ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

地球時

索引 地球時

地球時(ちきゅうじ、Terrestrial Time: TT)は、国際天文学連合(IAU)によって定義された現代の天文学の時刻系であり、主に地球表面からの天文観測の時間測定のために使用される。例えば、は、地球から見た太陽、月、惑星の位置(天体暦)の表にTTを使用している。 この役割においてTTは、暦表時 (Ephemeris Time: ET) の後継である地球力学時 (Terrestrial Dynamical Time: TDT, TD) の継続であるTT is equivalent to TDT, see IAU conference 1991, Resolution A4, recommendation IV, note 4.

30 関係: 原子時計協定世界時天体暦天文学太陽系座標時地心座標時地球ミリ秒ユリウス通日ラジオパルサーアメリカ海軍天文台グレゴリオ暦グローバル・ポジショニング・システムジオイド元期固有時国際原子時国際単位系国際天文学連合国際度量衡局紀元相対性理論近似重力ポテンシャルΔT暦表時時刻系時計

原子時計

原子時計(げんしどけい、atomic clock)は、原子や分子のスペクトル線の高精度な周波数標準に基づき極めて正確な時間を刻む時計である。高精度のものは10-15(3000万年に1秒)程度、小型化された精度の低いものでも10-11(3000年に1秒)程度の誤差である。 原子時計に基づく時刻系を原子時と呼ぶ。現在のSI秒および国際原子時(International Atomic Time)は原子時計に基づく。.

新しい!!: 地球時と原子時計 · 続きを見る »

協定世界時

時間帯で色分けされた世界地図 協定世界時(きょうていせかいじ、UTC, Coordinated Universal Time, Koordinierte Weltzeit, Temps Universel Coordonné本来は「調整された世界時」の意だが、多数の国で法定常用時の基礎に採られており、日本語では協定と意訳する。)とは、国際原子時 (TAI) に由来する原子時系の時刻で、UT1 世界時に同調するべく調整された基準時刻を指す。国際原子時に調整を加えて作られた世界時で、国際協定に基づき人為的に維持されている時刻系である。.

新しい!!: 地球時と協定世界時 · 続きを見る »

天体暦

天体暦(てんたいれき、ephemeris)とは、天体(太陽・月・衛星・惑星・恒星及び人工天体)の運行位置・軌道及び天象(日食、月食、天体の出没など)を推算した予報を書き下した情報である。天文暦、暦(れき)、軌道暦とも言う。 現在、天体暦は基本暦 (fundamental ephemeris) と視天体暦 (apparent ephemeris) に分けることができる。基本暦は天体の運動方程式を積分して得られる天体の幾何学的な位置を扱い、視天体暦は基本暦を基に座標変換や惑星光行差の補正等をして得られる天体の視位置を扱っている。.

新しい!!: 地球時と天体暦 · 続きを見る »

天文学

星空を観察する人々 天文学(てんもんがく、英:astronomy, 独:Astronomie, Sternkunde, 蘭:astronomie (astronomia)カッコ内は『ラランデ歴書』のオランダ語訳本の書名に見られる綴り。, sterrenkunde (sterrekunde), 仏:astronomie)は、天体や天文現象など、地球外で生起する自然現象の観測、法則の発見などを行う自然科学の一分野。主に位置天文学・天体力学・天体物理学などが知られている。宇宙を研究対象とする宇宙論(うちゅうろん、英:cosmology)とは深く関連するが、思想哲学を起源とする異なる学問である。 天文学は、自然科学として最も早く古代から発達した学問である。先史時代の文化は、古代エジプトの記念碑やヌビアのピラミッドなどの天文遺産を残した。発生間もない文明でも、バビロニアや古代ギリシア、古代中国や古代インドなど、そしてイランやマヤ文明などでも、夜空の入念な観測が行われた。 とはいえ、天文学が現代科学の仲間入りをするためには、望遠鏡の発明が欠かせなかった。歴史的には、天文学の学問領域は位置天文学や天測航法また観測天文学や暦法などと同じく多様なものだが、近年では天文学の専門家とはしばしば天体物理学者と同義と受け止められる。 天文学 (astronomy) を、天体の位置と人間界の出来事には関連があるという主張を基盤とする信念体系である占星術 (astrology) と混同しないよう注意が必要である。これらは同じ起源から発達したが、今や完全に異なるものである。.

新しい!!: 地球時と天文学 · 続きを見る »

太陽系座標時

太陽系座標時(たいようけいざひょうじ、TCB: Temps-coordonnée barycentrique)は、太陽系内の惑星、小惑星、彗星、惑星間宇宙船の軌道に関する全ての計算において時間の独立変数として使用することを目的としたの時刻系である。これは、太陽系のと共動する座標系に対して静止している時計が刻む固有時と等価である。この時計は、太陽系の共通重心と全く同じ動きをするが、太陽系のの外にある時計である。従って、太陽やその他の太陽系内の物質のの影響を受けない。 TCBは、1991年に国際天文学連合(IAU)の第21回総会勧告3によって定義された。それは、定義が不定義な(TDB)の代替案のの1つとして意図されていた。TCBは、以前の天文学的時間尺度とは異なり、一般相対性理論に基づいて定義されている。TCBと他の相対論的時間尺度との関係は、完全な一般相対論的計量テンソルで定義される。 TCBの基準系は太陽系の重力ポテンシャルの中にはないので、TCBの歩度は地球表面の時計よりも約1.550505の因子(約490ミリ秒/年)だけ速い。従って、TCBを使用した計算で使用される物理定数の値は、通常の物理定数の値とは異なる(伝統的な値はある意味で間違っており、時間尺度の違いを修正を組み込んだものである)。既存のソフトウェアの大部分をTDBからTCBに変更するのは大変な作業であり、2002年現在でも何らかの形でTDBが使われ続けている。 TCB尺度上の時間座標は、地球の回転に基づく不均一な時間基準から持ち越された、慣習的に日を指定する従来の手段を用いて指定される。具体的には、ユリウス通日とグレゴリオ暦の両方が使用される。その前身の天体暦(ET)との連続性のために、TCBはユリウス通日 2443144.5(1977-01-01T00Z)のあたりでETと一致するように設定された。より正確には、TCBにおける 1977-01-01T00:00:32.184 の瞬間は、国際原子時(TAI)における 1977-01-01T00:00:00.000 の瞬間に正確に対応すると定義されている。これは、TAIに重力による時間の遅れの修正を導入した瞬間でもある。.

新しい!!: 地球時と太陽系座標時 · 続きを見る »

地心座標時

地心座標時(ちしんざひょうじ、TCG: Temps-coordonnée géocentrique)は、地球の歳差、章動、衛星(月)、人工衛星に関する全ての計算において時間の独立変数として使用することを目的としたの時刻系である。これは、地球の中心と共動する座標系に対して静止している時計が刻む固有時と等価である。この時計は、地球と全く同じ動きをするが、地球のの外にある時計である。従って、地球のの影響を受けない。 TCGは、1991年に国際天文学連合(IAU)の第21回総会勧告3によって定義された。それは、定義が不定義な(TDB)の代替案のの1つとして意図されていた。TCGは、以前の天文学的時間尺度とは異なり、一般相対性理論に基づいて定義されている。TCGと他の相対論的時間尺度との関係は、完全な一般相対論的計量テンソルで定義される。 TCGの基準系は地球の表面とともに回転せず、地球の重力ポテンシャルの中にはないので、TCGの歩度は地球表面の時計よりも約7.0の因子(約22ミリ秒/年)だけ速い。従って、TCGを使用した計算で使用される物理定数の値は、通常の物理定数の値とは異なる(伝統的な値はある意味で間違っており、時間尺度の違いを修正を組み込んだものである)。既存のソフトウェアの大部分をTDBからTCGに変更するのは大変な作業であり、2002年現在でも何らかの形でTDBが使われ続けている。 TCG尺度上の時間座標は、地球の回転に基づく不均一な時間基準から持ち越された、慣習的に日を指定する従来の手段を用いて指定される。具体的には、ユリウス通日とグレゴリオ暦の両方が使用される。その前身の天体暦(ET)との連続性のために、TCGはユリウス通日 2443144.5(1977-01-01T00Z)のあたりでETと一致するように設定された。より正確には、TCGにおける 1977-01-01T00:00:32.184 の瞬間は、国際原子時(TAI)における 1977-01-01T00:00:00.000 の瞬間に正確に対応すると定義されている。これは、TAIに重力による時間の遅れの修正を導入した瞬間でもある。 TCGはな時間尺度である。理論上の理想であり、特定の現示に依存しない。実用的な目的のためには、TCGを地球上の実際の時計によって現示しなければならない。地球時(TT)とTCGとの間には線形関係があるため、TTを現示する方法はTCGにも適用できる。関係の詳細とTTの現示方法については、地球時の項目を参照。 (TCB)は、地球軌道を超えた太陽系に関する計算に使用されるTCGの類似物である。TCGは、TCBと線形関係にならないように、TCBとは異なる参照系によって定義される。長期的に見ると、TCGはTCBよりも約1.6の因子(約0.5秒/年)遅れている。さらに、地球が太陽系内を移動するにつれて、周期的な変動がある。地球が1月に近日点に近づくと、TCGの歩度は平均よりもゆっくりになる。太陽の重力井戸の深さによる(重力による)時間の遅れと、太陽に対してより速く動くことによる(速度による)時間の遅れのためである。7月の遠日点では逆の結果が得られ、TCGは平均よりも速くなる。.

新しい!!: 地球時と地心座標時 · 続きを見る »

地球

地球(ちきゅう、Terra、Earth)とは、人類など多くの生命体が生存する天体である広辞苑 第五版 p. 1706.。太陽系にある惑星の1つ。太陽から3番目に近く、表面に水、空気中に酸素を大量に蓄え、多様な生物が生存することを特徴とする惑星である。.

新しい!!: 地球時と地球 · 続きを見る »

ミリ秒

ミリ秒(ミリびょう、millisecond、記号: ms)は、1000分の1秒(10 s, 1/1,000 s)に等しい時間の単位である。 「ミリ秒」という語は、SI接頭辞「ミリ」とSI基本単位「秒」で構成されている。その記号は ms である。 1ミリ秒は1000マイクロ秒および秒に等しい。SI接頭辞「センチ」「デシ」を使って、10ミリ秒(1/100秒)に等しい「センチ秒」(centisecond)、100ミリ秒(1/10秒)に等しい「デシ秒」(decisecond)といった単位も定義はできるが、通常これらの単位が用いられることはなく、数十ミリ秒および数百ミリ秒として表される。 ミリ秒で表される時間については、1 E-3 s・1 E-2 s・1 E-1 sを参照。.

新しい!!: 地球時とミリ秒 · 続きを見る »

ユリウス通日

ユリウス通日(ユリウスつうじつ、Julian Day、JD)とは、ユリウス暦本稿で言うユリウス暦は、西暦8年以前についてもユリウス暦の暦法(4年に1度閏年を実施)を機械的に遡って適用したと仮定したを指す。実際のユリウス暦では、その初期である紀元前45年 から 紀元前8年の間では、閏年を3年に1度とするという正しくない運用がなされていたので(ユリウス暦#初期のユリウス暦の運用)、この先発ユリウス暦とは一致しない。また、紀元前45年以前にはユリウス暦そのものが存在しない。紀元前4713年1月1日、すなわち西暦 -4712年1月1日の正午(世界時)からの日数である。単にユリウス日(ユリウスび)ともいう。時刻値を示すために一般には小数が付けられる。 例えば、協定世界時(UTC)でのCURRENTYEAR年CURRENTMONTHNAMECURRENTDAY日 のユリウス日の値は、おおむねである。.

新しい!!: 地球時とユリウス通日 · 続きを見る »

ラジオ

ラジオ()とは、.

新しい!!: 地球時とラジオ · 続きを見る »

パルサー

パルサー(pulsar)は、パルス状の可視光線、電波、X線を発生する天体の総称。.

新しい!!: 地球時とパルサー · 続きを見る »

アメリカ海軍天文台

アメリカ海軍天文台(アメリカかいぐんてんもんだい、英:United States Naval Observatory)は、アメリカ海軍の管轄下にある天文台。.

新しい!!: 地球時とアメリカ海軍天文台 · 続きを見る »

グレゴリオ暦

レゴリオ暦(グレゴリオれき、、、)は、ローマ教皇グレゴリウス13世がユリウス暦の改良を命じ、1582年10月15日(グレゴリオ暦)から行用されている暦法である。現行太陽暦として世界各国で用いられている。グレゴリオ暦を導入した地域では、ユリウス暦に対比して新暦()と呼ばれる場合もある。紀年法はキリスト紀元(西暦)を用いる。 大辞林 第三版、など。、暦法と紀年法とが混同されている。--> グレゴリオ暦の本質は、平年では1年を365日とするが、400年間に(100回ではなく)97回の閏年を置いてその年を366日とすることにより、400年間における1年の平均日数を、365日 + (97/400)日.

新しい!!: 地球時とグレゴリオ暦 · 続きを見る »

グローバル・ポジショニング・システム

船舶用GPS受信機 グローバル・ポジショニング・システム(Global Positioning System, Global Positioning Satellite, GPS、全地球測位システム)とは、アメリカ合衆国によって運用される衛星測位システム(地球上の現在位置を測定するためのシステムのこと)を指す。 ロラン-C(Loran-C: Long Range Navigation C)システムなどの後継にあたる。.

新しい!!: 地球時とグローバル・ポジショニング・システム · 続きを見る »

ジオイド

イド()とは、地球の平均海水面に極めて良く一致する等ジオポテンシャル面を言う。.

新しい!!: 地球時とジオイド · 続きを見る »

元期

元期(げんき、)とは、時間的な起点をいう語であり、主として天体観測や測量において用いられる。「元期2000.0」と言った場合は、西暦2000年1月1日の世界時0時を年数、日数、時間の起点として用いるということである。例えば、暦表時の定義においては、T(ユリウス世紀)の起点を1900年1月0日12時としている。この1900年1月0日12時が、暦表時の元期である。また、ユリウス日の元期は、ユリウス暦紀元前4713年1月1日の正午(世界時)である。.

新しい!!: 地球時と元期 · 続きを見る »

固有時

固有時(こゆうじ)とは、物理現象・物理法則を支配する時間を言う。特殊相対性理論・一般相対性理論により,ある観測者から見て移動する座標系若しくは重力等で歪んだ時空座標系の下でも,(時空点ごとに固有・不変となる)固有時を用いることにより物理法則は普遍形・不変形を示す。 本稿では特殊相対性理論に基づく観点の下で固有時の説明を行う。 ---- 固有時(こゆうじ)とは、注目する物体に伴って移動する座標系で計測した時間のことである。一般に記号はτを用いる。ニュートン力学まで用いられた全宇宙で一意な絶対時間に代わり、注目すべき物体の固有時が物理法則の記述に用いられるようになった。 アインシュタインは一般相対性理論に基づく観点から、「私は全宇宙に時計を置いた」と述べている。.

新しい!!: 地球時と固有時 · 続きを見る »

国際原子時

国際原子時(こくさいげんしじ、Temps Atomique International、略語:TAI、Internationale Atomzeit、International Atomic Time)は、現在国際的に規定・管理される原子時(原子時計によって定義される高精度で安定した時刻系)である。地球表面(ジオイド面)上の座標時の実現と位置付けられる。 国際単位系 (SI) では、「秒はセシウム133の原子の基底状態の二つの超微細準位の間の遷移に対応する放射の周期の9 192 631 770倍の継続時間である。」と定義されている。.

新しい!!: 地球時と国際原子時 · 続きを見る »

国際単位系

国際単位系(こくさいたんいけい、Système International d'unités、International System of Units、略称:SI)とは、メートル法の後継として国際的に定めた単位系である。略称の SI はフランス語に由来するが、これはメートル法がフランスの発案によるという歴史的経緯による。SI は国際単位系の略称であるため「SI 単位系」というのは誤り。(「SI 単位」は国際単位系の単位という意味で正しい。) なお以下の記述や表(番号を含む。)などは国際単位系の国際文書第 8 版日本語版による。 国際単位系 (SI) は、メートル条約に基づきメートル法のなかで広く使用されていたMKS単位系(長さの単位にメートル m、質量の単位にキログラム kg、時間の単位に秒 s を用い、この 3 つの単位の組み合わせでいろいろな量の単位を表現していたもの)を拡張したもので、1954年の第10回国際度量衡総会 (CGPM) で採択された。 現在では、世界のほとんどの国で合法的に使用でき、多くの国で使用することが義務づけられている。しかしアメリカなど一部の国では、それまで使用していた単位系の単位を使用することも認められている。 日本は、1885年(明治18年)にメートル条約に加入、1891年(明治24年)施行の度量衡法で尺貫法と併用することになり、1951年(昭和26年)施行の計量法で一部の例外を除きメートル法の使用が義務付けられた。 1991年(平成3年)には日本工業規格 (JIS) が完全に国際単位系準拠となり、JIS Z 8203「国際単位系 (SI) 及びその使い方」が規定された。 なお、国際単位系 (SI) はメートル法が発展したものであるが、メートル法系の単位系の亜流として「工学単位系(重力単位系)」「CGS単位系」などがあり、これらを区別する必要がある。 SI単位と非SI単位の分類.

新しい!!: 地球時と国際単位系 · 続きを見る »

国際天文学連合

国際天文学連合(こくさいてんもんがくれんごう、英:International Astronomical Union:IAU)は、世界の天文学者で構成されている国際組織である。国際科学会議 (ICSU) の下部組織となっている。恒星、惑星、小惑星、その他の天体に対する命名権を取り扱っている。その命名規則のために専門作業部会が設けられている。 IAUは天文電報の発行業務にも関わっており、スミソニアン天体物理観測所が運営している天文電報中央局 (Central Bureau for Astronomical Telegrams; CBAT) について支援している。 IAUは1919年に多くの団体を統合して設立された。最初の会長にはフランスのバンジャマン・バイヨーが選出された。 2009年現在、会員として、10,145人の天文学者などの個人会員と64の国家会員が所属している。 Headquarter(本部)の事務局は、フランスのパリのBd Arago(アラゴ通り)にある。総会はさまざまな国において開催されている。→#総会.

新しい!!: 地球時と国際天文学連合 · 続きを見る »

国際度量衡局

国際度量衡局(こくさいどりょうこうきょく)は、国際的な標準化団体であり、メートル条約に基づきメートル法(国際単位系(SI))を維持するために発足した3つの組織のうちの1つである。通常はフランス語の"Bureau international des poids et mesures"の頭文字を取ってBIPMと呼ばれる。 他の2つの組織は、国際度量衡総会(CGPM)と国際度量衡委員会(CIPM)である。.

新しい!!: 地球時と国際度量衡局 · 続きを見る »

(びょう、記号 s)は、国際単位系 (SI) 及びMKS単位系、CGS単位系における時間の物理単位である。他の量とは関係せず完全に独立して与えられる7つのSI基本単位の一つである。秒の単位記号は、「s」であり、「sec」などとしてはならない(後述)。 「秒」は、歴史的には地球の自転の周期の長さ、すなわち「一日の長さ」(LOD)を基に定義されていた。すなわち、LODを24分割した太陽時を60分割して「分」、さらにこれを60分割して「秒」が決められ、結果としてLODの86 400分の1が「秒」と定義されてきた。しかしながら、19世紀から20世紀にかけての天文学的観測から、LODには10−8程度の変動があることが判明し和田 (2002)、第2章 長さ、時間、質量の単位の歴史、pp. 34–35、3.時間の単位:地球から原子へ、時間の定義にはそぐわないと判断された。そのため、地球の公転周期に基づく定義を経て、1967年に、原子核が持つ普遍的な現象を利用したセシウム原子時計が秒の定義として採用された。 なお、1秒が人間の標準的な心臓拍動の間隔に近いことから誤解されることがあるが偶然に過ぎず、この両者には関係はない。.

新しい!!: 地球時と秒 · 続きを見る »

紀元

紀元(きげん)とは、ある出来事が起こった年を始点として、それから何年経過したかで時間を測定する、無限の紀年法である。.

新しい!!: 地球時と紀元 · 続きを見る »

相対性理論

一般相対性理論によって記述される、2次元空間と時間の作る曲面。地球の質量によって空間が歪むとして記述して、重力を特殊相対性理論に取り入れる。実際の空間は3次元であることに注意すべし。 相対性理論(そうたいせいりろん、Relativitätstheorie, theory of relativity)または相対論は特殊相対性理論と一般相対性理論の総称である。量子論に対し古典論に分類される物理の分野としては、物理史的には最後の「大物」であった。量子力学と並び、いわゆる現代物理の基本的な理論である。 特殊と一般の、いずれもアルベルト・アインシュタインにより記述された。まず、等速運動する慣性系の間において物理法則は互いに不変であるはずという原理(相対性原理)と光速度不変の原理から導かれたのが、特殊相対性理論である(1905年)。特殊相対性理論は、時間と空間に関する相互間の変換が、相対速度が光速に近づくと、従来のいわゆる「ニュートン時空」的に信じられていたガリレイ変換の結果とは違ったものになること、そういった場合にはローレンツ変換が正しい変換であることを示した(「ミンコフスキー時空」)。 続いて、等価原理により加速度によるいわゆる「見かけの重力」と重力場を「等価」として、慣性系以外にも一般化したのが一般相対性理論である(1915〜1916年)。.

新しい!!: 地球時と相対性理論 · 続きを見る »

近似

近似(きんじ、approximation)とは、数学や物理学において、複雑な対象の解析を容易にするため、細部を無視して、対象を単純化する行為、またはその方法。近似された対象のより単純な像は、近似モデルと呼ばれる。 単純化は解析の有効性を失わない範囲内で行われなければならない。解析の内容にそぐわないほど、過度に単純化されたモデルにもとづいた解析は、近似モデルの適用限界を見誤った行為であり、誤った解析結果をもたらす。しかしながら、ある近似モデルが、どこまで有効性を持つのか、すなわち適用限界がどこにあるのかは、実際にそのモデルに基づいた解析を行ってみなければ分からないことが多い。.

新しい!!: 地球時と近似 · 続きを見る »

重力ポテンシャル

重力ポテンシャル()とは、ニュートン力学において、重力による質量あたりの位置エネルギーである。すなわち、空間内の位置へ質点を動かす際に重力が質点に行う質量あたりの仕事の符号を変えたものに等しい。 静電ポテンシャルとの類推で電荷の役割を質量が果たす。通常は無限の遠方を重力ポテンシャルの基準点(重力ポテンシャルが0となる点)として選び、有限の距離では重力ポテンシャルは常に負値をとる。 数学では、重力ポテンシャルはとも呼ばれ、ポテンシャル論の研究において基本的である。.

新しい!!: 地球時と重力ポテンシャル · 続きを見る »

ΔT

(デルタティー)とは、地球時(TT)から世界時(UT)を引いた差である。.

新しい!!: 地球時とΔT · 続きを見る »

暦表時

暦表時(れきひょうじ、Ephemeris Time, ET)とは、地球から観測した太陽・月・惑星など天体の観測に基づく時刻系である。すなわち地球・惑星・月の公転運動に基準を置く、純理論的、純力学的な時刻系である。暦表時は暦表秒(回帰年のある整数分の1として定義された秒)に基づく時刻系で、現在は使われていない。なお地球の自転に基づいて決められる世界時(Universal Time、UT)とは異なるものである。 暦表秒は、1956年から1967年までSI秒の基準であったが、1984年に廃止された。1976年の国際天文学連合の決定により、地球表面での用途については暦表時(ET)は地球力学時(TDT)で置き換えられ、天体暦の計算用途には太陽系力学時(TDB)で置き換えられた。地球力学時(TDT)はその後地球時(TT)として再定義された。また、太陽系力学時(TDB)の定義では不足があったため、太陽系全体での用途については太陽系座標時(TCB)で、また地球近傍での用途には地心座標時(TCG)で再度置き換えられている。 地球時(TT)、地球力学時(TDT)、太陽系力学時(TDB)、太陽系座標時(TCB)、地心座標時(TCG)などの詳細については、時刻系#惑星運動の計算に用いられる時刻系を参照のこと。.

新しい!!: 地球時と暦表時 · 続きを見る »

時刻系

時刻系(じこくけい)とは時間が経過する歩度、もしくは時刻、またはその両方の基準である。例えば、常用時の基準は時間間隔とその日の時刻の両方を規定する。 歴史的には、時刻系は地球の自転周期に基づいていた。しかし地球が自転する速度は一定ではない。そこで地球自転に基づく基準は最初、地球の公転周期を用いた基準に置き換えられた。しかし地球の軌道は楕円であり、太陽に近い位置では地球の公転は速くなり公転速度も結局は一定ではない。比較的最近になると、時間間隔の基準は地球の自転や公転の速度に基づく過去の基準に代わって非常に正確で安定している原子時計に基づく基準に置き換えられている。 国際単位系(SI)において時間の基準とされている時間間隔は秒である。他の時間間隔(分、時間、日、ユリウス年、ユリウス世紀など)は通常、秒を用いて定義されている。.

新しい!!: 地球時と時刻系 · 続きを見る »

時計

山田訓氏所蔵「MADE IN JAPANの置時計 1960年代を中心に」展より 懐中時計 時計(土圭、とけい)とは、時刻を知るための、また時間を計るための器機・道具。.

新しい!!: 地球時と時計 · 続きを見る »

ここにリダイレクトされます:

地球力学時

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »