ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
ダウンロード
ブラウザよりも高速アクセス!
 

図形の相似

索引 図形の相似

2つの図形 F と G が相似(そうじ、similar)であるとは、一方を適当に一様スケール変換(拡大 または縮小)して他方と合同になる(すなわち、有限回の平行移動、回転移動、対称移動により重なる)ことである。それらの「形」が等しいことであるとも言い換えられる。記号では、欧米では F ∽ G と表すが、日本では「∽」でなく S を横に倒したような記号で表すことが多い。G を r 倍に一様スケール変換して F と合同であるとき、r: 1 を F と G の相似比という。F と G の相似比は、対応する線分の長さの比(一定)に等しい。 相似な直線図形(多角形など)においては、対応する辺の長さの比は一定で相似比に等しくなり、対応する角はそれぞれ等しくなる。 特に r.

55 関係: 反例反転幾何学双曲線同値合同多角形実数対称性三角形二等辺三角形位相幾何学体積地図ハミング距離ハウスドルフ次元ユークリッドの運動群ユークリッド空間リプシッツ連続アフィン写像アフィン群スカラー円錐円柱 (数学)写像回転等長写像直線直角三角形直角二等辺三角形菱形面積表形分類学表面積複素数角度角錐角柱距離函数距離空間自己相似長方形楕円欧米正多面体正多角形正三角形正方形...比例測度論最近傍探索日本放物線 インデックスを展開 (5 もっと) »

反例

反例(はんれい、counterexample) とは、なんらかの条件と性質について、「その条件を満たすすべてのものがその性質を持っている」という主張が正しくないことを示すために持ち出される、「その条件を満たしてはいるがその性質は持たないなにか」のことである。つまり、論理式 ∀x P(x) が成り立たないことを証明するために導入される、¬P(a) を満たすような a のことである。 反例が存在する場合、∃x ¬P(x) が成立し、これが元の論理式の否定になるため、∀x P(x) は成り立たない。.

新しい!!: 図形の相似と反例 · 続きを見る »

反転幾何学

初等幾何学における反転幾何学(はんてんきかがく、inversive geometry)は、平面幾何学において反転 (inversion) と呼ばれる種類の変換を一般化したものに関して保たれる図形の性質について研究する。 平面上の反転変換は、角を保ち(等角性)、一般化された円を一般化された円に写す(「円円対応」)ような写像になっている。ここで「一般化された円」というのは、円または(無限遠点を中心とする半径無限大の円と見做される)直線のいずれかであることを意味する。初等幾何学における難しい問題が、反転を施すと扱いやすくなるというようなことも少なくない。 このような平面上の反転の概念を、より高次元の場合に一般化することができる。.

新しい!!: 図形の相似と反転幾何学 · 続きを見る »

双曲線

双曲線(そうきょくせん、hyperbola)とは、2次元ユークリッド空間 R2 上で定義され、ある2点 P, Q からの距離の差が一定であるような曲線の総称である。この P, Q は焦点と呼ばれる。双曲線は、次の陰関数曲線の直交変換によって決定することができる。 この場合、焦点の座標は と書ける。このとき、2焦点から曲線への距離の差は 2a となる。また、双曲線には2つの漸近線が存在しており、 である。漸近線が直交している、すなわち a.

新しい!!: 図形の相似と双曲線 · 続きを見る »

同値

同値(どうち)または等価(とうか)とは、2つの命題が共に真または共に偽のときに真となる論理演算である。 英語ではequivalence (EQ)。「if and only if」を略して、iff ともいう。否定排他的論理和 (XNOR) に等しい。 演算子記号は ⇔、↔、≡、.

新しい!!: 図形の相似と同値 · 続きを見る »

合同

合同(ごうどう).

新しい!!: 図形の相似と合同 · 続きを見る »

多角形

初等幾何学における多辺形または多角形(たかっけい、polygon; )は、閉あるいは閉曲線を成す、線分の閉じた有限鎖で囲まれた平面図形を言う。多角形を構成するこれら線分をその多角形の辺 (edge, side) と呼び、それらの二つの辺が交わる点をその多角形の頂点 (vertex, corner) と呼ぶ。 個の辺を持つ多角形は -辺形 (-gon) と呼ぶ。例えば三角形は三辺形である。多角形は、より一般の任意次元における超多面体の二次元の例になっている。 多角形に関する基本的な幾何学的概念は特定の目的に応じて様々な方法で適応されてきた。数学においてはしばしば有界な閉折れ線や自己交叉を持たないに限って問題にするため、そのようなもののみ多角形と呼ぶこともある。他方、多角形の境界が自分自身と交わることを許す流儀もあり、その場合星型多角形やその他のが形作られる。その他の多角形の一般化については後述。 多角形 (poly­gon) の語は、「多い」を意味するπολύς と「角」を意味するγωνία に由来する.

新しい!!: 図形の相似と多角形 · 続きを見る »

実数

数学における実数(じっすう、 nombre réel, reelle Zahl, real number)は、様々な量の連続的な変化を表す数の体系である。実数全体の空間は、途切れのなさにあたる完備性とよばれる位相的な性質を持ち、代数的には加減乗除ができるという体の構造を持っている。幾何学や解析学ではこれらのよい性質を利用して様々な対象が定義され、研究されている。一方でその構成方法に自明でない手続きが含まれるため、実数の空間は数学基礎論の観点からも興味深い性質を持っている。また、自然科学における連続的なものの計測値を表すのに十分な数の体系だとも考えられている。 実数の概念は、その形式的な定義が19世紀に達成される前から数の体系として使われていた。「実数」という名前は複素数の概念が導入された後に「普通の数」を表現する言葉として導入されたものである。.

新しい!!: 図形の相似と実数 · 続きを見る »

対称性

対称性(たいしょうせい、ラテン語・ギリシャ語: συμμετρία symmetria, 独:Symmetrie, 英:symmetry)とは、ある変換に関して不変である性質である。 英語を音訳したシンメトリーと呼ぶこともあるが、2つのmは同時に発音されるため、英語の発音は「シメトリー」に近い。.

新しい!!: 図形の相似と対称性 · 続きを見る »

三角形

200px 三角形(さんかくけい、さんかっけい、拉: triangulum, 独: Dreieck, 英, 仏: triangle, (古風) trigon) は、同一直線上にない3点と、それらを結ぶ3つの線分からなる多角形。その3点を三角形の頂点、3つの線分を三角形の辺という。.

新しい!!: 図形の相似と三角形 · 続きを見る »

二等辺三角形

二等辺三角形(にとうへんさんかくけい、isosceles triangle)は、三角形の一種で、3 本の辺のうち(少なくとも)2 本の辺の長さが等しい図形である。長さの等しい 2 辺を等辺といい、残りの 1 辺を底辺とよぶ。2 本の等辺が共有する頂点をとくに二等辺三角形の頂点という。頂点における内角を、二等辺三角形の頂角といい、残りの 2 つの内角すなわち底辺の両端の内角を底角とよぶ。二等辺三角形の底角は、互いに等しい大きさを持つ。二等辺三角形 二等辺三角形の頂点における外角を、頂外角と呼ぶ。頂外角の大きさは、底角の2倍に等しい。また、頂外角の二等分線は、底辺と平行である。 頂角は180°未満の大きさであるが、底角は90°未満の大きさに限られる。二等辺三角形は線対称な図形であり、頂点と底辺の中点を結ぶ中線、頂角の二等分線、底辺の垂直二等分線、これらはすべて線対称の対称軸に乗る。二等辺三角形の頂角の二等分線は底辺を垂直に二等分する。 三角形の 3 つの内角のうち(少なくとも)2 つの角が等しいものは、二等辺三角形となる(二等辺三角形の成立条件)。 また、対称軸を持つ三角形は二等辺三角形に限られる。 二等辺三角形のうち、3 本の辺の長さが全て等しい三角形は正三角形という。正三角形は、二等辺三角形の特殊な場合である。正三角形の内角はすべて等しく、その大きさは 60° に等しい。すべての正三角形は、互いに相似である。 頂角が直角である二等辺三角形は直角二等辺三角形とよばれる。直角二等辺三角形の 2 つの底角(2 つの鋭角)は 45°である。すべての直角二等辺三角形は、互いに相似である。 この項では一般的な二等辺三角形について述べる。 同じ大きさの頂角を持つ二等辺三角形は全て互いに相似である。 また、同じ大きさの底角を持つ二等辺三角形は全て互いに相似である。 線分の両側に、これを底辺とする 2 つの二等辺三角形を作って並べると、凧形ができる。とくに、2 つの二等辺三角形が合同である場合、菱形ができる。逆に、菱形や凧形を対角線で2つに分けて、二等辺三角形を作ることができる。特に、正方形を 1 本の対角線で 2 つに分けると、直角二等辺三角形が得られる。 正n角形の重心から各頂点に線分を引くとn個の二等辺三角形ができる。 扇形の中心角を限りなく小さくすると二等辺三角形に近づく。 二等辺三角形を対称軸を中心として半回転させると円錐ができる。円錐の投影図のうち、立面図は二等辺三角形である。 角錐のうち底面が正多角形でその重心の真上に頂点のあるものは、二等辺三角形からなる側面を持つ。.

新しい!!: 図形の相似と二等辺三角形 · 続きを見る »

位相幾何学

一つの面と一つの辺を持つメビウスの帯は位相幾何学で研究される対象の一種である。 自明な結び目)を三次元で描いたもの 数学の一分野、位相幾何学(いそうきかがく、topology, トポロジー)は、その名称がτόπος(「位置」「場所」)と (「言葉」「学問」) に由来し、「位置の学問」を意味している。 トポロジーは、何らかの形(かたち。あるいは「空間」)を連続変形(伸ばしたり曲げたりすることはするが切ったり貼ったりはしないこと)しても保たれる性質(または位相不変量)に焦点を当てたものである。位相的性質において重要なものには、連結性およびコンパクト性などが挙げられる。 位相幾何学は、空間、次元、変換といった概念の研究を通じて、幾何学および集合論から生じた分野である。このような考え方は、17世紀に「位置の幾何」(geometria situs)および「位置の解析」(analysis situs)を見越したゴットフリート・ライプニッツにまで遡れる。レオンハルト・オイラーの「ケーニヒスベルクの七つの橋」の問題および多面体公式がこの分野における最初の定理であるというのが定説となっている。用語 topology は19世紀にによって導入されたが、位相空間の概念が起こるのは20世紀の最初の10年まで待たねばならない。20世紀中ごろには、位相幾何学は数学の著名な一分野となっていた。 位相幾何学には様々な分科が存在する。.

新しい!!: 図形の相似と位相幾何学 · 続きを見る »

体積

体積(たいせき)とは、ある物体が 3 次元の空間でどれだけの場所を占めるかを表す度合いである。和語では嵩(かさ)という。.

新しい!!: 図形の相似と体積 · 続きを見る »

地図

地図(ちず、英:mapブリタニカ百科事典「地図」 マップ、chart チャート)とは、地球表面の一部または全部を縮小あるいは変形し、記号・文字などを用いて表した図。.

新しい!!: 図形の相似と地図 · 続きを見る »

ハミング距離

4ビット文字列のハミング距離を図示したもの。頂点に特定のビットの組合せが対応していて、頂点間の辺の数がハミング距離に対応する 情報理論において、ハミング距離(ハミングきょり、Hamming distance)とは、等しい文字数を持つ二つの文字列の中で、対応する位置にある異なった文字の個数である。別の言い方をすれば、ハミング距離は、ある文字列を別の文字列に変形する際に必要な置換回数を計測したものである。この用語は、リチャード・ハミング (Richard Wesley Hamming) にちなんで命名されたもので、鼻歌 (humming) ではない。 ハミング距離は、遠距離通信における固定長バイナリー文字列の中で弾かれたビット数や、エラーの概算を数えるのに用いられるために、信号距離とも呼ばれる。文字数 n の1ビット文字列間のハミング距離は、それらの文字列間の排他的論理和のハミング重み(文字列内の 1 の個数)か、 n 次元超立方体の 2 頂点間のマンハッタン距離に相当する。 ハミング距離の例:.

新しい!!: 図形の相似とハミング距離 · 続きを見る »

ハウスドルフ次元

点のハウスドルフ次元は0であり、直線のハウスドルフ次元は1、正方形のハウスドルフ次元は2、そして立方体のハウスドルフ次元は3である。コッホ曲線のようなフラクタル図形のハウスドルフ次元は、非整数になりうる。 フラクタル幾何学におけるハウスドルフ次元(ハウスドルフじげん、Hausdroff dimension)は、1918年に数学者フェリックス・ハウスドルフが導入した、が有限な値をとり消えていないという条件に適合する次元の概念の非整数値をとる一般化である。すなわち、きちんとした数学的定式化のもと、点のハウスドルフ次元は 、線分のハウスドルフ次元は 、正方形のハウスドルフ次元は 、立方体のハウスドルフ次元は である。つまり、旧来の幾何学で扱われるような、滑らかあるいは有限個の頂点を持つ点集合として定義される図形のハウスドルフ次元は、その位相的な次元に一致する整数である。しかし同じ定式化のもとで、フラクタルを含めたやや単純さの少ない図形に対してもハウスドルフ次元を計算することが許されるが、その次元は非整数値を取りうる。大幅な技術的進展がによりもたらされて高度に不規則な集合に対する次元の計算が可能となったことから、この次元の概念はハウスドルフ–ベシコヴィッチ次元としても広く知られている。 初等幾何学で用いられる通常のジョルダン測度(あるいはルベーグ測度)に関して、例えば正方形が二次元であるということは、その三次元より高次のジョルダン測度(つまり、体積および高次元体積)が であり、二次元ジョルダン測度(面積)が正の値を持つ(さらに一次元および零次元のジョルダン測度は形式的に となる)ということを本質的に表している。-次元実内積空間 の -次元ジョルダン測度は、部分集合 に対して、 の球体による充填近似が定める内測度と、球体被覆による近似の定める外測度の一致するとき、その一致する値として定義されるのであった(あるいはルベーグ測度は外測度のみを利用して構成される)が、(定数因子の違いを除けば)-次元ジョルダン測度は一次元ジョルダン測度(長さ)の 個の直積と本質的に同じであり、-次元球(あるいは立方体)の -次元体積は本質的に半径の -乗である。ハウスドルフ次元は、これらの事実を抽象化して、台となる空間を一般の距離空間とし、部分集合の一次元ハウスドルフ測度を距離球体被覆による近似の下限として定まる外測度、また非整数値の に対する -次元距離球体のハウスドルフ測度を一次元測度の -乗(の適当な定数倍)となるように定める。ジョルダン測度の場合と同じく、部分集合 の -次元ハウスドルフ測度は次元 が大きければほとんどすべてに対して零であり、零でなくなるようなギリギリ小さい値として のハウスドルフ次元を定めるのである。 ハウスドルフ次元は、ボックスカウンティング次元()のより単純だがふつうは同値な後継である。.

新しい!!: 図形の相似とハウスドルフ次元 · 続きを見る »

ユークリッドの運動群

数学におけるユークリッド群(ユークリッド-ぐん、Euclidean group)あるいは運動群 (motion group) は、ユークリッド空間のを言う。その元はユークリッド距離に付随する等距変換であり、合同変換あるいはユークリッドの運動 (motion) と呼ばれる。ユークリッドの運動群の研究は、少なくとも二次元や三次元の場合については極めて古く、群の概念が発するよりもずっと以前から(従ってもちろん群としてでなく、もっと陰伏的な形で)よく調べられている。 -次元ユークリッド空間の運動群は や などとも表される。; 三次元までの等長変換についての概観 は の任意の元が螺旋変位であることを主張する。.

新しい!!: 図形の相似とユークリッドの運動群 · 続きを見る »

ユークリッド空間

数学におけるユークリッド空間(ユークリッドくうかん、Euclidean space)は、エウクレイデス(ユークリッド)が研究したような幾何学(ユークリッド幾何学)の場となる平面や空間、およびその高次元への一般化である。エウクレイデスが研究した平面や空間はそれぞれ、2次元ユークリッド空間、3次元ユークリッド空間に当たり、これらは通常、ユークリッド平面、ユークリッド空間などとも呼ばれる。「ユークリッド的」という修飾辞は、これらの空間が非ユークリッド幾何やアインシュタインの相対性理論に出てくるような曲がった空間ではないことを示唆している。 古典的なギリシャ数学では、ユークリッド平面や(三次元)ユークリッド空間は所定の公準によって定義され、そこからほかの性質が定理として演繹されるものであった。現代数学では、デカルト座標と解析幾何学の考え方にしたがってユークリッド空間を定義するほうが普通である。そうすれば、幾何学の問題に代数学や解析学の道具を持ち込んで調べることができるようになるし、三次元以上のユークリッド空間への一般化も容易になるといった利点が生まれる。 現代的な観点では、ユークリッド空間は各次元に本質的に一つだけ存在すると考えられる。たとえば一次元なら実数直線、二次元ならデカルト平面、より高次の場合は実数の組を座標にもつ実座標空間である。つまり、ユークリッド空間の「点」は実数からなる組であり、二点間の距離は二点間の距離の公式に従うものとして定まる。n-次元ユークリッド空間は、(標準的なモデルを与えるものという意味で)しばしば とかかれるが、(余分な構造を想起させない)ユークリッド空間固有の性質を備えたものということを強調する意味で と書かれることもある。ふつう、ユークリッド空間といえば有限次元であるものをいう。.

新しい!!: 図形の相似とユークリッド空間 · 続きを見る »

リプシッツ連続

解析学におけるリプシッツ連続性(リプシッツれんぞくせい、Lipschitz continuity)は、に名を因む、函数のより強い形の一様連続性である。直観的には、リプシッツ連続函数は変化の速さが制限される。即ち、適当な有限値の実数が存在して、その函数のグラフ上の任意の二点を結ぶ直線の傾きの絶対値はその実数を超えない。この上界をその函数の「リプシッツ定数」(あるいは)と呼ぶ。例えば一階微分が有界な任意の函数はリプシッツである。 微分方程式論において、リプシッツ連続性は初期値問題の解の存在と一意性を保証するの中心的な条件である。リプシッツ連続性の特別な場合で、縮小性はバナッハの不動点定理において用いられる。 実数直線の有界閉集合上で定義される函数に関して、以下のような包含関係の鎖が知られている: また、 も成り立つ。.

新しい!!: 図形の相似とリプシッツ連続 · 続きを見る »

アフィン写像

幾何学におけるアフィン写像(アフィンしゃぞう、affine map)はベクトル空間(厳密にはアフィン空間)の間で定義される、平行移動を伴う線型写像である。アフィン (affine) はラテン語で「類似・関連」を意味する affinis に由来する。 始域と終域が同じであるようなアフィン写像はアフィン変換(アフィンへんかん、affine transformation)と呼ばれる。アフィン写像はアフィン空間の構造を保つ。.

新しい!!: 図形の相似とアフィン写像 · 続きを見る »

アフィン群

数学において、アフィン群(アフィン-ぐん、affine group)あるいは一般アフィン群(いっぱん-アフィン-ぐん、general affine group)は、体 K 上のアフィン空間からそれ自身への正則アフィン変換の全体の成す群である。アフィン変換群とも。 アフィン群は K が実または複素(あるいは四元)数体であるとき、リー群を成す。.

新しい!!: 図形の相似とアフィン群 · 続きを見る »

スカラー

ラー、スカラ; scalar.

新しい!!: 図形の相似とスカラー · 続きを見る »

円(えん、まる)(ゑん)(Yen).

新しい!!: 図形の相似と円 · 続きを見る »

円錐

円錐(えんすい、cone)とは、円を底面として持つ状にとがった立体のことである。.

新しい!!: 図形の相似と円錐 · 続きを見る »

円柱 (数学)

数学において円柱(えんちゅう、cylinder)とは二次曲面(三次元空間内の曲面)の一種で、デカルト座標によって次の方程式で定義されるものである: この方程式は楕円柱を表し、a.

新しい!!: 図形の相似と円柱 (数学) · 続きを見る »

写像

写像(しゃぞう、mapping, map)とは、二つの集合が与えられたときに、一方の集合の各元に対し、他方の集合のただひとつの元を指定して結びつける対応のことである。函数(関数)、変換、作用素、射などが写像の同義語として用いられることもある。 ブルバキに見られるように、写像は集合とともに現代数学の基礎となる道具の一つである。現代的な立場では、「写像」と(一価の)「函数」は論理的におなじ概念を表すものと理解されているが、歴史的には「函数」の語は解析学に出自を持つものであり、一部には必ずしも写像でないものも函数の名の下におなじ範疇に扱われる(多価函数参照)。文献によっては「数の集合(大抵の場合実数体 または複素数体 の部分集合)を終域に持つ写像」をして特に「函数」と呼び、「写像」はより一般の場合に用いる。函数、二項関係、対応の各項も参照のこと。.

新しい!!: 図形の相似と写像 · 続きを見る »

回転

回転(廻転、かいてん、rotation)は、大きさを持たない点または大きさを持つ物体が、ある点を中心としてあるいは直線を軸として、あるいは別の物体の周りを回る運動。この点を回転中心、この直線を回転軸という。回転中心や回転軸が回転する物体の内部にある場合を特に自転というときもある。まさに運動している状態を指す場合も、運動の始状態から終状態への変化や移動を指す場合もある。前者の意味を強調したい場合は回転運動ということもある。 転じて、資金などの供給・サービス業の客の出入りなどをこう称する場合がある。.

新しい!!: 図形の相似と回転 · 続きを見る »

球(きゅう、ball)とは、.

新しい!!: 図形の相似と球 · 続きを見る »

等長写像

数学、とくに幾何学において等長写像(とうちょうしゃぞう)または等距離写像(とうきょりしゃぞう)とは、"長さ" を変えない(距離を保つ、distance preserving)写像のことである。全単射であるものに限って等長写像 (isometry) という場合もある。.

新しい!!: 図形の相似と等長写像 · 続きを見る »

直線

線の正確な表示(直線は太さを持たない図形である為、厳密に正しく表示した場合、視覚では確認不能となる) 線分 直線(ちょくせん、line)とは、太さを持たない幾何学的な対象である曲線の一種で、どこまでもまっすぐ無限に伸びて端点を持たない。まっすぐな線には直線の他に、有限の長さと両端を持つ線分(せんぶん、line segment、segment)と、一つの端点を始点として無限にまっすぐ伸びた半直線(はんちょくせん、ray、half-line)がある。.

新しい!!: 図形の相似と直線 · 続きを見る »

直角三角形

角三角形(ちょっかくさんかくけい、right triangle)は、三角形の一種である。三角形の3つの内角のうち、他のどの内角よりも小さくない角に注目したとき、その角が直角 (90°.

新しい!!: 図形の相似と直角三角形 · 続きを見る »

直角二等辺三角形

角二等辺三角形 直角二等辺三角形(ちょっかくにとうへんさんかくけい、英: )は、二等辺三角形の持つ特徴に加え、直角三角形の持つ特徴を併せ持つ図形である。3つの角のうち2つの角がそれぞれ45°である三角形と定義してもよい。 直角二等辺三角形は二等辺三角形の一つでもあり、直角三角形の一つでもある。等しい長さの2辺で構成される1角(頂角)が直角である。 底辺どうしが重なり合うように二つの直角二等辺三角形を並べると正方形ができる。逆に正方形を対角線で2つに分けるといずれも直角二等辺三角形となっている。 直角二等辺三角形は線対称な図形であり、対称軸は頂角の点から対辺(底辺)に下ろした垂線である。頂角は直角なので、垂線によって二等分された角は、45°となる。このことから、この対称軸で直角二等辺三角形を二等分すると、その結果の二つの図形も直角二等辺三角形となることがわかる。したがって、この垂線の長さは、底辺の長さのとなる。 ピタゴラスの定理より、底辺以外の1辺と底辺との比は、1:\sqrtとなることがわかる。底辺以外の1辺の長さをとした場合、\fracで面積を求めることができる。また、底辺の長さのみが分かっている場合でも、底辺の長さをとし、\fracで面積を求めることができる。したがって、直角二等辺三角形の場合、任意の1辺の長さが分かれば、面積を求めることができる。 また、底角は45°であるので、t.

新しい!!: 図形の相似と直角二等辺三角形 · 続きを見る »

菱形

菱形(ひしがた、りょうけい)、斜方形(しゃほうけい、)は、4本の辺の長さが全て等しい四角形である。 成立条件に、.

新しい!!: 図形の相似と菱形 · 続きを見る »

面積

面積(めんせき)とは、平面内の、あるいは曲面内の図形の大きさ、広さ、の量である。立体物の表面の面積の合計を特に表面積(ひょうめんせき)と呼ぶ。.

新しい!!: 図形の相似と面積 · 続きを見る »

表形分類学

表形分類学(ひょうけいぶんるいがく、英語:phenetics)は、数値(数量)分類学ともいい、生物の全体的類似性を定量的に表現して分類する分類学の一方法である。 1950-60年代に、従来の分類学が客観的、科学的でないと批判され、それに代わる方法として提案された。同じ頃、分岐学が系統学の方法として提案され、分類学の方法としても用いられるようになったのとは対照的に、表形分類学は系統(進化上の関係)とは関係なく数値的に比較するための方法として提案された。 具体的には、形態や生化学的性質といった形質を多数比較して生物種間の距離を求め、クラスタリングを行う。この際に特定の形質だけを重視すること(つまり、重み付け)はしない。大量の変数の測定結果から、それを2~3次元のグラフに表現し直す方法が用いられる。これは生物が示す多様性を整理して人間が直接扱えるレベルにするにはよい方法であるが、このような整理によって多くの情報の損失も避けられない。 表形分類学の方法論の多くは、このような情報の損失と、解釈が容易になることのバランスの上に成り立っている。相似(相同ではない)による類似を取り上げる傾向が高いため、系統研究に関しては現在ほぼ分岐学に取って代わられているが、一部の分岐学的方法が実用的でないような場合に適した近似として用いられている。 また類似のアイディアは近隣結合法として発展し、分子系統学の有力な方法として用いられている。違いが相対的に大きすぎる(どの2つをとっても特に類似が大きくはないような)生物を分類するには、分岐学的方法は適用しにくいため、表形的方法が用いられる。特に種レベルの問題には表形的方法が多く用いられ、種の同定を行う場合には、全体的類似性を定量的に表す表形的方法が適している(もちろん場合によっては分岐論的方法も有用で、2つの方法論は車の両輪のようなものである)。 また表形分類学で発展した方法の多くは、分類学以外の領域では、群集生態学によって受容されさらに発展している。 ---- 英語版からの翻訳 Category:分類学 (生物学) Category:系統学 hu:Numerikus taxonómia.

新しい!!: 図形の相似と表形分類学 · 続きを見る »

表面積

表面積(ひょうめんせき)は、立体図形の表面の面積。 ユークリッド空間では、図形が a 倍に拡大されると、体積が a3 倍になるのに対し、表面積は a2 倍になる。ただし、3軸それぞれについて a、b、c 倍に拡大された場合は、体積は abc 倍になるが、表面積の変化は図形による。 せん断成分のある変形に対しては、体積は一定だが表面積は一般に異なる。たとえば、底面が合同で高さが同じ平行六面体と直方体は、体積が等しいが表面積は異なる。 表面積は、一般には積分を使って計算される。対称性の高い図形のみ、初等数学で求まる公式が得られる。楕円体のように、体積は簡単に求まるが表面積を求めるには複雑な計算が必要な図形もある。.

新しい!!: 図形の相似と表面積 · 続きを見る »

複素数

数学における複素数(ふくそすう、complex number)は、実数の対 と と線型独立な(実数ではない)要素 の線型結合 の形に表される数(二元数: 実数体上の二次拡大環の元)で、基底元 はその平方が になるという特別な性質を持ち虚数単位と呼ばれる。 複素数全体の成す集合を太字の あるいは黒板太字で と表す。 は、実数全体の成す集合 と同様に、可換体の構造を持ち、とくに を含む代数閉体を成す。複素数体はケイリー–ディクソン代数(四元数、八元数、十六元数など)の基点となる体系であり、またさまざまな超複素数系の中で最もよく知られた例である。 複素数の概念は、一次元の実数直線を二次元の複素数平面に拡張する。複素数は自然に二次元平面上に存在すると考えることができるから、複素数全体の成す集合上に自然な大小関係(つまり全順序)をいれることはできない。すなわち は順序体でない。 ある数学的な主題や概念あるいは構成において、それが複素数体を基本の体構造として考えられているとき、そのことはしばしばそれら概念等の名称に(おおくは接頭辞「複素-」を付けることで)反映される。例えば、複素解析、複素行列、複素(係数)多項式、複素リー代数など。.

新しい!!: 図形の相似と複素数 · 続きを見る »

角度

角度(かくど、measure of angle, angle)とは、角(かく、angle)の大きさを表す量・測度のことである。なお、一般の角の大きさは、単位の角の大きさの実数倍で表しうる。角およびその角度を表す記号としては ∠ がある。これは角記号(かくきごう、angle symbol)と呼ばれる。 単に角という場合、多くは平面上の図形に対して定義された平面角(へいめんかく、plane angle)を指し、さらに狭義にはある点から伸びる2つの半直線(はんちょくせん、ray)によりできる図形を指す。平面角の角度は、同じ端点を持つ2つの半直線の間の隔たりを表す量といえる。2つの半直線が共有する端点は角の頂点(かくのちょうてん、vertex of angle)と呼ばれ、頂点を挟む半直線は角の辺(かくのへん、side of angle)と呼ばれる。また、直線以外の曲線や面などの図形がなす角の角度も、何らかの2つの直線のなす角の角度として定義される。より広義には、角は線や面が2つ交わって、その交点や交線の周りにできる図形を指す。線や面が2つ交わって角を作ることを角をなすという。ここでいう面は通常の2次元の面に限らず、一般には超平面である。 角が現れる基本的な図形としては、たとえば三角形や四角形のような多角形(たかくけい、polygon)がある。特に三角形は平面図形における最も基本的な図形であり、すべての多角形は三角形の組み合わせによって表現することができる。また、他にも単純な性質を多く持っているため、様々な場面で応用される。有名なものは余弦定理(よげんていり、law of cosines)や、三角形の辺の比を通じて定義される三角関数(さんかくかんすう、trigonometric function)などがある。余弦定理と三角関数は、三角形の角と辺の間に成り立つ関係を示したもので、これらの関係を利用して、三角形の辺の長さからある角の大きさを求めたり、大きさが既知の角から辺の長さや長さの比を求めることができる。このことはしばしば三角形の合同条件(さんかっけいのごうどうじょうけん、congruence condition of triangles)としても言及される。 物理学など自然科学においては、量の次元が重要な役割を果たす。例えば、辺の長さや弧の長さは物理量として「長さ」の次元を持っているが、国際量体系において、角度は辺の長さの比などを通じて定義される無次元量であるとしている。角度が無次元であることは、直ちに角度が単位を持たないことを意味しない。例えば角度を表す単位としてはラジアン(らじあん、radian)や度(ど、degree)が有名である。ラジアンと度の換算は以下の式によって示される。 また、ラジアンで表された数値は単位なしの数として扱うことができる。 角度に関連する物理学の概念として、位相(いそう、phase)がある。位相は波のような周期的な運動を記述するパラメーターであり、その幾何学的な表現が角度に対応している。位相も角度と同様にラジアンが単位に用いられる。 立体的な角として立体角(りったいかく、solid angle)も定義されているが、これは上記の定義には当てはまらない。その大きさは単に立体角と呼ばれることが多く、角度と呼ばれることはほとんどない。 以下、本項目においては平面角を扱う。.

新しい!!: 図形の相似と角度 · 続きを見る »

角錐

角錐(かくすい、geometrical pyramid)は凸多面体の一種で、底面の形が多角形である錐体のことである。.

新しい!!: 図形の相似と角錐 · 続きを見る »

角柱

角柱(かくちゅう、prism)とは、多角形を底面とする柱体。つまり、2枚の合同で平行な多角形の間に四角形を立たせた多面体、あるいは、多角形がそれに交わる方向に平行移動した軌跡である。このとき、2枚の底面の周上の対応する2点を結ぶ線分を、角柱の母線と呼ぶ。角柱は高さを持った多角形といえる。 屋根と底にあたる多角形を底面、底面以外の面を側面という。側面は底面の辺の数だけの四角形から成る筒状の図形であり、すべての母線の集まりと考えられる。は 2個底面と底その間にはさまれたを1つの持つ。 日角柱の表面積は国底面積の2倍に側面積を加えた広さとして計算される。初等・中等教育の算数・数学科では、側面が底面と直交する長方形から構成される直角柱(ちょっかくちゅう、right prism) のみを考えるため、角柱を多角形をその面に対して垂直な向きに、一定の距離だけ動かしてできる立体と説明するが、側面が底面と斜交する平行四辺形から成る斜角柱(しゃかくちゅう、oblique prism)も含めて考えることがある。 底面が正多角形の角柱を正角柱(せいかくちゅう、regular prism)、底面も側面も正多角形(したがって側面は正方形)の正角柱をアルキメデスの正角柱またはアルキメデスの角柱 (Archimedean prism) という。特にアルキメデスの正角柱だけに限って正角柱という場合もある。 アルキメデスの正角柱は、半正多面体の条件を満たすが、正多角形が厚みを持ったものなので無限個あり、2次元の対称性しか持たないため、通常は半正多面体には含まない。アルキメデスの正四角柱は正六面体(立方体)である。.

新しい!!: 図形の相似と角柱 · 続きを見る »

距離函数

距離函数(きょりかんすう、distance function)、距離計量(きょりけいりょう)あるいは単に距離(きょり、distance)、計量(けいりょう、metric)は、集合の二点間の距離を定義する函数である。距離が定義されている集合を距離空間(きょりくうかん、metric space)と呼ぶ。距離はその集合上の位相(距離位相)を誘導するが、必ずしもすべての位相空間が距離位相によって生成されるわけではない。ある位相空間の位相を距離によって記述することができるとき、その位相空間は距離化可能 (metrizable) であるという。.

新しい!!: 図形の相似と距離函数 · 続きを見る »

距離空間

距離空間(きょりくうかん、metric space)とは、距離関数(きょりかんすう)と呼ばれる非負実数値関数が与えられている集合のことである。 古代より、平面や空間、地上の 2 点間の離れ具合を表す尺度である距離は測量や科学、数学において重要な役割を果たしてきた。1906年にモーリス・フレシェは、様々な集合の上で定義された関数の一様連続性の概念を統一的に研究した論文 において、ユークリッド空間から距離の概念を抽出して用い、距離空間の理論を築いた。 平面 R2 の上の 2 点 P1.

新しい!!: 図形の相似と距離空間 · 続きを見る »

辺(へん、二次元図形ではside、三次元図形ではedge(但し、円柱の辺の様に線分でないものはedgeと呼ばれない))は、特定の“図形”の中で 1 次元の“部分”となっている、両端に頂点と呼ばれる特別の点を 0 次元の“部分”として含むような線分である。辺は“線分”であり通常はまっすぐであるものを指すが、位相幾何学(トポロジー)的な文脈など、場合によっては曲がっていても構わずに辺と呼ぶことがある。 辺と呼ばれる“部分”を含むような“図形”としては例えば、多角形、グラフ理論におけるグラフ、単体的複体などを挙げることができる。 正確に辺の概念を考えるためには、頂点と呼ばれる点の集合 V の部分集合からなる集合族の族 D を図形として捉えて、V の二つの頂点 v, w に対して、D に含まれる の形(あるいはこれに空集合を含めた形)に表される集合、あるいは同じことではあるが、 の冪集合に順序同型なる集合が辺であるというのが適当である。ユークリッド空間内の点集合を図形と捉えるような立場では、このような D と図形とが一対一に対応すると考えることは望むべくもない。特に辺上には無数の点が乗っており、頂点を決めても辺が一意的に決まるわけではない。それでもなお、辺はこのような方法によって図形の中の“部分”として特徴付けられる。 Category:初等幾何学 Category:数学に関する記事.

新しい!!: 図形の相似と辺 · 続きを見る »

自己相似

自己相似 (じこそうじ) とは、何らかの意味で全体と部分とが相似であることをさす言葉である。 すべてのスケールにおいて自己相似となる図形は、スケール不変性を有する。 図形においては、ある図形の断片を取ってきたとき、それより小さな断片の形状と図形全体の形状とが相似である場合を指す。このようなフラクタル図形などに代表される幾何的な形状に関する自己相似は大変有名であるが、自己相似は「幾何的形状」だけに限定されない。自然界や人工物には、海岸線の長さやインターネットのトラフィックのように統計的に自己相似なものの方が多く存在する。統計的な自己相似とは、同一対象について時間や空間的に異なるスケール(分解能)で計測された統計が同じ分布族に従い、分布やモーメント等の統計的性質が計測スケールに関して相似である場合を指す。これは、相似図形はその形状が同じで一辺の長さや面積の比が(空間的スケール比である)相似比を用いて特定の比例関係として表されるのと同様、分布の形が同じで統計的性質(平均や分散など)がスケールを用いて特定の比例関係として表される場合を統計的相似と考えるとわかりやすい。.

新しい!!: 図形の相似と自己相似 · 続きを見る »

長方形

長方形 長方形(ちょうほうけい、rectangle)とは.

新しい!!: 図形の相似と長方形 · 続きを見る »

楕円

楕円(だえん、橢円とも。ellipse)とは、平面上のある2定点からの距離の和が一定となるような点の集合から作られる曲線である。基準となる2定点を焦点という。円錐曲線の一種である。 2つの焦点が近いほど楕円は円に近づき、2つの焦点が一致したとき楕円はその点を中心とした円になる。そのため円は楕円の特殊な場合であると考えることもできる。 楕円の内部に2焦点を通る直線を引くとき、これを長軸という。長軸の長さを長径という。長軸と楕円との交点では2焦点からの距離の差が最大となる。また、長軸の垂直二等分線を楕円の内部に引くとき、この線分を短軸という。短軸の長さを短径という。.

新しい!!: 図形の相似と楕円 · 続きを見る »

欧米

欧米(おうべい)とは、ヨーロッパ州(欧州)とアメリカ州(米州。北アメリカ州と南アメリカ州)の3大州を指す。 狭義では、ヨーロッパの先進国及びアメリカ合衆国とカナダの北アメリカ2か国とを合わせた集団を指す。イギリス人が建国した、オセアニアにあるオーストラリアやニュージーランドを含める場合もある。.

新しい!!: 図形の相似と欧米 · 続きを見る »

正多面体

正多面体(せいためんたい、regular polyhedron)、またはプラトンの立体(プラトンのりったい、Platonic solid)とは、すべての面が同一の正多角形で構成されてあり、かつすべての頂点において接する面の数が等しい凸多面体のこと。正多面体には正四面体、正六面体、正八面体、正十二面体、正二十面体の五種類がある。 三次元空間の中に一つの頂点を取り、その周りに取ることが可能な正多角形に関する制限から、正多面体が先に示した五種類のみであることが証明できる。このことは、オイラーの多面体公式からも証明できる。しかし、条件を緩めることによって、正多面体の拡張を考えることができる(参照:星型正多面体、ねじれ正多面体、正平面充填形)。正多面体の構成面を正 p 角形、頂点に集まる面の数を q として のように表すことができる。これをシュレーフリ記号という。シュレーフリ記号は半正多面体(別名:アルキメデスの立体)にも拡張することができる。.

新しい!!: 図形の相似と正多面体 · 続きを見る »

正多角形

正多角形(せいたかっけい、せいたかくけい、regular polygon)とは、全ての辺の長さが等しく、全ての内角の大きさが等しい多角形である。 正多角形は線対称の図形であり、正n角形に対称軸はn本ある。また、正偶数角形は点対称の図形でもある。 辺の数が同じ正多角形どうしは全て互いに相似である。.

新しい!!: 図形の相似と正多角形 · 続きを見る »

正三角形

正三角形(せいさんかくけい、equilateral triangle)は、正多角形である三角形である。つまり、3本の辺の長さが全て等しい三角形である。3つの内角の大きさが全て等しい三角形と定義してもよい。1つの内角は 60°(π/3 rad)である。また一つの内角が60°である二等辺三角形は正三角形となる。 正三角形.

新しい!!: 図形の相似と正三角形 · 続きを見る »

正方形

正方形(せいほうけい、英: square)または正四角形は、平面上の幾何学において、4つの辺の長さが全て等しく、4つの角の角度が全て等しい四角形のことであり、正多角形の1種である。正方形は、長方形、菱形、凧形、平行四辺形、台形の特殊な形だと考えることもできる。なお1m2の面積は、一辺1mの正方形の面積と定義される。1cm2、1km2なども同様である。.

新しい!!: 図形の相似と正方形 · 続きを見る »

比例

比例(ひれい、proportionality)とは、変数を用いて書かれる二つの量に対し一方が他方の定数倍であるような関係の事である。.

新しい!!: 図形の相似と比例 · 続きを見る »

測度論

測度論(そくどろん、measure theory )は、数学の実解析における一分野で、測度とそれに関連する概念(完全加法族、可測関数、積分等)を研究する。 ここで測度(そくど、measure )とは面積、体積、個数といった「大きさ」に関する概念を精緻化・一般化したものである。 よく知られているように積分は面積と関係があるので、積分(厳密にはルベーグ積分)も測度論を基盤にして定式化・研究できる。 また、測度の概念は確率を数学的に定式化する際にも用いられるため(コルモゴロフの公理)、 確率論や統計学においても測度論は重要である。 たとえば「サイコロの目が偶数になる確率 」は目が 1,..., 6 になるという 6 つの事象の集合の中で、2, 4, 6 という 3 つ分の「大きさ」を持っている為、 測度の概念で記述できる。.

新しい!!: 図形の相似と測度論 · 続きを見る »

最近傍探索

最近傍探索(Nearest neighbor search, NNS)は、距離空間における最も近い点を探す最適化問題の一種、あるいはその解法。近接探索(proximity search)、類似探索(similarity search)、最近点探索(closest point search)などとも呼ぶ。問題はすなわち、距離空間 M における点の集合 S があり、クエリ点 q ∈ M があるとき、S の中で q に最も近い点を探す、という問題である。多くの場合、M には d次元のユークリッド空間が採用され、距離はユークリッド距離かマンハッタン距離で測定される。低次元の場合と高次元の場合で異なるアルゴズムがとられる。 ドナルド・クヌースは、The Art of Computer Programming Vol.3(1973年)で、これを郵便局の問題で表した。これはすなわち、ある住所に最も近い郵便局を求める問題である。.

新しい!!: 図形の相似と最近傍探索 · 続きを見る »

日本

日本国(にっぽんこく、にほんこく、ひのもとのくに)、または日本(にっぽん、にほん、ひのもと)は、東アジアに位置する日本列島(北海道・本州・四国・九州の主要四島およびそれに付随する島々)及び、南西諸島・伊豆諸島・小笠原諸島などから成る島国広辞苑第5版。.

新しい!!: 図形の相似と日本 · 続きを見る »

放物線

放物線(ほうぶつせん、希:παραβολή「parabolē」、羅、英: parabola、独: Parabel)とは、その名の通り地表(つまり重力下)で投射した物体の運動(放物運動)が描く軌跡のことである。 放物線をその対称軸を中心として回転させた曲面を放物面という。.

新しい!!: 図形の相似と放物線 · 続きを見る »

ここにリダイレクトされます:

三辺比相等二角相等二辺比夾角相等相似 (幾何学)相似比

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »