ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

変位電流

索引 変位電流

変位電流(へんいでんりゅう)とは電束電流(でんそくでんりゅう)とも言い、電束密度の閉曲面における法線成分の面積分が時間的に変位し発生する電流である。電束密度をD、閉曲面をSとすると次の式で表せる。 電流により、磁界が発生するが、変位電流は具体的に電荷の移動に伴って発生するものではないので、「変位」という名称が付けられている。単位は同じくクーロン毎秒である。 ジェームズ・クラーク・マクスウェルが、電磁気に関する第三論文「電磁場の動力学的理論」で初めて導入し、著書『電気磁気論』にも記したもの。 この変位電流の導入によって、マクスウェルの方程式は完成し、そこから電磁波や光速度が導かれることになった。.

15 関係: 強誘電体メモリマクスウェルの方程式ヴィルヘルム・レントゲンクーロンジェームズ・クラーク・マクスウェル光速磁場面積分電磁場の動力学的理論電磁気学電磁波電荷電束密度電気磁気論電流

強誘電体メモリ

FeRAM 強誘電体メモリ(きょうゆうでんたいめもり・Ferroelectric Random Access Memory)とは、FeRAMとも呼ばれる、強誘電体のヒステリシス(履歴効果)に因る正負の残留分極(自発分極)をデータの1と0に対応させた不揮発性メモリのことである。なお、FRAMは同種のRAMのラムトロン・インターナショナル(【現】サイプレス・セミコンダクター)による商標で、国内では富士通が同社とのライセンスによりFRAMの名称を使用している。 強誘電体膜の分極反転時間は1ns以下であり、FeRAMはDRAM並みの高速動作が期待される。.

新しい!!: 変位電流と強誘電体メモリ · 続きを見る »

マクスウェルの方程式

マクスウェルの方程式(マクスウェルのほうていしき、Maxwell's equations)は、電磁場のふるまいを記述する古典電磁気学の基礎方程式である。マイケル・ファラデーが幾何学的考察から見出した電磁力に関する法則が1864年にジェームズ・クラーク・マクスウェルによって数学的形式として整理された。マクスウェル-ヘルツの電磁方程式、電磁方程式などとも呼ばれ、マクスウェルはマックスウェルとも表記される。 真空中の電磁気学に限れば、マクスウェルの方程式の一般解は、ジェフィメンコ方程式として与えられる。 なお、電磁気学の単位系は、国際単位系に発展したMKSA単位系のほか、ガウス単位系などがあるが、以下では原則として、国際単位系を用いることとする。.

新しい!!: 変位電流とマクスウェルの方程式 · 続きを見る »

ヴィルヘルム・レントゲン

ヴィルヘルム・コンラート・レントゲン(、1845年3月27日 – 1923年2月10日)は、ドイツの物理学者。1895年にX線の発見を報告し、この功績により、1901年、第1回ノーベル物理学賞を受賞した。.

新しい!!: 変位電流とヴィルヘルム・レントゲン · 続きを見る »

クーロン

ーロン(、記号C)は、電荷のSI単位である。クーロンという名称は、フランスの物理学者、シャルル・ド・クーロンの名にちなむ。.

新しい!!: 変位電流とクーロン · 続きを見る »

ジェームズ・クラーク・マクスウェル

ェームズ・クラーク・マクスウェル(英:James Clerk Maxwell、1831年6月13日 - 1879年11月5日)は、イギリスの理論物理学者である。姓はマックスウェルと表記されることもある。 マイケル・ファラデーによる電磁場理論をもとに、1864年にマクスウェルの方程式を導いて古典電磁気学を確立した。さらに電磁波の存在を理論的に予想しその伝播速度が光の速度と同じであること、および横波であることを示した。これらの業績から電磁気学の最も偉大な学者の一人とされる。また、土星の環や気体分子運動論・熱力学・統計力学などの研究でも知られている。.

新しい!!: 変位電流とジェームズ・クラーク・マクスウェル · 続きを見る »

光速

光速(こうそく、speed of light)、あるいは光速度(こうそくど)とは、光が伝播する速さのことであるニュートン (2011-12)、pp. 24–25.。真空中における光速の値は (≒30万キロメートル毎秒)と定義されている。つまり、太陽から地球まで約8分20秒(8分19秒とする場合もある)、月から地球は、2秒もかからない。俗に「1秒間に地球を7回半回ることができる速さ」とも表現される。 光速は宇宙における最大速度であり、物理学において時間と空間の基準となる特別な意味を持つ値でもある。 現代の国際単位系では長さの単位メートルは光速と秒により定義されている。光速度は電磁波の伝播速度でもあり、マクスウェルの方程式で媒質を真空にすると光速が一定となるということが相対性理論の根本原理になっている。 重力作用も光速で伝播することが相対性理論で予言され、2002年に観測により確認された。.

新しい!!: 変位電流と光速 · 続きを見る »

磁場

磁場(じば、Magnetic field)は、電気的現象・磁気的現象を記述するための物理的概念である。工学分野では、磁界(じかい)ということもある。 単に磁場と言った場合は磁束密度Bもしくは、「磁場の強さ」Hのどちらかを指すものとして用いられるが、どちらを指しているのかは文脈により、また、どちらの解釈としても問題ない場合も多い。後述のとおりBとHは一定の関係にあるが、BとHの単位は国際単位系(SI)でそれぞれWb/m², A/m であり、次元も異なる独立した二つの物理量である。Hの単位はN/Wbで表すこともある。なお、CGS単位系における、磁場(の強さ)Hの単位は、Oeである。 この項では一般的な磁場の性質、及びHを扱うこととする。 磁場は、空間の各点で向きと大きさを持つ物理量(ベクトル場)であり、電場の時間的変化または電流によって形成される。磁場の大きさは、+1のN極が受ける力の大きさで表される。磁場を図示する場合、N極からS極向きに磁力線の矢印を描く。 小学校などの理科の授業では、砂鉄が磁石の周りを囲むように引きつけられる現象をもって、磁場の存在を教える。このことから、磁場の影響を受けるのは鉄だけであると思われがちだが、強力な磁場の中では、様々な物質が影響を受ける。最近では、磁場や電場(電磁場、電磁波)が生物に与える影響について関心が寄せられている。.

新しい!!: 変位電流と磁場 · 続きを見る »

面積分

ベクトル解析における面積分(めんせきぶん、surface integral)は、曲面上でとった定積分であり、二重積分として捉えることもできる。線積分は一次元の類似物にあたる。曲面が与えられたとき、その上のスカラー場やベクトル場を積分することができる。 面積分は物理学、特に電磁気学の古典論に応用がある。 面積分の定義は、曲面を小さな面素へ分解することによって成される。.

新しい!!: 変位電流と面積分 · 続きを見る »

電磁場の動力学的理論

『電磁場の動力学的理論』(でんじばのどうりきがくてきりろん、A dynamical theory of the electromagnetic field)とは、1865年に発表されたマクスウェルによる論文であり、彼の電磁気学に関する論文としては第3のものである。変位電流の概念が初めて導入され、電磁場の基礎方程式から、電磁波の方程式(波動方程式)を導くことが可能になった。マクスウェルの方程式が初めて著された論文である。 20個の変数と、それを解くための20個の方程式からなる。そのうち、14個は偏微分方程式である。 現在の主流の解釈で電磁場の基礎方程式とみなされているものには、電磁ポテンシャルがあからさまな形では入っていないが、マクスウェル自身の論文では左手系及びガウス単位系が用いられ、更に全て成分表示で書かれており、偏微分に対しても常微分や全微分と同じ記号が用いられているため、これを右手系及びMKSA単位系を用いたベクトル表記で、偏微分記号を用いたものに改めると 第一の組.

新しい!!: 変位電流と電磁場の動力学的理論 · 続きを見る »

電磁気学

電磁気学(でんじきがく、)は、物理学の分野の1つであり、電気と磁気に関する現象を扱う学問である。工学分野では、電気磁気学と呼ばれることもある。.

新しい!!: 変位電流と電磁気学 · 続きを見る »

電磁波

電磁波(でんじは )は、空間の電場と磁場の変化によって形成される波(波動)である。いわゆる光(赤外線、可視光線、紫外線)や電波は電磁波の一種である。電磁放射()とも呼ばれる。現代科学において電磁波は波と粒子の性質を持つとされ、波長の違いにより様々な呼称や性質を持つ。通信から医療に至るまで数多くの分野で用いられている。 電磁波は波であるので、散乱や屈折、反射、また回折や干渉などの現象を起こし、 波長によって様々な性質を示す。このことは特に観測技術で利用されている。 微視的には、電磁波は光子と呼ばれる量子力学的な粒子であり、物体が何らかの方法でエネルギーを失うと、それが光子として放出される。また、光子を吸収することで物体はエネルギーを得る。.

新しい!!: 変位電流と電磁波 · 続きを見る »

電荷

電荷(でんか、electric charge)は、素粒子が持つ性質の一つである。電気量とも呼ぶ。電荷の量を電荷量という。電荷量のことを単に電荷と呼んだり、電荷を持つ粒子のことを電荷と呼んだりすることもある。.

新しい!!: 変位電流と電荷 · 続きを見る »

電束密度

電束密度(でんそくみつど、)は、電荷の存在によって生じるベクトル場である。 電気変位()とも呼ばれる。電場の強度は電荷に力を及ぼす場であり、電束密度とは由来が全く異なる場であるが、真空においては普遍定数により結び付けられてその違いが現れない。誘電体を考える場合には両者の違いが現れるが、誘電体を真空における電荷の分布であると考えることで、電束密度をあらわに用いる必要はなくなる。SIにおける単位はクーロン毎平方メートル(記号: C m)が用いられる。.

新しい!!: 変位電流と電束密度 · 続きを見る »

電気磁気論

『電気磁気論』(でんきじきろん)は、ジェームズ・クラーク・マクスウェルによる電磁気学の著作(1873年)である。 (現在の)主流な解釈において電磁場の基礎方程式とみなされているものには、電磁ポテンシャルがあからさまな形では入っていない。しかし、マックスウェルの著作では、左手系、ガウス単位系が用いられており、さらにすべて成分表示で書かれて、偏微分に対しても常微分や全微分と同じ記号が用いられている。これを右手系、MKSA単位系を用いて、ベクトル表記で、偏微分記号を用いたものに改めると、 第一の組.

新しい!!: 変位電流と電気磁気論 · 続きを見る »

電流

電流(でんりゅう、electric current電磁気学に議論を留める限りにおいては、単に と呼ぶことが多い。)は、電子に代表される荷電粒子他の荷電粒子にはイオンがある。また物質中の正孔は粒子的な性格を持つため、荷電粒子と見なすことができる。の移動に伴う電荷の移動(電気伝導)のこと、およびその物理量として、ある面を単位時間に通過する電荷の量のことである。 電線などの金属導体内を流れる電流のように、多くの場合で電流を構成している荷電粒子は電子であるが、電子の流れは電流と逆向きであり、直感に反するものとなっている。電流の向きは正の電荷が流れる向きとして定義されており、負の電荷を帯びる電子の流れる向きは電流の向きと逆になる。これは電子の詳細が知られるようになったのが19世紀の末から20世紀初頭にかけての出来事であり、導電現象の研究は18世紀の末から進んでいたためで、電流の向きの定義を逆転させることに伴う混乱を避けるために現在でも直感に反する定義が使われ続けている。 電流における電荷を担っているのは電子と陽子である。電線などの電気伝導体では電子であり、電解液ではイオン(電子が過不足した粒子)であり、プラズマでは両方である。 国際単位系 (SI) において、電流の大きさを表す単位はアンペアであり、単位記号は A であるアンペアはSI基本単位の1つである。。また、1アンペアの電流で1秒間に運ばれる電荷が1クーロンとなる。SI において電荷の単位を電流と時間の単位によって構成しているのは、電荷より電流の測定の方が容易なためである。電流は電流計を使って測定する。数式中で電流量を表すときは または で表現される。.

新しい!!: 変位電流と電流 · 続きを見る »

ここにリダイレクトされます:

レントゲン電流電束電流

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »