ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
ダウンロード
ブラウザよりも高速アクセス!
 

基数

索引 基数

数学において基数(きすう、cardinal number又はcardinals)とは、集合のカーディナリティ(濃度、大きさ、サイズ)を測るためのものとしての自然数の一般化である。有限集合の濃度(cardinality)は、つまり有限集合の要素の個数は自然数である。無限集合のサイズは、超限基数で記述される。 濃度は全単射をもちいて定義される。2つの集合が等しい濃度を持つとは、その集合の間に全単射が存在するということである。有限集合の場合は、サイズの直感的概念に同意できるだろう。無限集合の場合は、振る舞いは複雑になってくる。ゲオルグ・カントールが示した基礎的な理論は無限集合の濃度は1種類だけではないことを示したのである。特に、実数の集合の濃度は自然数の集合の濃度より真に大きいということを示した(カントールの定理)。また、有限集合の真部分集合と元の集合の濃度が等しくなり得ないのに対し、無限集合の真部分集合の濃度が元の集合の濃度と等しいということは起こりうるのである(デデキント無限も参照)。 基数の超限列が存在する: この列は、有限基数である自然数が最初に並んでいて、その後に整列集合の無限基数であるアレフ・ナンバー (aleph number) が続く。アレフ・ナンバーは順序数によって添字付けられている。選択公理の仮定の下で、この超限列はすべての基数を含んでいる。もし、選択公理が仮定されなければ、アレフ・ナンバーでない無限基数に関して状況はさらに複雑になってくる。 濃度は、集合論の一部のために研究されている。また、組合せ論や抽象代数学、解析学を含めた数学の各分野の道具としても使われる。圏論では、基数は集合の圏の skelton を形成する。.

26 関係: 可算集合実数宇宙 (数学)巨大基数代数的数プリンキピア・マテマティカデデキント無限到達不能基数アレフ数カントールの定理カントールの対角線論法ゲオルク・カントールゴットロープ・フレーゲ全単射公理的集合論選択公理順序対順序数自然数集合論連続体仮説連続体濃度濃度 (数学)有理数有界整列集合

可算集合

可算集合(かさんしゅうごう、countable set 又は denumerable set)もしくは可付番集合とは、おおまかには、自然数全体と同じ程度多くの元を持つ集合のことである。各々の元に 1, 2, 3, … と番号を付けることのできる、すなわち元を全て数え上げることのできる無限集合と表現してもよい。 有限集合も、数え上げることができる集合という意味で、可算集合の一種とみなすことがある。そのため、はっきりと区別を付ける必要がある場合には、冒頭の意味での集合を可算無限集合と呼び、可算無限集合と有限集合を合わせて高々可算の集合と呼ぶ。可算でない無限集合を非可算集合という。非可算集合は可算集合よりも「多く」の元を持ち、全ての元に番号を付けることができない。そのような集合の存在は、カントールによって初めて示された。.

新しい!!: 基数と可算集合 · 続きを見る »

実数

数学における実数(じっすう、 nombre réel, reelle Zahl, real number)は、様々な量の連続的な変化を表す数の体系である。実数全体の空間は、途切れのなさにあたる完備性とよばれる位相的な性質を持ち、代数的には加減乗除ができるという体の構造を持っている。幾何学や解析学ではこれらのよい性質を利用して様々な対象が定義され、研究されている。一方でその構成方法に自明でない手続きが含まれるため、実数の空間は数学基礎論の観点からも興味深い性質を持っている。また、自然科学における連続的なものの計測値を表すのに十分な数の体系だとも考えられている。 実数の概念は、その形式的な定義が19世紀に達成される前から数の体系として使われていた。「実数」という名前は複素数の概念が導入された後に「普通の数」を表現する言葉として導入されたものである。.

新しい!!: 基数と実数 · 続きを見る »

宇宙 (数学)

数理論理学において、構造 (もしくはモデル) の宇宙(うちゅう、Universe)とは議論領域のことである。 数学、とりわけ集合論や数学基礎論における宇宙とは、特定の状況において考察される実体のすべてを元として含むような類のことである。このアイデアにはいくつものバージョンがあるため、項目を分けて説明する。.

新しい!!: 基数と宇宙 (数学) · 続きを見る »

巨大基数

巨大基数的性質(きょだいきすうてきせいしつ、large cardinal property)とは、数学の集合論における超限基数が有するある種の性質。この性質を持つ基数は、その名の通り、一般に大変「大きい」(例えば、α.

新しい!!: 基数と巨大基数 · 続きを見る »

代数的数

代数的数(だいすうてきすう、algebraic number)とは、 複素数であって、有理数係数(あるいは同じことだが、分母を払って、 整数係数)の 0 でない一変数多項式の根 (すなわち多項式の値が 0 になるような値)となるものをいう。 すべての整数や有理数は代数的数であり、またすべての整数の冪根も代数的数である。 実数や複素数には代数的数でないものも存在し、そのような数は超越数と呼ばれる。 例えば π や e は超越数である。 ほとんどすべての複素数は超越数である(#集合論的性質)。.

新しい!!: 基数と代数的数 · 続きを見る »

プリンキピア・マテマティカ

短縮版『プリンキピア・マテマティカ 56節まで』の表紙 『プリンキピア・マテマティカ』(Principia Mathematica:数学原理)は、アルフレッド・ノース・ホワイトヘッドとバートランド・ラッセルによって書かれ、1910年から1913年に出版された、数学の基礎に関する全3巻からなる著作である。それは、記号論理学において、明示された公理の一組と推論規則から数学的真理すべてを得る試みである。『プリンキピア』のための主なインスピレーションと動機の1つは論理学に関するフレーゲの初期の仕事で、それがパラドックスをもたらすことをラッセルが発見したのである。 プリンキピアは、数学論理と哲学においてアリストテレスの『オルガノン』以来もっとも重要で独創的な仕事の一つと、広く専門家に考えられている。 モダン・ライブラリーは、この本を20世紀のノンフィクション書籍上位100のリスト(Modern Library 100 Best Nonfiction)の23位に位置づけた。.

新しい!!: 基数とプリンキピア・マテマティカ · 続きを見る »

デデキント無限

数学において、集合A がデデキント無限(Dedekind-infinite、ドイツ人数学者リヒャルト・デデキントにちなんでつけられた)である、またはデデキント無限集合であるとは、A と同数(equinumerous)であるようなA の真部分集合B が存在することである。それはつまり、A とA の真部分集合B の間に全単射が存在するということである。集合 Aがデデキント有限であるとは、デデキント無限でないということである。 デデキント無限は、自然数を用いないような最初の無限の定義である。選択公理を除いたツェルメロ・フレンケルの公理系は、任意のデデキント有限集合は有限個の元を持つという意味での有限である、ということを証明するだけの強さを持たない。選択公理を用いないその他の有限集合や無限集合の定義が存在する。.

新しい!!: 基数とデデキント無限 · 続きを見る »

到達不能基数

集合論において、非可算基数κが弱到達不能基数(weakly inaccessible)であるとは、それが正則な極限基数であることを言い、強到達不能基数(strongly inaccessible)または単に到達不能基数(inaccessible)であるとは、κ未満の任意の基数λに対し、(2^\lambda を満たす正則基数であることを言う。 著者によっては非可算性を要求しないこともある(その場合 \aleph_0 は強到達不能基数)。弱到達不能基数は、強到達不能基数はおよびによって導入された。 "到達不能基数"という用語は曖昧である。1950年頃までは弱到達不能基数を指していたが、以後は普通は強到達不能基数を意味するからである。 定義より、強到達不能基数は同時に弱到達不能基数でもある。一般連続体仮説が成り立つ場合は、強到達不能基数であることの必要十分条件は弱到達不能であることになる。 \aleph_0 は正則な強極限基数である。選択公理を仮定すると、他の全ての無限基数は正則かまたは(弱)極限である。 しかしながら、その両方になれるもの、即ち弱到達不能基数は中でも大きいものに限られる。 順序数が弱到達不能基数であるための必要十分条件は、それが正則順序数であり、かつ、正則順序数の列の極限であることである (0,1, \aleph_0 は正則順序数だが正則順序数の列の極限ではない)。強極限かつ弱到達不能な基数は強到達不能である。 強到達不能基数の存在は、グロタンディーク宇宙が存在するという形で仮定される場合がある。この両者の間には深い繋がりがある。.

新しい!!: 基数と到達不能基数 · 続きを見る »

アレフ数

数学を基礎付ける集合論において、アレフ数(アレフすう、aleph number)は無限集合の濃度(あるいは大きさ)を表現するために使われる数の列である。それらはそれらを表記するのに使われる文字、ヘブライ文字のアレフ にちなんで名づけられている。 自然数全体の集合の濃度はアレフ・ノート (; アレフ・ヌル (aleph-null) あるいはアレフ・ゼロ (aleph-zero) とも)であり、次に大きい濃度がアレフ・ワン, 次はアレフ・ツー と以下同様に続く。このように続けて、すべての順序数 に対して以下に述べられるように一般のアレフ数となる濃度 を定義することができる。 概念はゲオルク・カントールまでさかのぼる。彼は濃度の概念を定義し無限集合には異なる濃度があることに気付いた。 アレフ数は代数学や微積分でよく見る無限大 (∞) とは異なる。アレフ数は集合の大きさを測るものだが、一方無限大は一般に(関数や数列が「無限大に発散する」とか「限りなく増大する」という形で現れる)実数直線上の非有限極限、あるいは拡張実数直線の極点として定義される。.

新しい!!: 基数とアレフ数 · 続きを見る »

カントールの定理

初等的な集合論において、カントールの定理 (Cantor's theorem) は次のように述べている。任意の集合 A に対して、A のすべての部分集合の集合(A の冪集合)は A 自身よりも真に大きい濃度を持つ。有限集合に対して、カントールの定理は下に与えられる証明よりもはるかにシンプルな証明によって正しいと確かめることができる。n 個の要素からなる集合に対して、空部分集合、ただ 1 つの要素を持つ A の部分集合、etc.

新しい!!: 基数とカントールの定理 · 続きを見る »

カントールの対角線論法

ントールの対角線論法(カントールのたいかくせんろんぽう)は、数学における証明テクニック(背理法)の一つ。1891年にゲオルク・カントールによって非可算濃度を持つ集合の存在を示した論文の中で用いられたのが最初だとされている。 その後対角線論法は、数学基礎論や計算機科学において写像やアルゴリズム等が存在しない事を示す為の代表的な手法の一つとなり、例えばゲーデルの不完全性定理、停止性問題の決定不能性、時間階層定理といった重要な定理の証明で使われている。.

新しい!!: 基数とカントールの対角線論法 · 続きを見る »

ゲオルク・カントール

ルク・カントール ゲオルク・フェルディナント・ルートヴィッヒ・フィリップ・カントール(Georg Ferdinand Ludwig Philipp Cantor, 1845年3月3日 - 1918年1月6日)は、ドイツで活躍した数学者。.

新しい!!: 基数とゲオルク・カントール · 続きを見る »

ゴットロープ・フレーゲ

フリードリヒ・ルートヴィヒ・ゴットロープ・フレーゲ(Friedrich Ludwig Gottlob Frege, 1848年11月8日 - 1925年7月26日)は、ドイツの哲学者、論理学者、数学者であり、現代の数理論理学、分析哲学の祖にあたる。 フレーゲはバルト海に面したドイツの港町ヴィスマールの生まれである。母のアウグステ・ビアロブロツキーはポーランド系である。彼ははじめイェーナ大学で学び、その後ゲッティンゲン大学に移り1873年に博士号を取得した。その後イェーナに戻り、1896年から数学教授。1925年に死去した。.

新しい!!: 基数とゴットロープ・フレーゲ · 続きを見る »

全単射

数学において、全単射(ぜんたんしゃ)あるいは双射(そうしゃ)(bijective function, bijection) とは、写像であって、その写像の終域となる集合の任意の元に対し、その元を写像の像とする元が、写像の定義域となる集合に常にただ一つだけ存在するようなもの、すなわち単射かつ全射であるような写像のことを言う。例としては、群論で扱われる置換が全単射の良い例である。 全単射であることを一対一上への写像 (one-to-one onto mapping)あるいは一対一対応 (one-to-one correspondence) ともいうが、紛らわしいのでここでは使用しない。 写像 f が全単射のとき、fは可逆であるともいう。.

新しい!!: 基数と全単射 · 続きを見る »

公理的集合論

公理的集合論(こうりてきしゅうごうろん、axiomatic set theory)とは、公理化された集合論のことである。.

新しい!!: 基数と公理的集合論 · 続きを見る »

選択公理

選択公理(せんたくこうり、、選出公理ともいう)とは公理的集合論における公理のひとつで、どれも空でないような集合を元とする集合(すなわち、集合の集合)があったときに、それぞれの集合から一つずつ元を選び出して新しい集合を作ることができるというものである。1904年にエルンスト・ツェルメロによって初めて正確な形で述べられた。.

新しい!!: 基数と選択公理 · 続きを見る »

順序対

数学における順序対(じゅんじょつい、ordered pair)は、座標 (coordinate) や射影 (projection) とも呼ばれるふたつの成分 (entry) を持つ対象を総称するものである。順序対では常に、第一成分(第一座標、左射影)と第二成分(第二座標、右射影)の対によって対象が一意に決定される。第一座標が a で第二座標が b であるような順序対は通常、(a, b) で表される。「順序」対という呼称は、a.

新しい!!: 基数と順序対 · 続きを見る »

順序数

数学でいう順序数(じゅんじょすう、ordinal number)とは、整列集合同士の"長さ"を比較するために、自然数を拡張させた概念である。.

新しい!!: 基数と順序数 · 続きを見る »

自然数

自然数(しぜんすう、natural number)とは、個数、もしくは順番を表す一群の数のことである。集合論においては、自然数は物の個数を数える基数のうちで有限のものであると考えることもできるし、物の並べ方を示す順序数のうちで有限のものであると考えることもできる。 自然数を 1, 2, 3, … とする流儀と、0, 1, 2, 3, … とする流儀があり、前者は数論などでよく使われ、後者は集合論、論理学などでよく使われる(詳しくは自然数の歴史と零の地位の節を参照)。いずれにしても、0 を自然数に含めるかどうかが問題になるときは、その旨を明記する必要がある。自然数の代わりに非負整数または正整数と言い換えることによりこの問題を避けることもある。 数学の基礎付けにおいては、自然数の間の加法についての形式的な逆元を考えることによって整数を定義する。正の整数ないしは負でない整数を自然数と同一視し、自然数を整数の一部として取扱うことができる。自然数と同様に整数の全体も可算無限集合である。 なお、文脈によっては、その一群に属する個々の数(例えば 3 や 18)を指して自然数ということもある。.

新しい!!: 基数と自然数 · 続きを見る »

集合論

集合論(しゅうごうろん、set theory, théorie des ensembles, Mengenlehre)は、集合とよばれる数学的対象をあつかう数学理論である。 通常、「集合」はいろいろな数学的対象の集まりを表していると見なされる。これは日常的な意味でのものの集まりやその要素、特定のものが入っているかいないか、という概念を包摂している。現代数学の定式化においては集合論がさまざまな数学的対象を描写する言葉をあたえている。(論理や述語論理とともに)集合論は数学の公理的な基礎付けをあたえ、数学的な対象を形式的に(無定義語の)「集合」と「帰属関係」によって構成することが可能になる。また、集合論の公理として何を仮定するとどんな体系が得られるか、といった集合それ自体の研究も活発に行われている。 集合論における基本的な操作には、あたえられた集合のべき集合や直積集合をとる、などがある。また二つの集合の元同士の関係(二項関係)を通じて定義される順序関係や写像などの概念が集合の分類に重要な役割を果たす。集合論では二つの集合はそれぞれの集合の元の間に全単射が存在するとき濃度が等しいという。そこで集合を濃度の等しさによって類別した各々の同値類のことを濃度という。この定義では濃度は真のクラスになってしまうので、濃度そのものを集合論的な対象として取り扱い難い。選択公理を仮定すると任意の集合は整列可能であることが導かれる。整列集合の順序型を順序同型で類別した各々の同値類と定義してしまうと、それは真のクラスとなってしまう。幸いなことに任意の整列集合は順序数と呼ばれる特別な集合(を帰属関係で順序付けしたもの)と順序同型となる。そのためそれら順序数を整列集合の順序型と定義することができる。また順序数全体 \mathrm(これは真のクラスになる)もまた整列順序付けられている。以上のもとで、集合の濃度を と定義することができる。すなわち濃度というのを特別な順序数として定義するわけである。このようにすることで濃度の定義から真のクラスを追放することができる。ただし選択公理を仮定することなく濃度を定義し取り扱うことはできる。基本的なアイデアは濃度で類別した各々同値類から累積階層の意味で階数が最小なものだけを分出するというものである。詳細はを参照。.

新しい!!: 基数と集合論 · 続きを見る »

連続体仮説

連続体仮説(れんぞくたいかせつ、Continuum Hypothesis, CH)とは、可算濃度と連続体濃度の間には他の濃度が存在しないとする仮説。19世紀にゲオルク・カントールによって提唱された。現在の数学で用いられる標準的な枠組みのもとでは「連続体仮説は証明も反証もできない命題である」ということが明確に証明されている。.

新しい!!: 基数と連続体仮説 · 続きを見る »

連続体濃度

集合論における連続体濃度(れんぞくたいのうど、cardinality of the continuum)とは、実数全体の成す集合 R の濃度(あるいは基数、集合の「大きさ」の尺度)のことである。連続体濃度を持った集合を連続体 (continuum) と呼ぶこともある。これは無限濃度のひとつであり、|R|, 2ℵ0(ℵはヘブライ文字のアレフ), または \mathfrak c(ドイツ文字小文字の c)などの記号で表される。.

新しい!!: 基数と連続体濃度 · 続きを見る »

濃度 (数学)

数学、とくに集合論において、濃度(のうど)あるいは基数(きすう)(cardinal number, cardinality, power)とは、集合の「元の個数」という概念を拡張したものである。有限集合については、濃度は「元の個数」の同意語に過ぎない。。。.

新しい!!: 基数と濃度 (数学) · 続きを見る »

有理数

有理数(ゆうりすう、rational number) とは、二つの整数 a, b (ただし b は 0 でない)をもちいて a/b という分数で表せる数のことをいう。b.

新しい!!: 基数と有理数 · 続きを見る »

有界

上が有界集合、下が非有界集合を模式的に表したもの。ただし、下のほうは枠を超えて右方へ延々と続くものとする。 数学において集合が有界(ゆうかい、bounded)である、または有界集合(ゆうかいしゅうごう、bounded set)であるとは、ある種の「差渡しの大きさ」に関する有限性をそれが持つときにいう。有界でない集合は非有界(ひゆうかい、unbounded)であるという。 単純閉曲線はそれを境界として平面 '''R'''2 を有界(内側)および非有界(外側)な二つの領域に分ける。.

新しい!!: 基数と有界 · 続きを見る »

整列集合

数学において、整列順序付けられた集合または整列集合(せいれつしゅうごう、well­ordered set)とは、整列順序を備えた集合のことをいう。ここで、集合 上の整列順序関係 (well­order) とは、 上の全順序関係 "" であって、 の空でない任意の部分集合が必ず に関する最小元をもつものをいう。あるいは同じことだが、整列順序とは整礎な全順序関係のことである。整列集合 を慣例に従ってしばしば単純に で表す。.

新しい!!: 基数と整列集合 · 続きを見る »

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »