ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

宇宙ジェット

索引 宇宙ジェット

ブラックホールからの宇宙ジェット(M87銀河) 宇宙ジェット(うちゅうジェット、Relativistic jet)とは、重力天体を中心として細く絞られたプラズマガスなどが一方向又は双方向に噴出する現象をいう。 重力天体周辺の激しい天体活動がジェットを高速に加速すると考えられる。 宇宙ジェットの中心となる重力天体には、原始星、コンパクト星、大質量ブラックホールなどの場合がある。 また、この現象は、ブラックホール近傍で特徴的に見られるため、ブラックホールが存在する証拠としてしばしば用いられる。写真(1) それに比べ、原始星の形成期に見られる宇宙ジェットは比較的小規模である。.

21 関係: 原始星天体太陽系ハービッグ・ハロー天体プラズマガンマ線バーストクエーサーコンパクト星光速固有運動国立天文台超大質量ブラックホール超光速運動連星降着円盤HH 46/47M87 (天体)暗黒星雲活動銀河惑星星間物質

原始星

原始星(げんしせい)(protostar)とは、誕生初期の恒星のことで、暗黒星雲の一部が自己の重力で収縮しはじめ、可視光でも観測できるおうし座T型星になる前の状態までを指す。 暗黒星雲が近くの超新星爆発などによる衝撃波を受けると、それによって物質の濃淡ができる。濃くなった部分は重力が強くなるので、周囲の物質を引きつけさらに物質の濃度が濃くなる。するとさらに重力が強くなり、加速度的に濃度が濃くなっていく。このようにして原始星が誕生する。 原始星には周囲からさらに物質が集積してくるので、降着円盤が形成され、原始星に取り込まれきれなかった物質は、円盤に垂直な方向へ宇宙ジェットとして放出される。この宇宙ジェットが周囲の星雲の物質と衝突して輝いているのがハービッグ・ハロー天体である。 原始星には周囲の物質が超音速で落下していき衝撃波面が形成されている。その面で落下物質の運動エネルギーが一気に熱に変わっている。そのため、原始星は主系列星よりも非常に明るく輝いている。この時は原始星はまだ周囲を暗黒星雲に覆われているため、星雲の外からは可視光では観測できず赤外線だけが観測される。この状態は、それを理論的に導出した日本の宇宙物理学者・林忠四郎にちなんで林フェイズと呼ばれる。 原始星は自己の重力でゆっくりと収縮していき、その際の重力エネルギーの解放で徐々に中心核の温度を上げていく。また、恒星風により周囲の暗黒星雲を吹き飛ばす。こうして可視光でも観測可能になった星がおうし座T型星である。さらに中心核の温度が上昇し、水素の核融合反応が開始されると主系列星となる。 原始星フレアの温度はおよそ1億度で、エネルギーは太陽フレアの約1万倍にもなる。.

新しい!!: 宇宙ジェットと原始星 · 続きを見る »

天体

天体(てんたい、、)とは、宇宙空間にある物体のことである。宇宙に存在する岩石、ガス、塵などの様々な物質が、重力的に束縛されて凝縮状態になっているものを指す呼称として用いられる。.

新しい!!: 宇宙ジェットと天体 · 続きを見る »

太陽系

太陽系(たいようけい、この世に「太陽系」はひとつしかないので、固有名詞的な扱いをされ、その場合、英語では名詞それぞれを大文字にする。、ラテン語:systema solare シュステーマ・ソーラーレ)とは、太陽および、その重力で周囲を直接的、あるいは間接的に公転する天体惑星を公転する衛星は、後者に当てはまるから構成される構造である。主に、現在確認されている8個の惑星歴史上では、1930年に発見された冥王星などの天体が惑星に分類されていた事もあった。惑星の定義も参照。、5個の準惑星、それを公転する衛星、そして多数の太陽系小天体などから成るニュートン (別2009)、1章 太陽系とは、pp.18-19 太陽のまわりには八つの惑星が存在する。間接的に太陽を公転している天体のうち衛星2つは、惑星では最も小さい水星よりも大きい太陽と惑星以外で、水星よりも大きいのは木星の衛星ガニメデと土星の衛星タイタンである。。 太陽系は約46億年前、星間分子雲の重力崩壊によって形成されたとされている。総質量のうち、ほとんどは太陽が占めており、残りの質量も大部分は木星が占めている。内側を公転している小型な水星、金星、地球、火星は、主に岩石から成る地球型惑星(岩石惑星)で、木星と土星は、主に水素とヘリウムから成る木星型惑星(巨大ガス惑星)で、天王星と海王星は、メタンやアンモニア、氷などの揮発性物質といった、水素やヘリウムよりも融点の高い物質から成る天王星型惑星(巨大氷惑星)である。8個の惑星はほぼ同一平面上にあり、この平面を黄道面と呼ぶ。 他にも、太陽系には多数の小天体を含んでいる。火星と木星の間にある小惑星帯は、地球型惑星と同様に岩石や金属などから構成されている小天体が多い。それに対して、海王星の軌道の外側に広がる、主に氷から成る太陽系外縁天体が密集している、エッジワース・カイパーベルトや散乱円盤天体がある。そして、そのさらに外側にはと呼ばれる、新たな小惑星の集団も発見されてきている。これらの小天体のうち、数十個から数千個は自身の重力で、球体の形状をしているものもある。そのような天体は準惑星に分類される事がある。現在、準惑星には小惑星帯のケレスと、太陽系外縁天体の冥王星、ハウメア、マケマケ、エリスが分類されている。これらの2つの分類以外にも、彗星、ケンタウルス族、惑星間塵など、様々な小天体が太陽系内を往来している。惑星のうち6個が、準惑星では4個が自然に形成された衛星を持っており、慣用的に「月」と表現される事がある8つの惑星と5つの準惑星の自然衛星の一覧については太陽系の衛星の一覧を参照。。木星以遠の惑星には、周囲を公転する小天体から成る環を持っている。 太陽から外部に向かって放出されている太陽風は、太陽圏(ヘリオスフィア)と呼ばれる、星間物質中に泡状の構造を形成している。境界であるヘリオポーズでは太陽風による圧力と星間物質による圧力が釣り合っている。長周期彗星の源と考えられているオールトの雲は太陽圏の1,000倍離れた位置にあるとされている。銀河系(天の川銀河)の中心から約26,000光年離れており、オリオン腕に位置している。.

新しい!!: 宇宙ジェットと太陽系 · 続きを見る »

ハービッグ・ハロー天体

ハービッグ・ハロー天体(ハービッグハローてんたい、Herbig-Haro object、HH object、HH天体)とは新しく生まれた恒星に付随する星雲状の小領域で、若い星から放出されたガスが数百km/sの速度で周辺のガスや塵の雲と衝突して作られるものである。ハービッグ・ハロー天体は星形成領域にはしばしば見られる天体で、一つの恒星の自転軸に沿って複数個が存在する場合も多い。 ハービッグ・ハロー天体の実体は一時的な現象で、長くても数千年しか持続しない。HH 天体はガスの放出元である親星から星間空間のガス雲(星間物質)に向かって高速で移動するに従い、数年単位という短期間で見た目の形状が変化する場合がある。ハッブル宇宙望遠鏡を用いた数年にわたる観測で、HH 天体のガスが星間物質の密度の高い領域と衝突することで、HH 天体の一部が暗くなる一方で別の場所が明るくなる、といった複雑な変化が起こる過程が明らかになっている。 この種の天体は19世紀にシャーバーン・バーナムによって最初に観測されていたが、輝線星雲の中で独立した一種として識別されるようになったのは1940年代になってからであった。この天体を詳細に研究した最初の天文学者はアメリカのジョージ・ハービッグとメキシコのギイェルモ・アロで、彼らの名前にちなんで天体の名称が付けられている。ハービッグとアロは星形成の研究の過程で HH 天体の分析を独立に行い、HH 天体が星形成過程の副産物であることを明らかにした。.

新しい!!: 宇宙ジェットとハービッグ・ハロー天体 · 続きを見る »

プラズマ

プラズマ(英: plasma)は固体・液体・気体に続く物質の第4の状態R.

新しい!!: 宇宙ジェットとプラズマ · 続きを見る »

ガンマ線バースト

1999年1月23日に起きたガンマ線バースト GRB 990123 の可視光での残光(白い四角形の中の輝点。右は拡大図)。残光の上部に伸びるフィラメント状の天体はバースト源をもつと思われる銀河。この銀河は別の銀河との衝突によって形が歪んでいる。 ガンマ線バースト(ガンマせんバースト、、)は、天文学の分野で知られている中で最も光度の高い物理現象である。 ガンマ線バーストではガンマ線が数秒から数時間にわたって閃光のように放出され、そのあとX線の残光が数日間見られる。この現象は天球上のランダムな位置で起こり、一日に数回起きている。 ガンマ線バーストを起こす元となる仮想的な天体をガンマ線バースターと呼ぶ。2005年現在では、ガンマ線バーストは極超新星と関連しているという説が最も有力である。超大質量の恒星が一生を終える時に極超新星となって爆発し、これによってブラックホールが形成され、バーストが起こるとされる。多くのガンマ線バーストは何十億光年も離れた場所で生じている事実は、この現象が極めてエネルギーが高く(太陽が100億年間で放出するエネルギーを上回る)、かつめったに起こらない現象である事を示唆している(1つの銀河で数百万年に一度しか発生しない)。これまで観測された全てのガンマ線バーストは銀河系の外で生じている。似たような現象として軟ガンマ線リピーターがあるが、これは銀河系内のマグネターによるものである。ガンマ線バーストが銀河系で生じ、地球方向に放出された場合、大量絶滅を引き起こすと仮定されている。 しかし天体物理学界ではガンマ線バーストの詳細な発生機構についての合意は得られていない。.

新しい!!: 宇宙ジェットとガンマ線バースト · 続きを見る »

クエーサー

ーサーのイメージ クエーサー(Quasar)は、非常に離れた距離に存在し極めて明るく輝いているために、光学望遠鏡では内部構造が見えず、恒星のような点光源に見える天体のこと。クエーサーという語は準恒星状(quasi-stellar)の短縮形である。 強い電波源であるQSS(準恒星状電波源) (quasi-stellar radio source)と、比較的静かなQSO(準恒星状天体) (quasi-stellar object)がある。最初に発見されたのはQSSだが、QSOの方が多く発見されている。 日本語ではかつて準星などと呼ばれていた。.

新しい!!: 宇宙ジェットとクエーサー · 続きを見る »

コンパクト星

宇宙物理学においてコンパクト星とは白色矮星、中性子星、エキゾチック密度星とブラックホールに対して使われる呼び名である。通常の恒星などの質量あたりの大きさと比べてのこれらの物体はすべて小さい。 白色矮星や中性子星は、それぞれ電子の縮退圧や中性子の縮退圧で支えられているので縮退星(degenerated star)ともいう。これにはクォーク星も提案されている。 コンパクト星 (compact star)は、高密度星 (high density star)ともいう。.

新しい!!: 宇宙ジェットとコンパクト星 · 続きを見る »

光速

光速(こうそく、speed of light)、あるいは光速度(こうそくど)とは、光が伝播する速さのことであるニュートン (2011-12)、pp. 24–25.。真空中における光速の値は (≒30万キロメートル毎秒)と定義されている。つまり、太陽から地球まで約8分20秒(8分19秒とする場合もある)、月から地球は、2秒もかからない。俗に「1秒間に地球を7回半回ることができる速さ」とも表現される。 光速は宇宙における最大速度であり、物理学において時間と空間の基準となる特別な意味を持つ値でもある。 現代の国際単位系では長さの単位メートルは光速と秒により定義されている。光速度は電磁波の伝播速度でもあり、マクスウェルの方程式で媒質を真空にすると光速が一定となるということが相対性理論の根本原理になっている。 重力作用も光速で伝播することが相対性理論で予言され、2002年に観測により確認された。.

新しい!!: 宇宙ジェットと光速 · 続きを見る »

固有運動

固有運動(こゆううんどう、proper motion)とは天体(主に恒星)の天球上の位置の移動を指す名称である。(固有運動には方向の変化のみを含み、奥行方向の運動(視線速度)は考慮しない。)固有運動は、以下のような「その星固有のものでない運動」を除いた後の位置変化を指す。これらは天体の位置を観測した際の座標値に影響を与えるが、天体自身の真の運動ではない。.

新しい!!: 宇宙ジェットと固有運動 · 続きを見る »

国立天文台

国立天文台(こくりつてんもんだい、National Astronomical Observatory of Japan, NAOJ)は、理論・観測の両面から天文学を研究する日本の研究所・大学共同利用機関である。大学共同利用機関法人自然科学研究機構を構成する研究所の1つでもある。 日本国外のハワイ観測所などいくつかの観測所や、三鷹キャンパスなどで研究活動をしており、総称として国立天文台と呼ばれる。本部は東京都三鷹市の三鷹キャンパス内にある。.

新しい!!: 宇宙ジェットと国立天文台 · 続きを見る »

超大質量ブラックホール

超大質量ブラックホール(ちょうだいしつりょうブラックホール、Supermassive black hole)は、太陽の105倍から1010倍程度の質量を持つブラックホールのことである。全てではないが、銀河系(天の川銀河)を含むほとんどの銀河の中心には、超大質量ブラックホールが存在すると考えられている。 超大質量ブラックホールには、比較的質量の小さいものと比べて際立った特徴がある。.

新しい!!: 宇宙ジェットと超大質量ブラックホール · 続きを見る »

超光速運動

超光速運動 天文学において、超光速運動または超光速現象とは、 電波銀河、BL型天体、クェーサーの一部にみられる、みかけ上光速を超えた速度の運動をいう。近年ではマイクロクェーサーと呼ばれる銀河系内電波源でもみつかっている。これら全ての電波源はブラックホールを内包すると考えられており、これが原因で高速の質量噴出が起こっているものと考えられている。 1970年代に初めて観測された際には、超光速運動はクェーサーが宇宙的な距離をもつことへの反証の一つと考えられた。しかし、少数のこの見方を保つ天文学者を除いて、ほとんどの天文学者はみかけ上の超光速は光学上の錯覚であり、相対性理論に反するような物理過程を包含するものではないと考えている。.

新しい!!: 宇宙ジェットと超光速運動 · 続きを見る »

連星

連星(れんせい、)とは2つの恒星が両者の重心の周りを軌道運動している天体である。双子星(ふたごぼし)とも呼ばれる。連星は、地球から遠距離にあると、一つの恒星と思われ、その後に連星である事が判明する場合もある。この2世紀間の観測で、肉眼で見える恒星の半数以上が連星である可能性が示唆されている。通常は明るい方の星を主星、暗い方を伴星と呼ぶ。また、3つ以上の星が互いに重力的に束縛されて軌道運動している系もあり、そのような場合にはn連星またはn重連星などと呼ばれる。 また、二重星という言葉も連星を示す場合が多い。しかし、実際には、複数の恒星が地球から見て、同じ方向に位置しており、「見かけ上、連星のように見える」場合を表す。それぞれの恒星の、地球からの距離は全く異なり、物理的にも何の関連性も無い。二重星は、距離が異なるので、光度の差から、年周視差や視線速度を正確に求める事が出来る。しかし、中にはアルビレオのように、二重星か真の連星かが分かっていないものもある。.

新しい!!: 宇宙ジェットと連星 · 続きを見る »

降着円盤

降着円盤と若い恒星からの宇宙ジェット:HH-30(上左) 降着円盤(こうちゃくえんばん、accretion disk)とは、ブラックホールや中性子星や白色矮星のようなコンパクト星に落ち込むガスや塵が、高密度天体の周りに形成する円盤のこと。 これらの物質は、コンパクト星に落下しながら差動回転運動をしている。落下運動による重力のポテンシャルの開放に加え、中心天体に近くなるほど角速度が大きくなるが、これがガスの粘性による摩擦によって次第に角運動量を失い、ついには物質は106K〜108Kもの高温となり、円盤状にとり巻きながら可視光線やX線などのさまざまな電磁波を放射する。あるいは、中心に集積された物質がなんらかの機構で降着円盤フレアや宇宙ジェットなどの形でエネルギーが放出され、ここからも電波が放出される。さらには、こうした宇宙ジェットが周囲の物質に干渉し、新たな電波源になることもある。この降着円盤は、質量を非常に効率よくエネルギーに変換し、実に全質量の約50%をエネルギーに変換できる。これは核融合(エネルギー変換効率は質量の数%)に比べてもはるかに効率的な機構である。 降着円盤を形成するには、大きな重力をもつ中心天体の周囲に十分な量の物質が何らかの形で供給されつづけていなければならない。実際の観測では、明るく輝く降着円盤を直接観測出来る場合と、降着円盤によって集積され高温となった物質が発するさまざまな電波によって間接的に観測できる場合とがある。 連星系は降着円盤を持つ条件を満たす天体であり、なかでもX線連星は典型的な系である。コンパクト星と恒星の近接連星では、恒星から重力の強いコンパクト星にガスが供給される場合がある。するとガスは角運動量を持っているためにコンパクト星に真っ直ぐ落下せず、コンパクト星を周回し、降着円盤を形成する。降着円盤内縁は高温になり、X線を放射する。これがX線連星である。 X線連星以外の降着円盤をもつ天体には、活動銀河核がある。活動銀河核の場合は、連星系よりも物質が周囲に大規模に存在しているとの仮定が必要になるが、クエーサーを含む近年の観測と研究により、強い電波源が、そのような仮定のもとで中心の強い重力源によって形成された降着円盤と宇宙ジェットにあるとの理解が進んでいる。.

新しい!!: 宇宙ジェットと降着円盤 · 続きを見る »

HH 46/47

HH 46/47 とは、地球から見てほ座の方向に1470光年離れた位置にあるハービッグ・ハロー天体である。.

新しい!!: 宇宙ジェットとHH 46/47 · 続きを見る »

M87 (天体)

M 87(NGC 4486、おとめ座A)は、おとめ座にある楕円銀河である。.

新しい!!: 宇宙ジェットとM87 (天体) · 続きを見る »

暗黒星雲

ハッブル宇宙望遠鏡が撮影したオリオン座の馬頭星雲のクローズアップ 暗黒星雲(あんこくせいうん、dark nebula)とは天体の一種で、背後の恒星などの光源によって影として浮かび上がる星間雲(周囲よりも高密度の星間ガスや宇宙塵が、他の空域より濃く集まっている領域)のことをいう。 暗黒星雲という用語は星間雲のうち、人間が可視光領域で認識できるものの呼称であるから、狭義の星間雲、あるいは狭義の分子雲として用いられることもある。.

新しい!!: 宇宙ジェットと暗黒星雲 · 続きを見る »

活動銀河

活動銀河(かつどうぎんが、active galaxy)は、星、星間塵、星間ガスといった通常の銀河の構成要素とは別の部分からエネルギーの大半が放出されている特殊な銀河。このエネルギーは、活動銀河の種類によって若干異なるが、電波、赤外線、紫外線、X線、γ線など、電磁波のほぼ全ての波長域で放出されている。このエネルギーの大半を、銀河の中心1%程度のコンパクトな領域から放出しており、この部分を活動銀河核 (active galactic nucleus) と呼ぶ。 活動銀河 M87(画面左上の黄色の天体)から5000光年の長さにわたるジェットが放出されている様子。光速近くまで加速された電子が青白い光を放ちながら放出されている。.

新しい!!: 宇宙ジェットと活動銀河 · 続きを見る »

惑星

惑星(わくせい、πλανήτης、planeta、planet)とは、恒星の周りを回る天体のうち、比較的低質量のものをいう。正確には、褐色矮星の理論的下限質量(木星質量の十数倍程度)よりも質量の低いものを指す。ただし太陽の周りを回る天体については、これに加えて後述の定義を満たすものだけが惑星である。英語 planet の語源はギリシア語のプラネテス(さまよう者、放浪者などの意。IPA: /planítis/ )。 宇宙のスケールから見れば惑星が全体に影響を与える事はほとんど無く、宇宙形成論からすれば考慮の必要はほとんど無い。だが、天体の中では非常に多種多様で複雑なものである。そのため、天文学だけでなく地質学・化学・生物学などの学問分野では重要な対象となっている別冊日経サイエンス167、p.106-117、系外惑星が語る惑星系の起源、Douglas N. C.Lin。.

新しい!!: 宇宙ジェットと惑星 · 続きを見る »

星間物質

星間物質(せいかんぶっしつ、Interstellar medium、ISM)は、恒星間の宇宙空間に分布する希薄物質の総称である。密度では、地球の上層大気よりも遙かに希薄であるが、地上からもしばしば星雲として観測される。大量の星間物質が凝縮して、星を構成する材料にもなる。.

新しい!!: 宇宙ジェットと星間物質 · 続きを見る »

ここにリダイレクトされます:

Relativistic jetジェット天体

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »