ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
インストール
ブラウザよりも高速アクセス!
 

多変量解析

索引 多変量解析

(たへんりょうかいせき、multivariate analysis)あるいは(たへんりょうとうけい、)とは、複数の結果変数からなる多変量データを統計的に扱う手法。主成分分析、因子分析、クラスター分析などがある。一般に、多変量解析を行うためには計算負荷が高く手計算ではきわめて困難だが、コンピュータの発展により、容易に実行できるようになった。 近年では共分散構造分析(「構造方程式モデリング」とも言う)が普及してきている。一方、探索的多変量解析で総称される各種の手法がデータマイニングなどでよく使われるようになっている。.

12 関係: 多次元尺度構成法主成分分析データマイニングデータ・クラスタリング判別分析コンピュータコンジョイント分析共分散構造分析因子分析独立成分分析重回帰分析数量化理論

多次元尺度構成法

多次元尺度構成法(たじげんしゃくどこうせいほう、MDS:Multi Dimensional Scaling)は多変量解析の一手法である。主成分分析の様に分類対象物の関係を低次元空間における点の布置で表現する手法である(似たものは近くに、異なったものは遠くに配置する)。.

新しい!!: 多変量解析と多次元尺度構成法 · 続きを見る »

主成分分析

主成分分析(しゅせいぶんぶんせき、)とは、相関のある多数の変数から相関のない少数で全体のばらつきを最もよく表す主成分と呼ばれる変数を合成する多変量解析の一手法。データの次元を削減するために用いられる。 主成分を与える変換は、第一主成分の分散を最大化し、続く主成分はそれまでに決定した主成分と直交するという拘束条件の下で分散を最大化するようにして選ばれる。主成分の分散を最大化することは、観測値の変化に対する説明能力を可能な限り主成分に持たせる目的で行われる。選ばれた主成分は互いに直交し、与えられた観測値のセットを線型結合として表すことができる。言い換えると、主成分は観測値のセットの直交基底となっている。主成分ベクトルの直交性は、主成分ベクトルが共分散行列(あるいは相関行列)の固有ベクトルになっており、共分散行列が実対称行列であることから導かれる。 主成分分析は純粋に固有ベクトルに基づく多変量解析の中で最も単純なものである。主成分分析は、データの分散をより良く説明するという観点から、そのデータの内部構造を明らかにするものだと考えられる。多くの場合、多変量データは次元が大きく、各変数を軸にとって視覚化することは難しいが、主成分分析によって情報をより少ない次元に集約することでデータを視覚化できる。集約によって得られる情報は、データセットを元のデータ変数の空間から主成分ベクトルのなす空間へ射影したものであり、元のデータから有用な情報を抜き出したものになっている。主成分分析によるデータ構造の可視化は、可視化に必要なだけ先頭から少数の主成分を選択することで実現される。 主成分分析はにおける主要な道具であり、にも使われる。主成分分析は観測値の共分散行列や相関行列に対する固有値分解、あるいは(大抵は正規化された)データ行列の特異値分解によって行われる。主成分分析の結果は主成分得点(因子得点、score)と主成分負荷量(因子負荷量、loadings)によって評価される。主成分得点とは、あるデータ点を主成分ベクトルで表現した場合の基底ベクトルにかかる係数であり、ある主成分ベクトルのデータ点に対する寄与の大きさを示す。主成分負荷量はある主成分得点に対する個々の(正規化された)観測値の重みであり、観測値と主成分の相関係数として与えられる。主成分分析は観測値の間の相対的なスケールに対して敏感である。 主成分分析による評価は主成分得点と主成分負荷量をそれぞれ可視化した主成分プロット、あるいは両者を重ね合わせたバイプロットを通して解釈される。主成分分析を実行するためのソフトウェアや関数によって、観測値の基準化の方法や数値計算のアルゴリズムに細かな差異が存在し、個々の方法は必ずしも互いに等価であるとは限らない(例えば、R言語における prcomp 関数と FactoMineR の PCA 関数の結果は異なる)。.

新しい!!: 多変量解析と主成分分析 · 続きを見る »

データマイニング

データマイニング(Data mining)とは、統計学、パターン認識、人工知能等のデータ解析の技法を大量のデータに網羅的に適用することで知識を取り出す技術のことである。DMと略して呼ばれる事もある。通常のデータの扱い方からは想像が及びにくい、ヒューリスティク(heuristic、発見的)な知識獲得が可能であるという期待を含意していることが多い。とくにテキストを対象とするものをテキストマイニング、そのなかでもウェブページを対象にしたものをウェブマイニングと呼ぶ。英語では"Data mining"の語の直接の起源となった研究分野であるknowledge-discovery in databases(データベースからの知識発見)の頭文字をとってKDDとも呼ばれる。.

新しい!!: 多変量解析とデータマイニング · 続きを見る »

データ・クラスタリング

ラスタリング (clustering)、クラスタ解析(クラスタかいせき)、クラスター分析(クラスターぶんせき)は、データ解析手法(特に多変量解析手法)の一種。教師なしデータ分類手法、つまり与えられたデータを外的基準なしに自動的に分類する手法。また、そのアルゴリズム。 さまざまな手法が提案されているが、大きく分けるとデータの分類が階層的になされる階層型手法と、特定のクラスタ数に分類する非階層的手法とがある。それぞれの代表的な手法としてウォード法、K平均法などがある。.

新しい!!: 多変量解析とデータ・クラスタリング · 続きを見る »

判別分析

判別分析(はんべつぶんせき、discriminant analysis)は、事前に与えられているデータが異なるグループに分かれる場合、新しいデータが得られた際に、どちらのグループに入るのかを判別するための基準(判別関数)を得るための正規分布を前提とした分類の手法。英語では線形判別分析をLDA、二次判別分析をQDA、混合判別分析をMDAと略す。1936年にロナルド・フィッシャーが線形判別分析を発表しCohen et al.

新しい!!: 多変量解析と判別分析 · 続きを見る »

コンピュータ

ンピュータ(Computer)とは、自動計算機、とくに計算開始後は人手を介さずに計算終了まで動作する電子式汎用計算機。実際の対象は文字の置き換えなど数値計算に限らず、情報処理やコンピューティングと呼ばれる幅広い分野で応用される。現代ではプログラム内蔵方式のディジタルコンピュータを指す場合が多く、特にパーソナルコンピュータやメインフレーム、スーパーコンピュータなどを含めた汎用的なシステムを指すことが多いが、ディジタルコンピュータは特定の機能を実現するために機械や装置等に組み込まれる組み込みシステムとしても広く用いられる。電卓・機械式計算機・アナログ計算機については各項を参照。.

新しい!!: 多変量解析とコンピュータ · 続きを見る »

コンジョイント分析

ンジョイント分析の例:アイスクリームの特徴に関する市場調査 (https://run.conjoint.ly/study/163/3ewoipzq36 Conjoint.ly) コンジョイント分析(コンジョイントぶんせき、conjoint analysis)とは、1980年代にアメリカで急速に発展して、多くの企業で活用されている調査方法。言わば、主にマーケティング分野で利用される実験計画法である。 商品やサービスについて、顧客(ユーザ)が望む要素は様々である。 また、これらの項目は、顧客(ユーザ)の決定的な「唯一これが決め手」というものがある場合はほとんど無く、多くの場合は、複数の項目が(意識していることを自覚しているかどうかを問わず)複雑に絡み合っている。 このコンジョイント分析は、商品やサービスの持つ複数の要素について、顧客(ユーザ)はどの点に重きを置いているのか、また顧客に最も好まれるような要素の組み合わせはどれかを統計的に探ることも可能になる。.

新しい!!: 多変量解析とコンジョイント分析 · 続きを見る »

共分散構造分析

共分散構造分析(きょうぶんさんこうぞうぶんせき、)とは、複数の構成概念間の関係を検討することができる統計的手法の1つで構造方程式モデリング(Structural Equation Modeling)手法では共分散を使っている特別なクラスである。一方では分散構造分析も存在する。内生変数を扱いながら関係を調べることができる、すなわち因子分析と重回帰分析を同時に行うことができるのが特徴。.

新しい!!: 多変量解析と共分散構造分析 · 続きを見る »

因子分析

因子分析(いんしぶんせき、)は、多変量解析の手法のひとつで、心理学におけるパーソナリティの特性論的研究など、心理尺度の研究手法として使用される。モデル式の形状などから主成分分析と混同されることもあるが、主成分分析は観測データから合成スコアを構築することが目的であるのに対し、因子分析は観測データが合成量であると仮定し、個々の構成要素を得ようとすることが目的であり、両者は因果関係を異にする。 適用の例として「器用さ」の個人差の検討が考えられる。A, B, Cの3人はそれぞれ「ジグゾーパズル」「彫刻」「時計の分解」をある速度で器用にこなすことができるとしたときにA, B, Cの器用さをどのように評価すればよいかを考える場合、3人が3つのテストにかかった時間に対して因子分析を適用することで、3つの課題に共通する潜在的な「器用さ」の導出を試みることができる。 因子分析では、因子数を事前に与える必要があるなど、数学的見地から理論的に疑義をはさむ意見もある一方、主成分分析が測定誤差を考慮要素に含めずに合成変量としている点を批判するなど、両者に関してともすれば宗教論争的な議論が絶えない。 いずれにせよ、データ解析における基本的心構えとして、算出された数値はあくまで計算によるものであり、それらの妥当性は研究者の判断に委ねられることは当然である、と理解しておく必要がある。.

新しい!!: 多変量解析と因子分析 · 続きを見る »

独立成分分析

立成分分析(どくりつせいぶんぶんせき、independent component analysis、ICA)は、多変量の信号を複数の加法的な成分に分離するための計算手法である。各成分は、ガウス的でない信号で相互に統計的独立なものを想定する。これはブラインド信号分離の特殊な場合である。.

新しい!!: 多変量解析と独立成分分析 · 続きを見る »

重回帰分析

重回帰分析(じゅうかいきぶんせき)は、多変量解析の一つ。回帰分析において独立変数が2つ以上(2次元以上)のもの。独立変数が1つのものを単回帰分析という。 一般的によく使われている最小二乗法、一般化線形モデルの重回帰は、数学的には線形分析の一種であり、分散分析などと数学的に類似している。適切な変数を複数選択することで、計算しやすく誤差の少ない予測式を作ることができる。重回帰モデルの各説明変数の係数を偏回帰係数という。目的変数への影響度は偏回帰係数は示さないが標準化偏回帰係数は目的係数への影響度を示す。下記の関係式が知られている。 SPRC.

新しい!!: 多変量解析と重回帰分析 · 続きを見る »

数量化理論

数量化理論(すうりょうかりろん、Hayashi's quantification methods)は、統計数理研究所元所長の林知己夫によって1940年代後半から50年代にかけて開発された日本独自の多次元データ分析法である。 数量化理論にはI類、II類、III類、IV類、V類、VI類までの6つの方法があるが、現在、I類からIV類までがよく知られている。この何類という名称は、1964年に社会心理学者の飽戸弘(元東洋英和女学院大学学長、東京大学名誉教授)によって命名されたもので、以後その名称が定着した。 日本国内で開発され、普及したが、海外においても本質的に同種の手法が提唱されていたものも少なくなく、中には本質的に同一でありながら異なる名称であるがゆえに当初着目されず、今日になってその成果が再評価される例などもある。 程度,状態,有無,ハイ/イイエなど数値データ(量的データ)ではないデータ(質的データ)を分析するために、それらに強制的に数値を割り付けて既存の多変量解析手法を用いたり、 質的データ間の類似度を定義し、それに基づいた相互関係の解析を行う手法群である。 ダミー変数の導入による質的データの数値化により、 回帰分析を行うのが数量化I類、 判別分析を行うのが数量化II類と理解できる。 数量化III類は主成分分析あるいは因子分析に対応し、各国で独立に同じ解を与える手法が発展してきており、 パリ第6大学のジャン.

新しい!!: 多変量解析と数量化理論 · 続きを見る »

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »