふたつのループが互いに連続変形可能かを測る点付き位相空間に付帯する群である。直観的には、それは位相空間にある穴についての情報を記述している。基本群はホモトピー群の最初で最も単純な例である。基本群は位相不変量である。つまり同相な位相空間は同じ基本群を持っている。 基本群は被覆空間の理論を用いて研究することができる。なぜなら、基本群は元の空間に付帯する普遍被覆空間の被覆変換群に一致するからである。基本群のアーベル化は、その空間の第一ホモロジー群と同一視することできる。位相空間が単体複体に同相のとき、基本群は群の生成子と関係式のことばで明示的に記述することができる。 基本群はアンリ・ポアンカレによって1895年に論文"Analysis situs"で定義された。ベルンハルト・リーマンとポアンカレとフェリックス・クラインの仕事でリーマン面の理論において基本群の概念が現れた。基本群は閉曲面の位相的な完全な分類を提供するだけでなく、複素函数のモノドロミー的性質の記述もする。.

新しい!!: 群作用と基本群 · 続きを見る »

単位元

数学、とくに抽象代数学において、単位元(たんいげん, )あるいは中立元(ちゅうりつげん, )は、二項演算を備えた集合の特別な元で、ほかのどの元もその二項演算による単位元との結合の影響を受けない。.

新しい!!: 群作用と単位元 · 続きを見る »

古典力学

古典力学(こてんりきがく、英語:classical mechanics)は、量子力学が出現する以前のニュートン力学や相対論的力学。物理学における力学に関する研究、つまり適当な境界の下に幾何学的表現された物質やその集合体の運動を支配し、数学的に記述する物理法則群に関する研究のうち、量子論以降の量子に関するそれを「量子力学」とするのに対し、レトロニム的に、量子論以前のもの(現代でもさかんに研究されている分野だが)を指してそう呼ぶ。 古典力学は、マクロな物質の運動つまり、弾道計算から部分的には機械動作、天体力学、例えば宇宙船、衛星の運動、銀河に関する研究に使われている。そして、それらの領域に対して、とても精度の高い結果をもたらす、最も古く最も広範な科学、工学における領域のうちの一つである。古典力学以外の領域としては気体、液体、固体などを扱う多くの分野が存在している。加えて、古典力学は光速に近い場合には特殊相対性理論を用いることによってより一般な形式を与えることとなる。同様に、一般相対性理論は、より深いレベルで重力を扱うこととなり、量子力学では、分子や原子における、粒子と波動の二重性について扱うこととなる。.

新しい!!: 群作用と古典力学 · 続きを見る »

同型写像

数学において,同型写像(isomorphismfrom the Ancient Greek: ἴσος isos "equal", and μορφή morphe "form" or "shape")あるいは単に同型とは,は準同型写像あるいは射であって,逆射を持つものである逆関数ではない..2つの数学的対象が同型 (isomorphic) であるとは,それらの間に同型写像が存在することをいう.自己同型写像は始域と終域が同じ同型写像である.同型写像の興味は2つの同型な対象は写像を定義するのに使われる性質のみを使って区別できないという事実にある.したがって同型な対象はこれらの性質やその結果だけを考える限り同じものと考えてよい. 群や環を含むほとんどの代数的構造に対して,準同型写像が同型写像であることと全単射であることは同値である. 位相幾何学において,射とは連続写像のことであるが,同型写像は同相写像あるいは双連続写像とも呼ばれる.解析学において,射は可微分関数であり,同型写像は微分同相とも呼ばれる. 標準的な同型写像 (canonical isomorphism) は同型であるようなである.2つの対象が標準的に同型 (canonically isomorphic) であるとは,それらの間に標準的な同型写像が存在することをいう.例えば,有限次元ベクトル空間 から二重双対空間への標準的な写像は標準的な同型写像である.一方, は双対空間に同型であるが,一般には標準的にではない. 同型写像は圏論を用いて形式化される.ある圏の射 が同型射であるとは,両側逆射を持つことをいう,すなわち,その圏における別の射 があって, かつ となる,ただし と はそれぞれ と の恒等射である..

新しい!!: 群作用と同型写像 · 続きを見る »

同値

同値(どうち)または等価(とうか)とは、2つの命題が共に真または共に偽のときに真となる論理演算である。 英語ではequivalence (EQ)。「if and only if」を略して、iff ともいう。否定排他的論理和 (XNOR) に等しい。 演算子記号は ⇔、↔、≡、.

新しい!!: 群作用と同値 · 続きを見る »

同値類

数学において,ある集合 の元が(同値関係として定式化される)同値の概念を持つとき,集合 を同値類(どうちるい,equivalence class)たちに自然に分割できる.これらの同値類は,元 と が同じ同値類に属するのは と が同値であるとき,かつそのときに限るものとして構成される. フォーマルには,集合 と 上の同値関係 が与えられたとき,元 の における同値類は, に同値な元全体の集合 である.「同値関係」の定義から同値類は S の分割をなす.この分割,同値類たちの集合,を の による商集合 (quotient set) あるいは商空間 (quotient space) と呼び, と表記する. 集合 が(群演算や位相のような)構造を持ち,同値関係 がこの構造と適切に両立するように定義されているとき,商集合はしばしばもとの集合から類似の構造を引き継ぐ.例としては,線型代数学における商空間,位相空間論における商空間,,等質空間,商環,,など..

新しい!!: 群作用と同値類 · 続きを見る »

同値関係

数学において、同値関係(どうちかんけい、equivalence relation)は反射的、対称的かつ推移的な二項関係を言う。これらの性質の帰結として、与えられた集合において、一つの同値関係はその集合を同値類に分割(類別)する。 同値関係にあることを表す記法は文献によって様々に用いられるけれども、与えられた集合上の同値関係 に関して二元 が同値であることを "" や "" で表すのがもっともよく用いられる記法である。 に関して同値であることを明示する場合には、"" や "" あるいは "" などと書かれる。.

新しい!!: 群作用と同値関係 · 続きを見る »

多面体

多面体の一種、立方体 初等幾何学における多面体(ためんたい、polyhedron)は、複数(4つ以上)の平面に囲まれた立体のこと。複数の頂点を結ぶ直線の辺と、その辺に囲まれた面によって構成される。したがって、曲面をもつものは含まず、(円柱などは入らない)また、すべての面の境界が直線である場合に限られる。 3次元空間での多胞体であるとも定義できる。2次元空間での多胞体は多角形なので、多角形を3次元に拡張した概念であるとも言える。 英語ではポリヘドロン (polyhedron)、複数形はポリヘドラ (polyhedra) である。多角形のポリゴン (polygon) の複数形がポリゴンズ (polygons) であるのとは異なる。.

新しい!!: 群作用と多面体 · 続きを見る »

変換 (数学)

数学的意味での変換(へんかん、transformation)とは、点を他の点に移したり、式を他の式に変えたり、座標を取り替えたりすること。.

新しい!!: 群作用と変換 (数学) · 続きを見る »

実数

数学における実数(じっすう、 nombre réel, reelle Zahl, real number)は、様々な量の連続的な変化を表す数の体系である。実数全体の空間は、途切れのなさにあたる完備性とよばれる位相的な性質を持ち、代数的には加減乗除ができるという体の構造を持っている。幾何学や解析学ではこれらのよい性質を利用して様々な対象が定義され、研究されている。一方でその構成方法に自明でない手続きが含まれるため、実数の空間は数学基礎論の観点からも興味深い性質を持っている。また、自然科学における連続的なものの計測値を表すのに十分な数の体系だとも考えられている。 実数の概念は、その形式的な定義が19世紀に達成される前から数の体系として使われていた。「実数」という名前は複素数の概念が導入された後に「普通の数」を表現する言葉として導入されたものである。.

新しい!!: 群作用と実数 · 続きを見る »

対称群

対称群(たいしょうぐん、)とは、「ものを並べ替える」という操作を元とする群である。この場合の「ものを並べ替える」操作のことを置換(ちかん、)という。数学の議論の様々な場面で「番号づけられて並んでいるものを入れ替える」「入れ替えの可能性すべてを調べる」ことが問題となり、対称群はそのような議論を定式化するために用いられる。置換のうちで特別なものだけを集めて得られる群は置換群(ちかんぐん、)と呼ばれる。置換群が空間 の変換群として与えられているとき、 の元 の置換は で与えられる の部分群の分だけ潰れているが、これは のなかに と「同じ」元が複数含まれている場合に対応しており、 の中でこれらを区別することができれば の元の置換から対称群 が回復される。.

新しい!!: 群作用と対称群 · 続きを見る »

対称性

対称性(たいしょうせい、ラテン語・ギリシャ語: συμμετρία symmetria, 独:Symmetrie, 英:symmetry)とは、ある変換に関して不変である性質である。 英語を音訳したシンメトリーと呼ぶこともあるが、2つのmは同時に発音されるため、英語の発音は「シメトリー」に近い。.

新しい!!: 群作用と対称性 · 続きを見る »

導来函手

数学では、一部の函手から導来(derived)することにより、元の函手と密接に関連した新しい函手を得ることができる。導来という操作は、抽象的ではあるが、数学全体を通して多くの構成を統一する。.

新しい!!: 群作用と導来函手 · 続きを見る »

射 (圏論)

数学の多くの分野において、型射あるいは射(しゃ、morphism; モルフィズム)は、ある数学的構造を持つ数学的対象から別の数学的対象への「構造を保つ」写像の意味で用いられる(準同型)。この意味での射の概念は現代的な数学のあらゆる場所で繰り返し生じてくる。例えば集合論における射は写像であり、線型代数学における線型写像、群論における群準同型、位相空間論における連続写像、… といったようなものなどがそうである。 圏論における射はこのような概念を広く推し進め、しかしより抽象的に扱うものである。考える数学的対象は集合である必要はないし、それらの間の関係性である射は写像よりももっと一般の何ものかでありうる。 射の、そして射がその上で定義される構造(対象)を調べることは圏論の中核を成す。射に関する用語法の多くは、その直観的背景でもある(対象が単に付加構造を備えた集合で、射がその構造を保つ写像であるような圏)に由来するものとなっている。また圏論において、圏を図式と呼ばれる有向グラフによって見る立場から、射は有向辺あるいは矢印 (arrow) と呼ばれることもある。.

新しい!!: 群作用と射 (圏論) · 続きを見る »

局所コンパクト空間

数学において、位相空間 が局所コンパクト(きょくしょコンパクト、)というのは、雑に言って、 の各点の近傍ではコンパクトであるという性質をもつことである。位相空間がコンパクトであるための条件は非常に厳しく、コンパクトな空間が数学において特殊な位置を占めているのに対して、数学で扱う重要な位相空間の多くが局所コンパクトである。特に局所コンパクトなハウスドルフ空間は数学の中で重要な位置を占める。.

新しい!!: 群作用と局所コンパクト空間 · 続きを見る »

一般線型群

数学において、一般線型群(いっぱんせんけいぐん、general linear group)とは線型空間上の自己同型写像のなす群のこと。あるいは基底を固定することで、正則行列のなす群のことを指すこともある。.

新しい!!: 群作用と一般線型群 · 続きを見る »

二項演算

数学において、二項演算(にこうえんざん、binary operation)は、数の四則演算(加減乗除)などの 「二つの数から新たな数を決定する規則」 を一般化した概念である。二項算法(にこうさんぽう)、結合などともいう。.

新しい!!: 群作用と二項演算 · 続きを見る »

位相空間

数学における位相空間(いそうくうかん, topological space)とは、集合にある種の情報(位相、topology)を付け加えたもので、この情報により、連続性や収束性といった概念が定式化可能になる。 位相空間論は位相空間の諸性質を研究する数学の分野である。.

新しい!!: 群作用と位相空間 · 続きを見る »

位相空間 (物理学)

物理学における位相空間(いそうくうかん、phase space)とは、力学系の位置と運動量を座標(直交軸)とする空間のことである。数学における位相空間()と区別するために、相空間と呼ぶ流儀もある。 ハミルトン形式においては位置と運動量が力学変数となり、力学変数の関数として表される物理量は位相空間上の関数となる。 1個の質点の運動の状態は、その位置と運動量を指定することで定まる。-次元空間における運動では、位置と運動量がそれぞれ 成分あり、合わせて 成分となる。これらを座標とする 次元の空間が位相空間である。1個の質点の運動の状態は位相空間上の1個の点として表現され、これは状態点と呼ばれる。運動方程式に従って位置と運動量は時間変化し、時間の経過とともに状態点は1本の軌跡を描く。 -次元空間を運動する 個の質点系の運動の状態は 次元位相空間上の 個の状態点の分布として表現され、時間とともにその分布が変化する。 質点系は上記の分布による表現だけではなく、 個の質点の各々の位置と運動量のすべてを座標とする -次元の位相空間を考えることができる。質点系の運動の状態はこの -次元空間上の1個の状態点として表現され、時間の経過とともに1本の軌跡を描く。.

新しい!!: 群作用と位相空間 (物理学) · 続きを見る »

位相群

数学における位相群(いそうぐん、topological group)は、位相の定められた群であって、そのすべての群演算が与えられた位相に関して連続となるという意味において代数構造と位相構造が両立する。したがって位相群に関して、群としての代数的操作を行ったり、位相空間として連続写像について扱ったりすることができる。位相群のは、連続対称性を調べるのに利用でき、例えば物理学などにも多くの応用を持つ。 文献によっては、本項に言うところの位相群を連続群と呼び、単に「位相群」と言えば位相空間として T2(ハウスドルフの分離公理)を満たす連続群すなわちハウスドルフ位相群を意味するものがある。.

新しい!!: 群作用と位相群 · 続きを見る »

作用 (数学)

数学における作用(さよう、action, operation)は、代数系にその上の変換写像の集まりを代数的構造として考え合わせたもの。幾何学的には空間(俗な意味で言えば図形)の運動の様子とその原因となるものの構造を記述する概念である。 抽象群などの抽象的に与えられる代数的構造を、その作用を通して具体的な空間上の運動全体がつくる構造として表現することによって特徴付けるという手法に基づいて展開される数学の一分野は表現論と呼ばれる。.

新しい!!: 群作用と作用 (数学) · 続きを見る »

作用を持つ群

数学の一分野、抽象代数学において、集合 Ω の作用を持つ群(さようをもつぐん、group with operators)あるいは単に Ω-群とは、群自己準同型からなる集合を備えた群として定められる代数的構造である。群作用を持つ集合と混同してはならない。 作用を持つ群は1920年代にエミー・ネーターによって広く研究され、講義が行われた。ネーターはこの概念を三種類の同型定理の独自の定式化に用いた。.

新しい!!: 群作用と作用を持つ群 · 続きを見る »

体の拡大

抽象代数学のとくに体論において体の拡大(たいのかくだい、field extension)は、体の構造や性質を記述する基本的な道具立ての一つである。 体の拡大の理論において、通常は非可換な体を含む場合を扱わない(そのようなものは代数的数論に近い非可換環論あるいは多元環論の範疇に属す)。ただし、非可換体(あるいはもっと一般の環)の部分集合が、非可換体の演算をその部分集合へ制限して得られる演算により、その非可換体を上にある体として(可換な)体構造をもつとき、元の非可換体の(可換)部分体と呼び、元の非可換体を(非可換)拡大体と呼ぶことがある。 以下本項では特に断りの無い限り、体として可換体のみを扱い、単に体と呼称する。.

新しい!!: 群作用と体の拡大 · 続きを見る »

余像

数学の代数学において、ある種の代数系における準同型写像 の余像(よぞう、)とは、定義域と核の のことを言う。その代数系において第一同型定理が成り立つならば、定理に言うところの同型写像 によって余像と像とは自然同型(canonical isomorphism)である。 より一般に、圏論において、射の余像とは射の像の双対概念である。f: X → Y とするとき、f の余像は(存在するならば)次を満たす全射 c: X → C を言う:.

新しい!!: 群作用と余像 · 続きを見る »

圏 (数学)

数学の一分野である圏論において中核的な概念を成す圏(けん、category)は、数学的構造を取り扱うための枠組みであり、数学的対象をあらわす対象とそれらの間の関係を表す射の集まりによって与えられる。圏はそれ自体、群に類似した代数的構造として理解することができる 二つの圏が等しい(相等)とは、それらの対象の集まりが等しく、かつそれら対象の間の射の集まりが等しく、さらにそれら射の対の結合の仕方が相等となることを言う。圏論の目的に照らせば、圏がまったく相等しいことは非常に強すぎる条件であり(それよりも緩いでさえ強すぎる)、圏同値がしばしば考慮される(二つの圏が同値であるとは、大まかに言えば圏の相等において等式で与えられる関係を、それぞれの圏における同型で置き換えたものとして与えられる)。 圏論が初めて現れるのは Eilenberg–Mac Lane, "General Theory of Natural Equivalences" (1945) と題された論文である。古典的だが今もなお広く用いられる教科書として、マクレーンの がある。.

新しい!!: 群作用と圏 (数学) · 続きを見る »

像 (数学)

'''f''' は始域 '''X''' から終域 '''Y''' への写像。'''Y''' の内側にある小さな楕円形が '''f''' の像である。 数学において、何らかの写像の像(ぞう、image)は、写像の始域(域、定義域)の部分集合上での写像の出力となるもの全てからなる、写像の終域(余域)の部分集合である。すなわち、始域の部分集合 X の各元において写像の値を評価することによって得られる集合を f による(または f に関する、f のもとでの、f を通じた)X の像という。また、写像の終域の何らかの部分集合 S の逆像(ぎゃくぞう、inverse image)あるいは原像(げんぞう、preimage)は、S の元に写ってくるような始域の元全体からなる集合である。 像および逆像は、写像のみならず一般の二項関係に対しても定義することができる。.

新しい!!: 群作用と像 (数学) · 続きを見る »

バーンサイドの補題

バーンサイドの補題(Burnside's lemma)、あるいはバーンサイドの数え上げ補題、コーシー・フロベニウスの補題、軌道の数え上げ補題とは、対称性を考慮して数学的な対象を数え上げるときに有用な群論の結果である。 以下では は有限群で集合 に作用しているとする。群 の各元 に対して で元 によって固定されるすべての の元からなる集合を表す。バーンサイドの補題は軌道の数 || は次の式で表せることを主張している。 つまり軌道の数(これは自然数あるいは+∞)は群 の元による固定点の数の平均(これも自然数あるいは+∞)と等しい。もし が無限群ならば || による除法は定義されないが、その場合には次の基数に関する主張が成り立つ。.

新しい!!: 群作用とバーンサイドの補題 · 続きを見る »

モノイド

数学、とくに抽象代数学における単系(たんけい、monoid; モノイド)はひとつの二項演算と単位元をもつ代数的構造である。モノイドは単位元をもつ半群(単位的半群)であるので、半群論の研究対象の範疇に属する。 モノイドの概念は数学のさまざまな分野に現れる。たとえば、モノイドはそれ自身が「ただひとつの対象をもつ圏」と見ることができ、したがって「集合上の写像とその合成」といった概念を捉えたものと考えることもできる。モノイドの概念は計算機科学の分野でも、その基礎付けや実用プログラミングの両面で広く用いられる。 モノイドの歴史や、モノイドに一般的な性質を付加した議論などは半群の項に譲る。.

新しい!!: 群作用とモノイド · 続きを見る »

ラグランジュの定理 (群論)

群論において、ラグランジュの定理(英語:Lagrange's theorem)とは、次のような定理である。 実は、任意の群に対し、(選択公理を認めれば)指数を用いて次のような式が成り立つ。.

新しい!!: 群作用とラグランジュの定理 (群論) · 続きを見る »

リー群

リー群(リーぐん、Lie group)は群構造を持つ可微分多様体で、その群構造と可微分構造とが両立するもののことである。ソフス・リーの無限小変換と連続群の研究に端を発するためこの名がある。.

新しい!!: 群作用とリー群 · 続きを見る »

ベクトル空間

数学、特に線型代数学におけるベクトル空間(ベクトルくうかん、vector space)、または、線型空間(せんけいくうかん、linear space)は、ベクトルと呼ばれる元からなる集まりの成す数学的構造である。ベクトルには和が定義され、またスカラーと呼ばれる数による積(「スケール変換」)を行える。スカラーは実数とすることも多いが、複素数や有理数あるいは一般の体の元によるスカラー乗法を持つベクトル空間もある。ベクトルの和とスカラー倍の演算は、「ベクトル空間の公理」と呼ばれる特定の条件(後述)を満足するものでなければならない。ベクトル空間の一つの例は、力のような物理量を表現するのに用いられる幾何ベクトルの全体である(同じ種類の任意の二つの力は、加え合わせて力の合成と呼ばれる第三の力のベクトルを与える。また、力のベクトルを実数倍したものはまた別の力のベクトルを表す)。同じ調子で、ただしより幾何学的な意味において、平面や空間での変位を表すベクトルの全体もやはりベクトル空間を成す。 ベクトル空間は線型代数学における主題であり、ベクトル空間はその次元(大雑把にいえばその空間の独立な方向の数を決めるもの)によって特徴づけられるから、その観点からはよく知られている。ベクトル空間は、さらにノルムや内積などの追加の構造を持つこともあり、そのようなベクトル空間は解析学において主に函数をベクトルとする無限次元の函数空間の形で自然に生じてくる。解析学的な問題では、ベクトルの列が与えられたベクトルに収束するか否かを決定することもできなければならないが、これはベクトル空間に追加の構造を考えることで実現される。そのような空間のほとんどは適当な位相を備えており、それによって近さや連続性といったことを考えることができる。こういた位相線型空間、特にバナッハ空間やヒルベルト空間については、豊かな理論が存在する。 歴史的な視点では、ベクトル空間の概念の萌芽は17世紀の解析幾何学、行列論、連立一次方程式の理論、幾何ベクトルの概念などにまで遡れる。現代的な、より抽象的な取扱いが初めて定式化されるのは、19世紀後半、ペアノによるもので、それはユークリッド空間よりも一般の対象が範疇に含まれるものであったが、理論の大半は(直線や平面あるいはそれらの高次元での対応物といったような)古典的な幾何学的概念を拡張することに割かれていた。 今日では、ベクトル空間は数学のみならず科学や工学においても広く応用される。ベクトル空間は線型方程式系を扱うための適当な線型代数学的概念であり、例えば画像圧縮ルーチンで使われるフーリエ展開のための枠組みを提示したり、あるいは偏微分方程式の解法に用いることのできる環境を提供する。さらには、テンソルのような幾何学的および物理学的な対象を、抽象的に座標に依らない で扱う方法を与えてくれるので、そこからさらに線型化の手法を用いて、多様体の局所的性質を説明することもできるようになる。 ベクトル空間の概念は様々な方法で一般化され、幾何学や抽象代数学のより進んだ概念が導かれる。.

新しい!!: 群作用とベクトル空間 · 続きを見る »

ガロア群

ア群(英:Galois Group)とは、代数方程式または体の拡大から定義される群のことである。発見者であるフランスの数学者エヴァリスト・ガロアから命名された。これらの群を用い方程式などの数学的対象について研究する分野をガロア理論と呼ぶ。.

新しい!!: 群作用とガロア群 · 続きを見る »

冪集合

冪集合(べきしゅうごう、power set)とは、数学において、与えられた集合から、その部分集合の全体として新たに作り出される集合のことである。べきは冪乗の冪(べき)と同じもので、冪集合と書くのが正確だが、一部分をとった略字として巾集合とも書かれる。 集合と呼ぶべき対象を公理的に構成的に与える公理的集合論では、集合から作った冪集合が集合と呼ばれるべきもののうちにあることを公理の一つ(冪集合公理)としてしばしば提示する。.

新しい!!: 群作用と冪集合 · 続きを見る »

内部自己同型

抽象代数学において、内部自己同型写像 (inner automorphism) は、ある操作をして、次に別の操作をして、次に最初の操作の逆をするような写像である。記号では、f^ \circ g \circ f (X) のように書ける。最初の行動と後に続くその逆の行動は、全体として得る結果を変えることもあれば(「傘をさして、雨の中を歩いて、傘をとじる」というのは単に「雨の中を歩く」のとは異なる結果になる)、変えないこともある(「左手の手袋を外し、右手の手袋を外し、左手の手袋をつける」のは「右手の手袋のみを外す」のと同じ結果になる)。 より正確には、群 の内部自己同型写像 は、 の任意の元 に対し によって定義される写像である。ここで a は G の与えられた固定された元であり、群の元の作用は右に起こると考える(なのでこれを読むとすれば「a かける x かける a−1」ということになる)。 元 を一つ固定して考えるとき、元 を の による共軛 (conjugate) (あるいは は によって と共軛である)と言い、 から を得る操作 を の による共役変換 (conjugation) または相似変換 (similarity transformation) と呼ぶ(共役類も参照)。また適当な によって の形に書けるような元を総称して の共軛元 (conjugate element) と呼ぶ。 1 つの元による共役が別の 1 つの元を変えない場合(上の「手袋」の場合)と共役によって新しい元が得られる場合(「傘」の場合)を区別することはしばしば興味の対象となる。 事実、 と言うことと と言うことは同値である。したがって、恒等写像でない内部自己同型の存在と個数は、群における交換法則の成り立たなさを測るようなものである。.

新しい!!: 群作用と内部自己同型 · 続きを見る »

写像の合成

数学において写像あるいは函数の合成(ごうせい、composition)とは、ある写像を施した結果に再び別の写像を施すことである。 たとえば、時刻 t における飛行機の高度を h(t) とし、高度 x における酸素濃度を c(x) で表せば、この二つの函数の合成函数 (c ∘ h)(t).

新しい!!: 群作用と写像の合成 · 続きを見る »

商位相空間

位相空間論およびそれに関連する数学の各分野において、等化空間(とうかくうかん、identification space)または商位相空間(しょういそうくうかん、quotient topological space)あるいは単に商空間 (quotient space) とは、直観的には与えられた空間のある種の点の集まりを「貼合せ」("gluing together") あるいは同一視してしまうことによって得られる新しい空間である。ただし、ここで貼合わせられるべき点の集まりというのは、何らかの同値関係によって決定される。 このような商空間構成は、与えられた位相空間から新たな空間を構成する方法の一つとして広く用いられる。.

新しい!!: 群作用と商位相空間 · 続きを見る »

商群

数学において,商群(しょうぐん,quotient group, factor group)あるいは剰余群,因子群とは,群構造を保つ同値関係を用いて,大きい群から似た元を集めて得られる群である.例えば,n を法とした加法の巡回群は,整数から,差が の倍数の元を同一視し,そのような各類(合同類と呼ばれる)に1つの実体として作用する群構造を定義することによって得られる.群論と呼ばれる数学の分野の一部である. 群の商において,単位元の同値類はつねにもとの群の正規部分群であり,他の同値類たちはちょうどその正規部分群の剰余類たちである.得られる商は と書かれる,ただし はもとの群で は正規部分群である.(これは「(ジーモッドエヌ)」と読まれる."mod" は modulo の略である.) 商群の重要性の多くはその準同型との関係に由来する.第一同型定理は任意の群 の準同型による像はつねに のある商と同型であると述べている.具体的には,準同型 による の像は と同型である,ただし は の核 を表す. 商群の双対概念は部分群であり,これらが大きい群から小さい群を作る2つの主要な方法である.任意の正規部分群 は,大きい群から部分群 の元の間の差異を除去して得られる,対応する商群を持つ.圏論では,商群は商対象の例であり,これは部分対象の双対である.商対象の他の例は,商環,商線型空間,商位相空間,商集合を参照..

新しい!!: 群作用と商群 · 続きを見る »

全単射

数学において、全単射(ぜんたんしゃ)あるいは双射(そうしゃ)(bijective function, bijection) とは、写像であって、その写像の終域となる集合の任意の元に対し、その元を写像の像とする元が、写像の定義域となる集合に常にただ一つだけ存在するようなもの、すなわち単射かつ全射であるような写像のことを言う。例としては、群論で扱われる置換が全単射の良い例である。 全単射であることを一対一上への写像 (one-to-one onto mapping)あるいは一対一対応 (one-to-one correspondence) ともいうが、紛らわしいのでここでは使用しない。 写像 f が全単射のとき、fは可逆であるともいう。.

新しい!!: 群作用と全単射 · 続きを見る »

共通部分 (数学)

数学において、集合族の共通部分(きょうつうぶぶん、intersection)とは、与えられた集合の集まり(族)全てに共通に含まれる元を全て含み、それ以外の元は含まない集合のことである。共通集合(きょうつうしゅうごう)、交叉(こうさ、交差)、交わり(まじわり、)、積集合(せきしゅうごう)、積(せき)、などとも呼ばれる。ただし、積集合は直積集合の意味で用いられることが多い。.

新しい!!: 群作用と共通部分 (数学) · 続きを見る »

剰余類

数学、特に群論における剰余類(じょうよるい、residue class)あるいは傍系(ぼうけい、coset; コセット)とは、特定の種類の同値関係に関する同値類である。.

新しい!!: 群作用と剰余類 · 続きを見る »

回転群

(n 次の)回転群(かいてんぐん、rotation group)あるいは特殊直交群(とくしゅちょっこうぐん、special orthogonal group)とは、n行n列の直交行列であって、行列式が1のもの全体が行列の乗法に関してなす群をいう。SO(n) と書く。 SO(n) はコンパクトリー群であり、n.

新しい!!: 群作用と回転群 · 続きを見る »

固有写像

数学において、位相空間の間のある函数が固有写像(こゆうしゃぞう、)であるとは、コンパクト部分集合に対するその逆像がコンパクトであることをいう。代数幾何学において、類似の概念はと呼ばれる。.

新しい!!: 群作用と固有写像 · 続きを見る »

四元数

数学における四元数(しげんすう、quaternion(クォターニオン))は複素数を拡張した数体系である。四元数についての最初の記述は、1843年にアイルランドの数学者ウィリアム・ローワン・ハミルトンによってなされ、三次元空間の力学に応用された。四元数の特徴は、二つの四元数の積が非可換となることである。ハミルトンは、四元数を三次元空間内の二つの有向直線の商として定義した。これは二つのベクトルの商と言っても同じである。四元数をスカラーと三次元のベクトルとの和として表すこともできる。 一般に、四元数は の形に表される。ここで、 a, b, c, d は実数であり、i, j, k は基本的な「四元数の単位」である。 四元数は純粋数学のみならず応用数学、特に3Dグラフィクスやコンピュータビジョンにおいてでも用いられる。これはオイラー角や回転行列あるいはそれらに代わる道具などとともに、必要に応じて利用される。 現代数学的な言い方をすれば、四元数の全体は実数体上四次元の結合的ノルム多元体を成し、またそれゆえに非可換整域となる。歴史的には四元数の体系は、最初に発見された非可換多元体である。四元数全体の成すこの代数は、ハミルトンに因んで H(あるいは黒板太文字でユニコードの Double-Struck Capital H, U+210D, )と書かれる。またこの代数を、クリフォード代数の分類に従って というクリフォード代数として定義することもできる。この代数 は解析学において特別な位置を占めている。というのも、フロベニウスの定理に従えば は実数の全体 を真の部分環として含む有限次元可除環の二種類しかないうちの一つ(もう一つは複素数の全体 )だからである。 従って、単位四元数は三次元球面 上の群構造を選んだものとして考えることができて、群 を与える。これは に同型、あるいはまた の普遍被覆に同型である。.

新しい!!: 群作用と四元数 · 続きを見る »

積位相

位相幾何学とその周辺において、積空間(せきくうかん、product space)とは位相空間の族の直積に積位相 (product topology) と呼ばれるを入れた空間のことである。この位相は他の、もしかするとより明らかな、と呼ばれる位相とは異なる。箱位相も積空間に与えることができ、有限個の空間の直積では積位相と一致する。しかしながら、積位相は位相空間の圏における圏論的積であるという意味で「正しい」位相である。(一方箱位相は細かすぎる。)これが積位相が「自然」であるという意味である。.

新しい!!: 群作用と積位相 · 続きを見る »

空集合

集合(くうしゅうごう、empty set)は、要素を一切持たない集合の事である。公理的集合論において、空集合は公理として存在を仮定される場合と、他の公理から存在が導かれる場合がある。空集合を表す記号として、∅ または \emptyset、 がある。記号 ∅ はノルウェー語等で用いられるアルファベット Ø に由来しており、形の似ているギリシャ文字φ, Φ(ファイ)とは全く関係がない。.

新しい!!: 群作用と空集合 · 続きを見る »

線型写像

数学の特に線型代数学における線型変換(せんけいへんかん、linear transformation、一次変換)あるいは線型写像(せんけいしゃぞう、linear mapping)は、ベクトルの加法とスカラー乗法を保つ特別の写像である。特に任意の(零写像でない)線型写像は「直線を直線に移す」。 抽象代数学の言葉を用いれば、線型写像とは(体上の加群としての)ベクトル空間の構造を保つ準同型のことであり、また一つの固定された体上のベクトル空間の全体は線型写像を射とする圏を成す。 「線型変換」は線型写像とまったく同義と扱われる場合もあるが、始域と終域を同じくする線型写像(自己準同型)の意味で用いていることも少なくない。また函数解析学の分野では、(特に無限次元空間上の)線型写像のことを「線型作用素」(せんけいさようそ、linear operator)と呼ぶことも多い。スカラー値の線型写像はしばしば「線型汎函数」もしくは「一次形式」(いちじけいしき、linear form, one-form; 線型形式; 1-形式)とも呼ばれる一次の微分形式(一次微分形式もしくは微分一次形式; differential one-form)を単に「一次形式」または「1-形式」(one-form) と呼ぶこともある。これとの対照のため、本項に云う意味での一次形式を「代数一次形式」(albegraic one-form) と呼ぶ場合がある。。 線形等の用字・表記の揺れについては線型性を参照。.

新しい!!: 群作用と線型写像 · 続きを見る »

置換 (数学)

数学における置換(ちかん、permutation)の概念は、いくつか僅かに異なった意味で用いられるが、いずれも対象や値を「並べ替える」ことに関するものである。有り体に言えば、対象からなる集合の置換というのは、それらの対象に適当な順番を与えて並べることを言う。例えば、集合 の置換は、 の全部で六種類ある順序組である。単語のアナグラムは、単語を構成する文字列に対する置換として定められる。そういった意味での置換の研究は、一般には組合せ論に属する話題である。 相異なる n 個の対象の置換の総数は 通りであり、これは "n!" と書いて n の階乗と呼ばれる。 置換の概念は、多かれ少なかれ(あるいは陰に陽に)、数学のほとんどすべての領域に現れる。たとえばある有限集合上に異なる順序付けが考えられる場合に、単にそれらの順番を無視したいとか、無視した時にどれほどの配置が同一視されるかを知る必要があるなどの理由で、置換が行われることも多い。同様の理由で、置換は計算機科学におけるソートアルゴリズムの研究において生じる。 代数学、特に群論において、集合 S 上の置換は S から自身への全単射(つまり写像 で S の各元が像としてちょうど一つずつ現れるもの)として定義される。これは各元 s を対応する f(s) と入れ替えるという意味での S の並び替え (rearrangement) と関連する。このような置換の全体は対称群と呼ばれる群を成す。重要なことは、置換の合成が定義できること、つまり二つの並び替えを続けて行うと、それは全体として別の並べ替えになっているということである。S 上の置換は、S の元(あるいはそれを特定の記号によって置き換えたもの)を対象として、それらに対象の並び替えとして作用する。 初等組合せ論において、「」はともに n 元集合から k 個の元を取り出す方法として可能なものを数え上げる問題に関するもので、取り出す順番を勘案するのが k-順列、順番を無視するのが k-組合せである。k.

新しい!!: 群作用と置換 (数学) · 続きを見る »

群 (数学)

数学における群(ぐん、group)とは最も基本的と見なされる代数的構造の一つである。群はそれ自体興味深い考察対象であり、群論における主要な研究対象となっているが、数学や物理学全般にわたってさまざまな構成に対する基礎的な枠組みを与えている。.

新しい!!: 群作用と群 (数学) · 続きを見る »

群のコホモロジー

数学、とくにホモロジー代数学において、群のコホモロジー(group cohomology)とは代数的トポロジーに由来する技法であるコホモロジー論を使って群を研究するために使われる数学的な道具立てである。群の表現のように、群のコホモロジーは群 の G 加群への作用をみることで、その群の性質を明らかにする。 加群を の元が n 単体を表す位相空間のように扱うことで、コホモロジー群 などの位相的な性質が計算できる。コホモロジー群は群 や 加群 の構造に関する洞察を与える。群のコホモロジーは加群や空間への群作用の固定点や群作用に関する商加群や商空間を研究において一定の役割を果たす。群のコホモロジーは群論そのものへの応用はもちろん、抽象代数・ホモロジー代数・代数的トポロジー・代数的整数論などの分野でも用いられている。代数的トポロジーには、群のホモロジーと呼ばれる双対理論がある。 これらの代数的な概念は位相的な概念と密接に関連している。離散群 の群のコホモロジーは を基本群とする適当な空間——つまり対応する——の特異コホモロジーである。したがって のコホモロジーは円 の特異コホモロジーと思うことができ、同様に のコホモロジーは の特異コホモロジーと思うことができる。 群のコホモロジーについては非常に多くのこと——低次コホモロジーの解釈・関手性・群の変更——が知られている。群のコホモロジーに関する主題は1920年代に始まり、1940年代後半に発達し、現在でも活発に研究が続いている。.

新しい!!: 群作用と群のコホモロジー · 続きを見る »

群の表現

数学において、群の表現(ぐんのひょうげん、group representation)とは、抽象的な群 の元 に対して具体的な線形空間 の正則な線形変換としての実現を与える準同型写像 のことである。線型空間 の基底を取ることにより、 をより具体的な正則行列として表すことができる。.

新しい!!: 群作用と群の表現 · 続きを見る »

群上の加群

数学において、与えられた群 G 上の加群(かぐん、module over G)または G-加群 (G-module) とは、アーベル群 M であって M の群構造と両立する G の作用を持つものをいう。これは ''G'' の表現に広く一般に用いることのできる概念である。群コホモロジーは G-加群の一般論の研究において重要な道具をいくつも提供する。 G-加群という用語はもっといっぱんに、G が線型に(つまり R-加群の自己同型からなる群として)作用する ''R''-加群に対しても用いられる。.

新しい!!: 群作用と群上の加群 · 続きを見る »

群準同型

数学、特に群論における群の準同型写像(じゅんどうけいしゃぞう、group homomorphism)は群の構造を保つ写像である。準同型写像を単に準同型とも呼ぶ。.

新しい!!: 群作用と群準同型 · 続きを見る »

絶対値

数の絶対値は零からの距離と考えられる 数学における実数 の絶対値(ぜったいち、absolute value)または母数(ぼすう、modulus) は、その符号を無視して得られる非負の値を言う。つまり正数 に対して および負数 に対して (このとき は正)であり、また である。例えば の絶対値は であり の絶対値も である。数の絶対値はその数の零からの距離と見なすことができる。 実数の絶対値を一般化する概念は、数学において広範で多様な設定のもとで生じてくる。例えば、絶対値は複素数、四元数、順序環、体などに対しても定義することができる。様々な数学的あるいは物理学的な文脈における (magnitude) や距離およびノルムなどの概念は、絶対値と緊密な関係にある.

新しい!!: 群作用と絶対値 · 続きを見る »

環 (数学)

数学における環(かん、ring)は、台集合に「加法」(和)および「乗法」(積)と呼ばれる二種類の二項演算を備えた代数系になっており、最もよく知られた環の例は、整数全体の成す集合に自然な加法と乗法を考えたものである(これは乗法が可換だから可換環の例でもある)。ただし、それが環と呼ばれるためには、環の公理として、加法は可換で、加法と乗法はともに結合的であって、乗法は加法の上に分配的で、各元は加法逆元をもち、加法単位元が存在すること、が全て要求される。従って、台集合は加法のもと「加法群」と呼ばれるアーベル群を成し、乗法のもと「乗法半群」と呼ばれる半群であって、乗法は加法に対して分配的であり、またしばしば乗法単位元を持つ乗法に関しては半群となることのみを課す(乗法単位元の存在を要求しない)こともある。定義に関する注意節を参照。なお、よく用いられる環の定義としていくつか流儀の異なるものが存在するが、それについては後述する。 環について研究する数学の分野は環論として知られる。環論学者が研究するのは(整数環や多項式環などの)よく知られた数学的構造やもっと他の環論の公理を満足する多くの未だよく知られていない数学的構造のいずれにも共通する性質についてである。環という構造のもつ遍在性は、数学の様々な分野において同時多発的に行われた「代数化」の動きの中心原理として働くことになった。 また、環論は基本的な物理法則(の根底にある特殊相対性)や物質化学における対称現象の理解にも寄与する。 環の概念は、1880年代のデデキントに始まる、フェルマーの最終定理に対する証明の試みの中で形成されていった。他分野(主に数論)からの寄与もあって、環の概念は一般化されていき、1920年代のうちにエミー・ネーター、ヴォルフガング・クルルらによって確立される。活発に研究が行われている数学の分野としての現代的な環論では、独特の方法論で環を研究している。すなわち、環を調べるために様々な概念を導入して、環をより小さなよく分かっている断片に分解する(イデアルをつかって剰余環を作り、単純環に帰着するなど)。こういった抽象的な性質に加えて、環論では可換環と非可換環を様々な点で分けて考える(前者は代数的数論や代数幾何学の範疇に属する)。特に豊かな理論が展開された特別な種類の可換環として、可換体があり、独自に体論と呼ばれる分野が形成されている。これに対応する非可換環の理論として、非可換可除環(斜体)が盛んに研究されている。なお、1980年代にアラン・コンヌによって非可換環と幾何学の間の奇妙な関連性が指摘されて以来、非可換幾何学が環論の分野として活発になってきている。.

新しい!!: 群作用と環 (数学) · 続きを見る »

環上の加群

抽象代数学における環上の加群(かぐん、module)とは、ベクトル空間を一般化した概念で、係数(スカラー)を体の元とする代わりに、より一般の環の元としたものである。つまり、加群とは(ベクトル空間がそうであるように)加法的なアーベル群であって、その元と環の元との間に乗法が定義され、その乗法が結合的かつ加法に関して分配的となるようなものである。 任意のアーベル群は有理整数環上の加群であり、したがって環上の加群はアーベル群の一般化でもある。また、環のイデアルは環上の加群であり、したがって環上の加群はイデアルの一般化でもある。このように環上の加群はベクトル空間・アーベル群・イデアルを包括する概念であるので、さまざまな議論を加群の言葉によって統一的に扱うことができるようになる。 加群は群の表現論に非常に近しい関連を持つ。また、加群は可換環論やホモロジー代数における中心概念の一つであり、ひろく代数幾何学や代数的位相幾何学において用いられる。.

新しい!!: 群作用と環上の加群 · 続きを見る »

特殊線型群

数学において、 体 上の次数 の特殊線型群(とくしゅせんけいぐん、special linear group)とは、 行列式が である 次正方行列のなす集合に、通常の行列の積と逆行列の演算が入った群である。この群は、行列式 の核として得られる、一般線型群 の正規部分群である。 ここで は の乗法群(つまり、 から を除いた集合)を表す。 特殊線型群の元は「特殊な」もの、つまりある多項式が定める一般線型群の部分代数多様体、である(行列式は多項式であることに注意)。.

新しい!!: 群作用と特殊線型群 · 続きを見る »

直交群

数学において、 次元の直交群(ちょっこうぐん、orthogonal group)とは、 次元ユークリッド空間上のある固定された点を保つような距離を保つ変換全体からなる群であり、群の演算は変換の合成によって与える。 と表記する。同値な別の定義をすれば、直交群とは、元が の実直交行列であり、群の積が行列の積によって与えられるものをいう。直交行列とは、逆行列がもとの行列の転置と等しくなるような行列のことである。 直交行列の行列式は か である。 の重要な部分群である特殊直交群 は行列式が である直交行列からなる。この群は回転群ともよばれ、例えば次元 2 や 3 では、群の元が表す変換は(2次元における)点や(3次元における)直線のまわりの通常の回転である。低次元ではこれらの群の性質は幅広く研究されている。 用語「直交群」は上の定義を一般化して、体上のベクトル空間における非退化な対称双線型形式や二次形式基礎体の標数が でなければ、対称双線型形式と二次形式のどちらを使っても同値である。を保つような、可逆な線形作用素全体からなる群を表すことがある。特に、体 上の 次元ベクトル空間 上の双線型形式がドット積で与えられ、二次形式が二乗の和で与えられるとき、これに対応する直交群 は、群の元が 成分 直交行列で群の積を行列の積で定めるものである。これは一般線形群 の部分群であって、以下の形で与えられる。 ここで は の転置であり、 は単位行列である。.

新しい!!: 群作用と直交群 · 続きを見る »

直積集合

数学において、集合のデカルト積(デカルト­せき、Cartesian product)または直積(ちょくせき、direct product)、直積集合、または単に積(せき、product)、積集合は、集合の集まり(集合族)に対して各集合から一つずつ元をとりだして組にしたもの(元の族)を元として持つ新たな集合である。 具体的に二つの集合 に対し、それらの直積とはそれらの任意の元 の順序対 全てからなる集合をいう。 では と書くことができる。有限個の集合の直積 も同様のn-組からなる集合として定義されるが、二つの集合の直積を入れ子 (nested) にして、 と帰納的に定めることもできる。.

新しい!!: 群作用と直積集合 · 続きを見る »

非交和

集合論において、集合の族の直和 (direct sum) は、以下の緊密に関連した二種類の概念を指して用いられる。.

新しい!!: 群作用と非交和 · 続きを見る »

面 (幾何学)

初等幾何学における面(めん、face)は、立体図形の境界を成す二次元の図形を言う。平坦な面によって完全に囲まれた三次元図形を多面体と呼ぶ。 より一般に、多面体やより高次元の超多面体に関して、任意の次元の一般の超多面体の任意の次元の要素を機械的に表す用語としても「面」が用いられる.

新しい!!: 群作用と面 (幾何学) · 続きを見る »

頂点

頂点(ちょうてん、vertex)とは角の端にある点のことである。多角形では2本の辺が接しているか交わっている点、多面体では3本以上の辺が共有している点のことをいう。直観的には図形の周上にある点のうち周辺のどの点よりも突出していて"尖った点"のことを頂点という。転じて日常語としては最高点を指し、「頂点に上り詰める」等と言う。 図ではA,B,Cの3点が頂点 一般にn角形には頂点はn個あり、辺の本数に等しい。座標平面上にある図形ではその頂点を含む範囲で連続であっても微分不可能である。 また曲線が極大値や極小値をとる点のことを頂点ということもある。例えば放物線 y.

新しい!!: 群作用と頂点 · 続きを見る »

被覆空間

数学、特に代数トポロジーにおいて、被覆写像(covering map)あるいは被覆射影(covering projection)とは、位相空間 C から X への連続全射 p のうち、 X の各点が p により「均一に被覆される」開近傍をもつものをいう。厳密な定義は追って与える。このとき C を被覆空間(covering space)、X を底空間(base space)と呼ぶ。この定義は、すべての被覆写像は局所同相であることを意味する。 被覆空間はホモトピー論、調和解析、リーマン幾何学、微分幾何学で重要な役割を果たす。たとえば、リーマン幾何学では、分岐は、被覆写像の考え方の一般化である。また、被覆写像はホモトピー群、特に基本群の研究とも深く関係する: X が十分によい位相空間であれば、X の被覆の同値類の集合と 基本群 π1(X) の共役な部分群の類全体との間に全単射が存在する(被覆の分類定理)。 from a topological space, C, to a topological space, X, such that each point in X has an open neighbourhood evenly covered by p (as shown in the image); the precise definition is given below.

新しい!!: 群作用と被覆空間 · 続きを見る »

辺(へん、二次元図形ではside、三次元図形ではedge(但し、円柱の辺の様に線分でないものはedgeと呼ばれない))は、特定の“図形”の中で 1 次元の“部分”となっている、両端に頂点と呼ばれる特別の点を 0 次元の“部分”として含むような線分である。辺は“線分”であり通常はまっすぐであるものを指すが、位相幾何学(トポロジー)的な文脈など、場合によっては曲がっていても構わずに辺と呼ぶことがある。 辺と呼ばれる“部分”を含むような“図形”としては例えば、多角形、グラフ理論におけるグラフ、単体的複体などを挙げることができる。 正確に辺の概念を考えるためには、頂点と呼ばれる点の集合 V の部分集合からなる集合族の族 D を図形として捉えて、V の二つの頂点 v, w に対して、D に含まれる の形(あるいはこれに空集合を含めた形)に表される集合、あるいは同じことではあるが、 の冪集合に順序同型なる集合が辺であるというのが適当である。ユークリッド空間内の点集合を図形と捉えるような立場では、このような D と図形とが一対一に対応すると考えることは望むべくもない。特に辺上には無数の点が乗っており、頂点を決めても辺が一意的に決まるわけではない。それでもなお、辺はこのような方法によって図形の中の“部分”として特徴付けられる。 Category:初等幾何学 Category:数学に関する記事.

新しい!!: 群作用と辺 · 続きを見る »

部分群

二項演算 * に関して群 G が与えられたとする。 G の部分集合である H が G の部分群であるということは、 H が演算 * に関して群になるということである。より正確に表現すると、 H が G の部分群であるということは、群の演算 * を H×H (Hの直積)に制限したときに、 H における群の演算になっているということである。この関係は通常、 H ≤ G という記号で表現し、「 H は G の部分群である」と読む。 G の真部分群とは、部分群 H が G の真部分集合である(つまり H≠G である)ことである。任意の群 G に対し、G 自身と単位元のみからなる集合 は常に G の部分群である。 H が G の部分群であるとき、 G は H の拡大群であると表現する場合がある。 G が任意の半群であるときも、G の部分群の定義はそのまま通用するが、本項では群の部分群についてのみを扱うにとどめる。群 G は順序対 (G, &lowast) として記述されることもあるが、このように書くのは普通、G を台となる集合としてその上に演算 "∗" が代数的構造(あるいはもっとほかの構造)を定めるということを強調するためである。 以下では、通常の慣習に倣って ∗ を省略し、積 a ∗ b を単に ab と表記する。また、群の演算を単に「積」と表記する場合もある。.

新しい!!: 群作用と部分群 · 続きを見る »

部分集合

集合 A が集合 B の部分集合(ぶぶんしゅうごう、subset; 下位集合)であるとは、A が B の一部(あるいは全部)の要素だけからなることである。A が B の一部分であるという意味で部分集合という。二つの集合の一方が他方の部分集合であるとき、この二つの集合の間に包含関係があるという。.

新しい!!: 群作用と部分集合 · 続きを見る »

関手

圏論における関手(かんしゅ、functor)は、圏から圏への構造と両立する対応付けである。関手によって一つの数学体系から別の体系への組織的な対応が定式化される。関手は「圏の圏」における射と考えることもできる。 関手の概念の萌芽はエヴァリスト・ガロアによる群を用いた代数方程式の研究に見ることができる。20世紀はじめのエミー・ネーターらによる加群の研究において拡大加群などさまざまな関手的構成が蓄積された。20世紀半ばの代数的位相幾何学において実際に関手が定義され、図形から様々な「自然な」代数的構造を取り出す操作を定式化するために利用された。ここでは(基本群のような)代数的対象が位相空間から導かれ、位相空間の間の連続写像は基本群の間の代数的準同型を導いている。その後アレクサンドル・グロタンディークらによる代数幾何学の変革の中でさまざまな数学的対象の関手による定式化が徹底的に追求された。.

新しい!!: 群作用と関手 · 続きを見る »

自己同型

数学において自己同型(automorphism)とは、数学的対象から自分自身への同型射のことを言う。ある解釈においては、構造を保ちながら対象をそれ自身へと写像する方法のことで、その対象の対称性を表わしていると言える。対象の全ての自己同型の集合は群を成し、自己同型群(automorphism group)と呼ばれる。大まかにいえば、自己同型は、対象の対称群である。.

新しい!!: 群作用と自己同型 · 続きを見る »

離散空間

数学の位相空間論周辺分野における離散空間(りさんくうかん、discrete space)は、その点がすべてある意味で互いに「孤立」しているような空間で、位相空間(またはそれと同様の構造)の非常に単純で極端な例の一つを与える。.

新しい!!: 群作用と離散空間 · 続きを見る »

離散群

数学において,位相群 の離散部分群(りさんぶぶんぐん,discrete subgroup)とは,部分群 であって, の開被覆で任意の開部分集合が の元をちょうどひとつ含むようなものが存在するものである.言い換えると, の における部分空間位相は離散位相である.例えば,整数の全体 は実数の全体 (標準的な距離位相をいれる)の離散部分群であるが,有理数の全体 は離散部分群ではない.離散群とは離散位相を備えた位相群である. 任意の群には離散位相を与えることができる.離散空間からの任意の写像は連続であるから,離散群の間の位相的準同型はちょうどその群の間の群準同型である.したがって,群の圏と離散群の圏の間には同型がある.離散群はしたがってその(抽象)群と同一視できる. 位相群あるいはリー群に「自然に逆らって」離散位相を入れると有用な場合がある.例えばの理論やリー群の群コホモロジーにおいてである. 離散は距離空間の任意の点に対して等長変換のもとでの点の像の集合が離散集合であるような等長変換群である.離散は離散等長変換群である対称変換群である..

新しい!!: 群作用と離散群 · 続きを見る »

集合

数学における集合 (しゅうごう、set, ensemble, Menge) とは、大雑把に言えばいくつかの「もの」からなる「集まり」である。集合を構成する個々の「もの」のことを元 (げん、; 要素) という。 集合は、集合論のみならず現代数学全体における最も基本的な概念の一つであり、現代数学のほとんどが集合と写像の言葉で書かれていると言ってよい。 慣例的に、ある種の集合が系 (けい、) や族 (ぞく、) などと呼ばれることもある。実際には、これらの呼び名に本質的な違いはないが細かなニュアンスの違いを含むと考えられている。たとえば、方程式系(「相互に連立する」方程式の集合)、集合族(「一定の規則に基づく」集合の集合)、加法族(「加法的な性質を持つ」集合族)など。.

新しい!!: 群作用と集合 · 続きを見る »

集合の圏

数学の一分野である圏論において、集合の圏(しゅうごうのけん、category of sets)Set (あるいは \mathcal などとも書く) は、その対象の成す類が集合全体の成す類であるような圏である。ただし、対象の間の射の類は、集合 に対して を任意の写像とするとき、 の形に書ける三つ組全体の成す集合によって与えられる。.

新しい!!: 群作用と集合の圏 · 続きを見る »

集合の分割

集合を6つの部分に分割した図(オイラー図による表現) 数学において、集合 X の分割 (partition) とは、X 全体を互いに重ならない部分/ブロック/セルに分けることを言う。より形式的に言えば、それらの「セル」は分割された集合から見て相互に排他的で完全な全体集合 (MECE) となっている。.

新しい!!: 群作用と集合の分割 · 続きを見る »

連続写像

位相空間論において函数や写像が連続(れんぞく、continuous)であるというのは、ある特定の意味で位相空間の間の位相的構造を保つある種の準同型となっていることを意味し、それ自体が位相空間論における興味の対象ともなる。数学の他の領域における各種の連続性の定義も、位相空間論における連続性の定義から導出することができる。連続性は、空間の位相が同相(位相同型)であることの基礎となる概念であり、特に全単射な連続写像が同相写像であるための必要十分条件は、その逆写像もまた連続となることである。 連続でない写像あるいは函数は、不連続であると言う。 連続性と近しい関係にある概念として、一様連続性、同程度連続性、作用素の有界性などがある。 位相空間の間の写像の連続性の概念は、それが距離空間の間の連続函数の場合のような明確な「距離」の概念を一般には持たない分、より抽象的である。位相空間というのは、集合 とその上の位相(あるいは開集合系)と呼ばれる の部分集合族で(距離空間における開球体全体の成す族の持つ性質を一般化するように)合併と交叉に関する特定の条件を満足するものを組にしたもので、位相空間においても与えられた点の近傍について考えることができる。位相に属する各集合は の(その位相に関する)開部分集合と呼ばれる。.

新しい!!: 群作用と連続写像 · 続きを見る »

連結空間

位相幾何学や関連する数学の分野において、連結空間(れんけつくうかん、connected space)とは、2つ以上の互いに素な空でない開部分集合の和集合として表すことのできない位相空間のことである。空間の連結性は主要なの1つであり、位相空間の区別をつけることに利用できる。より強い意味での連結性として、弧状連結 (path-connected) という概念があり、これは任意の2点が道によって結べることをいう。 位相空間 X の部分集合が連結であるとは、X の相対位相によってそれ自身を位相空間と見たときに連結であることをいう。 連結でない空間の例は、平面から直線を取り除いたものがある。非連結空間(すなわち連結でない空間)の他の例には、平面からアニュラスを取り除いたものや、2つの交わりを持たない閉円板の和集合がある。ただし、これら3つの例はいずれも、2次元ユークリッド空間から誘導される相対位相を考えている。.

新しい!!: 群作用と連結空間 · 続きを見る »

逆写像

数学における逆写像(ぎゃくしゃぞう、inverse mapping)は一口に言えば写像の与える元の対応関係を「反対」にして得られる写像である。すなわち、写像 が を に写すならば、 の逆写像は を に写し戻す。 函数と呼ばれる種類の写像の逆写像は、逆函数 (inverse function) と呼ばれる。.

新しい!!: 群作用と逆写像 · 続きを見る »

恒等写像

数学における恒等写像(こうとうしゃぞう、identity mapping, identity function)、恒等作用素(こうとうさようそ、identity operator)、恒等変換(こうとうへんかん、identity transformation)は、その引数として用いたのと同じ値を常にそのまま返すような写像である。集合論の言葉で言えば、恒等写像は恒等関係(こうとうかんけい、identity relationである。.

新しい!!: 群作用と恒等写像 · 続きを見る »

核 (代数学)

数学において、準同型の核(かく、kernel)とは、その準同型の単射からのずれの度合いを測る道具である。代数系における準同型の核が "自明" (trivial) であることとその準同型が単射であることとが同値となる。.

新しい!!: 群作用と核 (代数学) · 続きを見る »

正規部分群

数学、とくに抽象代数学における正規部分群(せいきぶぶんぐん、normal subgroup)は、群の任意の元による内部自己同型のもとで不変な部分群である。正規部分群は、与えられた群から剰余群を構成するのに用いることができる。 正規部分群の重要性は、エヴァリスト・ガロアによって最初に明らかにされた。.

新しい!!: 群作用と正規部分群 · 続きを見る »

有限幾何学

有限幾何学(ゆうげんきかがく)とは有限個の点から構成される幾何学の体系である。例えばユークリッド幾何学は有限幾何学でない。ユークリッド空間における「線」は無限に多くの(実際は実数と同じ濃度の)「点」を含むからである。 ユークリッド幾何は任意の次元で存在することと同様に、有限幾何も任意の(有限)次元で存在する。ただし、ユークリッド幾何とは異なり、有限幾何の場合は同じ次元でも各種の異なった(幾何学的)構造が存在し得る。.

新しい!!: 群作用と有限幾何学 · 続きを見る »

有限集合

数学において、集合が有限(ゆうげん、finite)であるとは、自然数 n を用いて という形にあらわされる集合との間に全単射が存在することをいう(ただしここでは、n.

新しい!!: 群作用と有限集合 · 続きを見る »

数学

数学(すうがく、μαθηματικά, mathematica, math)は、量(数)、構造、空間、変化について研究する学問である。数学の範囲と定義については、数学者や哲学者の間で様々な見解がある。.

新しい!!: 群作用と数学 · 続きを見る »

ここにリダイレクトされます:

安定化群安定化部分群忠実な群作用固定部分群推移的群作用等方部分群群の作用軌道 (群論)

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »