ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
ダウンロード
ブラウザよりも高速アクセス!
 

可逆

索引 可逆

ある系の状態が別の状態に変化したとき、外部と系との間でやり取りした熱と仕事を元に戻して、外部に何ら変化を残さずに系を元の状態に戻すことができることを可逆(reversible)と言い、このような変化(過程)を可逆過程(reversible process)と言う。系および外部が元の状態に戻りさえすれば、元に戻す変化の経路は問わない。 可逆過程であるためには、変化の途中において、系内および系と周囲との間で熱平衡、力学的平衡、化学的平衡が保たれていることが必要であり、このような理想化した状態変化を準静的過程と言う。可逆過程は常に準静的だが、準静的過程であっても可逆でないものは存在する.

29 関係: 可逆反応可逆計算変換 (数学)定圧過程定積過程不可逆反応不可逆性問題保存系化学ポテンシャルランジュバン方程式ラグランジュ力学リセットニュートンの運動方程式エントロピーオイラー=ラグランジュ方程式カルノーサイクルシュレーディンガー方程式状態等温過程統計力学運動 (物理学)複素共役T対称性準静的過程断熱過程摩擦時間

可逆反応

可逆反応(かぎゃくはんのう 独: reversible Reaktion、英:reversible reaction)とは、化学反応のうち、始原系(原料)から生成系(生成物)への反応(正反応)と、反対に生成系から始原系に戻る反応(逆反応またはレトロ反応)がともに起こる反応のことである。ある系においてそれらの正、逆反応しか起こらなければ、その系は最終的に一定量の基質と生成物を含む平衡状態に落ち着く。その場合、正反応と逆反応の速度定数の比が平衡定数となる。 可逆反応とは反対に、正反応のみが起こり逆反応が起こらない反応を、不可逆反応と呼ぶ。 可逆反応は始原系と生成系のエネルギー差が小さく、活性化エネルギーが低い場合に起こる。可逆反応を化学反応式で表すときは、始原系と生成系の間に右向きの片矢印と左向きの片矢印を上下に重ねて書く。例として、アンモニアとアンモニウムイオンとの間の酸塩基反応を示す。 アンモニアの酸塩基反応: ある系が可逆反応により一定の平衡状態となってしまうと、基質がいつまでも残ってしまう状況に陥ることがある。それを解決して生成物を効率良く得るために、生成物を系外に除去する工夫をしたり、複数の基質のうちの一方を溶媒などとして大過剰量で用いたりすることで、平衡を生成物側に偏らせる手法がとられる。 ある反応で複数の生成物が得られる可能性があり、その生成比が、生成物、反応中間体、基質のいずれか、あるいはいくつかを含む可逆反応の平衡定数で決定される場合、そのような選択性を熱力学的支配による選択性、という。.

新しい!!: 可逆と可逆反応 · 続きを見る »

可逆計算

可逆計算(かぎゃくけいさん、Reversible computing)とは、可逆な、すなわち計算過程において常に直前と直後の状態が一意に定まる計算。可逆計算は、計算過程において情報が消失しないため非破壊的計算(Non-destructive computing)としても知られている。.

新しい!!: 可逆と可逆計算 · 続きを見る »

変換 (数学)

数学的意味での変換(へんかん、transformation)とは、点を他の点に移したり、式を他の式に変えたり、座標を取り替えたりすること。.

新しい!!: 可逆と変換 (数学) · 続きを見る »

定圧過程

定圧過程()とは、一定の外圧の下で、気体や液体など流体の系をある状態から別の状態へと変化させる熱力学的な過程である。状態を遷移する間に系が外部に行う仕事は状態量ではないため、遷移が準静的ではない場合には一般に求めることはできないが、等圧過程においては準静的な遷移でなくとも仕事を求めることができる。.

新しい!!: 可逆と定圧過程 · 続きを見る »

定積過程

定積過程()とは、系の体積を一定に保ちながら、系をある状態から別の状態へと変化させる熱力学過程のことである。等容変化ともいう。準静的過程とは限らない。例えば、燃焼熱を測定する際にボンベ熱量計の中で起こる過程は、不可逆な定積過程である。容積一定の容器の中で起こる熱力学過程は、定積過程として解析できることが多い。例えば、容積一定の容器に入れた気体や液体を温めたり冷やしたりする過程は、典型的な定積過程である。このような過程でも準静的過程には限らない。過程の途中で容器内の温度や圧力が不均一であってもよいし、過冷却や過飽和などが起こっていてもよい。 閉じた系の体積 V を一定に保ちながら、ある平衡状態Aから別の平衡状態Bに移行させる定積過程について考える。 系の体積が一定に保たれるので、系の体積変化に伴う仕事はない。よって、電気的仕事などのその他の仕事もないときには、熱力学第一法則により、定積過程の内部エネルギー変化 ΔU は系が外部から得た熱 Q に等しい。 エンタルピー H の変化は H.

新しい!!: 可逆と定積過程 · 続きを見る »

不可逆反応

不可逆反応(ふかぎゃくはんのう、irreversible reaction)とは、化学反応のうち、正反応のみが起こり逆反応が起こらない、または逆反応が無視し得る程度にしか起こらないために、一方向のみに進行する反応を指す。広くは、反応生成物がさらなる化学反応などで消費される、あるいは系外へ除去されるために逆反応が起こらない反応も「反応が不可逆的に進行する」などという。反対に、逆反応が起こる化学反応は可逆反応と呼ぶ。 例えば燃焼は不可逆反応である。燃えてしまったものは元には戻らない 反応の始原系に比べ、生成系の自由エネルギーがはっきりと安定である場合は、逆反応の活性化エネルギーが高くなるために反応は不可逆となる。 不可逆反応を化学反応式で表す場合は、始原系と生成系の間に一方向の矢印を書く。 ある条件では不可逆であるような反応も、反応温度を上げる、または適当な触媒を加えることで逆反応が無視できなくなり可逆反応となることがある。 ある始原系から生成系に至るまでに複数の不可逆反応による枝分かれがあり、それらの反応速度比により生成物に選択性があらわれた場合、それを速度論的支配による選択性、という。 Category:化学反応.

新しい!!: 可逆と不可逆反応 · 続きを見る »

不可逆性問題

不可逆性問題とは、分子や原子の運動における微視的可逆性から、巨視的現象(マクロ現象)における不可逆性がどのように説明できるかという熱力学上ないし統計力学上の問題である田崎秀一「カオスから見た時間の矢―時間を逆にたどる自然現象はなぜ見られないか」(ブルーバックス)講談社(2000/04)。ボルツマンのH定理に対する、ヨハン・ロシュミットによる1876年提出の逆行可能論(reversibility paradox)と、エルンスト・ツェルメロによる1896年提出の再帰性パラドックス(recurrence paradox)がある藤原邦男;兵頭俊夫「熱学入門―マクロからミクロへ」東京大学出版会 (1995/06) 11章 ISBN 4-13-062601-9。後者はポアンカレの回帰定理を根拠としたものである。.

新しい!!: 可逆と不可逆性問題 · 続きを見る »

保存系

力学系が保存系であるとは、保存量(または、第一積分)が存在することを意味している。.

新しい!!: 可逆と保存系 · 続きを見る »

化学

化学(かがく、英語:chemistry、羅語:chemia ケーミア)とは、さまざまな物質の構造・性質および物質相互の反応を研究する、自然科学の一部門である。言い換えると、物質が、何から、どのような構造で出来ているか、どんな特徴や性質を持っているか、そして相互作用や反応によってどのように別なものに変化するか、を研究する岩波理化学辞典 (1994) 、p207、【化学】。 すべての--> 日本語では同音異義の「科学」(science)との混同を避けるため、化学を湯桶読みして「ばけがく」と呼ぶこともある。.

新しい!!: 可逆と化学 · 続きを見る »

ポテンシャル

ポテンシャル(potential)は、潜在力、潜在性を意味する物理用語。 最初にポテンシャル(スカラーポテンシャル)の考え方を導入したのは、ジョゼフ=ルイ・ラグランジュである(1773年)。ラグランジュの段階ではポテンシャルとは言われておらず、これをポテンシャルと呼んだのは、ジョージ・グリーンである(1828年)。カール・フリードリヒ・ガウス、ウィリアム・トムソン、ペーター・グスタフ・ディリクレによってポテンシャル論における三つの基本問題として、ディリクレ問題、ノイマン問題、斜交微分の問題が注目されるようになった。 ポテンシャルエネルギー(位置エネルギー)のことをポテンシャルと呼ぶこともある。.

新しい!!: 可逆とポテンシャル · 続きを見る »

ランジュバン方程式

ランジュバン方程式 (ランジュバンほうていしき、)は統計力学において、あるポテンシャルの下でのブラウン運動を記述する確率微分方程式である。アインシュタインのブラウン運動の理論を受けてポール・ランジュバンによって最初に示された。 最も簡単なランジュバン方程式は、ポテンシャルが定数であるとして調べられたものであり、質量 のブラウン粒子の加速度 が、粒子の速度 に比例する粘性力(ストークスの式、 は抵抗係数)と、媒質中の分子による衝突の連続的な系列の効果であり、ある確率過程であるランダム力 との和として表現される。 電気回路の抵抗器における熱雑音など他のブラウン運動系でも本質的に同様な方程式が成り立つ。 しばしばランジュバン方程式を解くことなく、多くの興味深い帰結が揺動散逸定理によって得られる。解が必要とされるならば、これを解くための標準的な方法はフォッカー・プランク方程式を用いることである。これは、時間依存の確率密度により満足される決定論的方程式を与える。また、数値的な解はモンテカルロ法を用いたシミュレーションにより得られる。さらに、統計力学と量子力学との類似性を利用して(例えば、フォッカー・プランク方程式はいくつかの変数のスケールを変換することによってシュレーディンガー方程式に変換できる)経路積分のような他の方法も用いられる 。.

新しい!!: 可逆とランジュバン方程式 · 続きを見る »

ラグランジュ力学

ラグランジュ力学(英語:Lagrangian mechanics)は、一般化座標とその微分を基本変数として記述された古典力学である。フランスの物理学者ジョゼフ=ルイ・ラグランジュが創始した。後のハミルトン力学と同様にニュートン力学を再定式化した解析力学の一形式である。.

新しい!!: 可逆とラグランジュ力学 · 続きを見る »

リセット

リセット (reset)とは、機器の動作状態を初期状態に戻すこと。コンピュータゲームなど、ソフトウェアを初期状態にすることに用いられる場合もある。本稿では主に電子回路におけるリセットについて述べる。.

新しい!!: 可逆とリセット · 続きを見る »

ニュートンの運動方程式

ニュートンの運動方程式(ニュートンのうんどうほうていしき、英語:Newtonian Equation of motion)は、非相対論的古典力学における一質点の運動を記述する運動方程式のひとつであり、以下のような形の2階微分方程式である。 ここで、mは質点の質量、\boldsymbol は質点の位置ベクトル、\boldsymbol は質点の加速度、\boldsymbol は質点にかかる力、t は時間である。\boldsymbol, \boldsymbolはベクトル量、mはスカラー量。.

新しい!!: 可逆とニュートンの運動方程式 · 続きを見る »

エントロピー

ントロピー(entropy)は、熱力学および統計力学において定義される示量性の状態量である。熱力学において断熱条件下での不可逆性を表す指標として導入され、統計力学において系の微視的な「乱雑さ」「でたらめさ」と表現されることもある。ここでいう「でたらめ」とは、矛盾や誤りを含んでいたり、的外れであるという意味ではなく、相関がなくランダムであるという意味である。を表す物理量という意味付けがなされた。統計力学での結果から、系から得られる情報に関係があることが指摘され、情報理論にも応用されるようになった。物理学者ののようにむしろ物理学におけるエントロピーを情報理論の一応用とみなすべきだと主張する者もいる。 エントロピーはエネルギーを温度で割った次元を持ち、SIにおける単位はジュール毎ケルビン(記号: J/K)である。エントロピーと同じ次元を持つ量として熱容量がある。エントロピーはサディ・カルノーにちなんで一般に記号 を用いて表される。.

新しい!!: 可逆とエントロピー · 続きを見る »

オイラー=ラグランジュ方程式

イラー=ラグランジュ方程式(オイラー=ラグランジュほうていしき、Euler–Lagrange equation)は汎関数の停留値を与える関数を求める微分方程式である。 オイラーとラグランジュらの仕事により1750年代に発展した。 単に、オイラー方程式、ラグランジュ方程式とも呼ばれる。 ニュートン力学における運動方程式をより数学的に洗練された方法で定式化しなおしたもので、物理学上重要な微分方程式である。 オイラー=ラグランジュ方程式を基礎方程式としたニュートン力学の定式化をラグランジュ形式の解析力学と呼ぶ。.

新しい!!: 可逆とオイラー=ラグランジュ方程式 · 続きを見る »

カルノーサイクル

ルノーサイクル(Carnot cycle)は、温度の異なる2つの熱源の間で動作する可逆熱サイクルの一種である。ニコラ・レオナール・サディ・カルノーが熱機関の研究のために思考実験として 1824 年に導入したものである S. カルノー(広重徹訳)、『カルノー・熱機関の研究』、みすず書房(1973).

新しい!!: 可逆とカルノーサイクル · 続きを見る »

シュレーディンガー方程式

ュレーディンガー方程式(シュレーディンガーほうていしき、Schrödinger equation)とは、物理学の量子力学における基礎方程式である。 シュレーディンガー方程式という名前は、提案者であるオーストリアの物理学者エルヴィン・シュレーディンガーにちなむ。1926年にシュレーディンガーは量子力学の基礎理論に関する一連の論文を提出した。 シュレーディンガー方程式の解は一般的に波動関数と呼ばれる。波動関数はまた状態関数とも呼ばれ、量子系(電子など量子力学で取り扱う対象)の状態を表す。シュレーディンガー方程式は、ある状況の下で量子系が取り得る量子状態を決定し、また系の量子状態が時間的に変化していくかを記述する。あるいは、波動関数を量子系の状態を表すベクトルの成分と見た場合、シュレーディンガー方程式は状態ベクトルの時間発展方程式に置き換えられる。状態ベクトルによる記述は波動関数を用いた場合と異なり物理量の表現によらないため、より一般的である。シュレーディンガー方程式では、波動関数や状態ベクトルによって表される量子系の状態が時間とともに変化するという見方をする。状態が時間変化するという考え方はシュレーディンガー描像と呼ばれる。 シュレーディンガー方程式はその形式によっていくつかの種類に分類される。ひとつの分類は時間依存性で、時間に依存するシュレーディンガー方程式と時間に依存しないシュレーディンガー方程式がある。時間に依存するシュレーディンガー方程式(time-dependent Schrödinger equation; TDSE)は、波動関数の時間的変化を記述する方程式であり、波動関数の変化の仕方は波動関数にかかるハミルトニアンによって決定される。解析力学におけるハミルトニアンは系のエネルギーに対応する関数だったが、量子力学においてはエネルギー固有状態を決定する作用素物理学の文献において作用素は演算子とも呼ばれる。以下では作用素の意味で演算子という語を用いる。である。 時間に依存しないシュレーディンガー方程式(time-independent Schrödinger equation; TISE)はハミルトニアンの固有値方程式である。時間に依存しないシュレーディンガー方程式は、系のエネルギーが一定に保たれる閉じた系に対する波動関数を決定する。 シュレーディンガー方程式のもう1つの分類として、方程式の線型性がある。通常、線型なシュレーディンガー方程式は単にシュレーディンガー方程式と呼ばれる。線型なシュレーディンガー方程式は斉次方程式であるため、方程式の解となる波動関数の線型結合もまた方程式の解となる。 非線型シュレーディンガー方程式(non-linear Schrödinger equation; NLS)は、通常のシュレーディンガー方程式におけるハミルトニアンにあたる部分が波動関数自身に依存する形の方程式である。シュレーディンガー方程式に非線型性が現れるのは例えば、複数の粒子が相互作用する系について、相互作用ポテンシャルを平均場近似することにより一粒子に対するポテンシャルに置き換えることによる。相互作用ポテンシャルが求めるべき波動関数自身に依存する一体ポテンシャルとなる場合、方程式は非線型となる(詳細は例えばハートリー=フォック方程式、グロス=ピタエフスキー方程式などを参照)。本項では主に線型なシュレーディンガー方程式について述べる。.

新しい!!: 可逆とシュレーディンガー方程式 · 続きを見る »

状態

態(じょうたい、)は、 ある事物・対象の、時間とともに変化しうる性質・ありさま等を指す言葉である。 分野によってさまざまな意味で使われる。.

新しい!!: 可逆と状態 · 続きを見る »

等温過程

等温過程()とは、温度一定の環境下で、系をある状態から別の状態へと変化させる熱力学的な過程のことである。等温変化とも呼ばれる。 系の温度は等温過程の前後で変化しない。特に理想気体の場合は、系の内部エネルギーも等温過程の前後で変化しない。.

新しい!!: 可逆と等温過程 · 続きを見る »

系(けい)とは何らかの原則に基づく実績のこと。 または実績に共通する事実から導き出される何らかの原則のこと。.

新しい!!: 可逆と系 · 続きを見る »

統計力学

統計力学(とうけいりきがく、statistical mechanics)は、系の微視的な物理法則を基に、巨視的な性質を導き出すための学問である。統計物理学 (statistical physics)、統計熱力学 (statistical thermodynamics) とも呼ぶ。歴史的には系の熱力学的な性質を気体分子運動論の立場から演繹することを目的としてルートヴィッヒ・ボルツマン、ジェームズ・クラーク・マクスウェル、ウィラード・ギブズらによって始められた。理想気体の温度と気圧ばかりでなく、実在気体についても扱う。.

新しい!!: 可逆と統計力学 · 続きを見る »

運動 (物理学)

物理学における運動(うんどう、motion)とは、物体の参照系との位置関係が変化することである。 地球の表面では、常に重力が働いていること、ベアリングなど、それなりに使い物になる摩擦をわずかにする技術や工学の発展は中世より後であったこと、空気抵抗の存在などから、いわゆる「アリストテレス力学」と呼ばれるそれのような、極めて思弁的哲学的なある種の独特な科学的論理に基づく「運動」観すら古代にはあった。 その後時代が過ぎるにつれ、そのような「神学」からの離脱に成功した哲学や、やがては科学により、またケプラーやガリレイやニュートンといった人々により、相対速度(ガリレイ変換)・慣性(運動の第1法則)・質量と加速度と力の関係(運動の第2法則)・作用と反作用(運動の第3法則)といった力学の(運動の)基本原理がうちたてられていった。後述する相対論的力学に対して、ニュートン力学という(なお、古典力学という語は相対論までをも含み、量子力学に対する語である)。 しかし、ニュートンには『光学』という著書もあるように、その当時から既に物理学の対象であった光の速さは、人類には謎であった。ニュートン力学の基本的な考え方とされる「絶対時間と絶対空間」についても、むしろ仮定であったと見る向きもある。やがて光速が測定され、マクスウェルによって示された電磁方程式により電磁波の速度がわかると、それが光速と一致すること、そして、どんな場合でもその速度が同じ、という、それまでの物理学における考え方からはどうしても奇妙な現象をどう説明するか、に悩まされることになった。 (詳細は特殊相対性理論の記事を参照)各種の測定結果という事実をなんとかして説明する理論はあれこれと提案されはしたが、時間も空間も相対的である、という驚くべき転回により全てを説明したのはアインシュタインだった。ニュートン力学における運動は、3次元ユークリッド空間内における位置と、時刻、という独立した2要素で指定できるものと言えるが、相対論的には運動は、時間と空間が互いに関連したミンコフスキー時空における線のようなものとなる。アインシュタインによるこれに続く、加速度による見掛けの重力と万有引力による重力を同じもの(等価原理)とした一般相対性理論により、古典力学は完成を見た。 * Category:力学 Category:物理学の概念.

新しい!!: 可逆と運動 (物理学) · 続きを見る »

複素共役

数学において、複素数の複素共役、複素共軛(ふくそきょうやく、complex conjugate)は、複素数に対し、その虚部の符号をいれかえたものである。つまり、i を虚数単位として、複素数 z を a, b を実数として と表したとき、 が z の複素共役である。複素共役を表すのには上線がよく使われる。上付きのアスタリスク (z*) なども使われるが、行列での随伴行列などとの混乱を避けるためにあまり使われない。.

新しい!!: 可逆と複素共役 · 続きを見る »

T対称性

T対称性(ティーたいしょうせい、T-symmetry)または時間反転対称性(じかんはんてんていしょうせい、time reversal symmetry)とは となるような変換に関しての物理的対称性である。 初期状態と終状態を反転する変換下での物理的現象の普遍性が物理学でしばしば考察の対象となる。時間反転演算子を とすれば となる。 初期状態 から 終状態 へ時間発展するある物理現象を考えた場合に、行列要素が となる。これは すなわち から への時間発展という物理現象についての行列要素と等しい。.

新しい!!: 可逆とT対称性 · 続きを見る »

準静的過程

準静的過程(じゅんせいてきかてい、quasistatic process)とは、系が熱力学的平衡の状態を保ったまま、ある状態から別の状態へとゆっくり変化する過程を指す熱力学上の概念である。.

新しい!!: 可逆と準静的過程 · 続きを見る »

断熱過程

断熱過程(だんねつかてい、)とは、外部との熱のやりとり(熱接触)がない状況で、系をある状態から別の状態へと変化させる熱力学的な過程である。.

新しい!!: 可逆と断熱過程 · 続きを見る »

摩擦

フラクタル的な粗い表面を持つ面どうしが重なり、静止摩擦がはたらいている様子のシミュレーション。 摩擦(まさつ、friction)とは、固体表面が互いに接しているとき、それらの間に相対運動を妨げる力(摩擦力)がはたらく現象をいう。物体が相対的に静止している場合の静止摩擦と、運動を行っている場合の動摩擦に分けられる。多くの状況では、摩擦力の強さは接触面の面積や運動速度によらず、荷重のみで決まる。この経験則はアモントン=クーロンの法則と呼ばれ、初等的な物理教育の一部となっている。 摩擦力は様々な場所で有用なはたらきをしている。ボルトや釘が抜けないのも、結び目や織物がほどけないのも摩擦の作用である。マッチに点火する際には、マッチ棒の頭とマッチ箱の側面との間の摩擦熱が利用される。自動車や列車の車輪が駆動力を得るのも、地面との間にはたらく摩擦力(トラクション)の作用である。 摩擦力は基本的な相互作用ではなく、多くの要因が関わっている。巨視的な物体間の摩擦は、物体表面の微細な突出部()がもう一方の表面と接することによって起きる。接触部では、界面凝着、表面粗さ、表面の変形、表面状態(汚れ、吸着分子層、酸化層)が複合的に作用する。これらの相互作用が複雑であるため、第一原理から摩擦を計算することは非現実的であり、実証研究的な研究手法が取られる。 動摩擦には相対運動の種類によって滑り摩擦と転がり摩擦の区別があり、一般に前者の方が後者より大きな摩擦力を生む。また、摩擦面が流体(潤滑剤)を介して接している場合を潤滑摩擦といい、流体がない場合を乾燥摩擦という。一般に潤滑によって摩擦や摩耗は低減される。そのほか、流体内で運動する物体が受けるせん断抵抗(粘性)を流体摩擦もしくは摩擦抵抗ということがあり、また固体が変形を受けるとき内部の構成要素間にはたらく抵抗を内部摩擦というが、固体界面以外で起きる現象は摩擦の概念の拡張であり、本項の主題からは離れる。 摩擦力は非保存力である。すなわち、摩擦力に抗して行う仕事は運動経路に依存する。そのような場合には、必ず運動エネルギーの一部が熱エネルギーに変換され、力学的エネルギーとしては失われる。たとえば木切れをこすり合わせて火を起こすような場合にこの性質が顕著な役割を果たす。流体摩擦(粘性)を受ける液体の攪拌など、摩擦が介在する運動では一般に熱が発生する。摩擦熱以外にも、多くのタイプの摩擦では摩耗という重要な現象がともなう。摩耗は機械の性能劣化や損傷の原因となる。摩擦や摩耗はトライボロジーという科学の分野の一領域である。.

新しい!!: 可逆と摩擦 · 続きを見る »

時間

人類にとって、もともとは太陽や月の動きが時間そのものであった。 アイ・ハヌム(紀元前4世紀~紀元前1世紀の古代都市)で使われていた日時計。人々は日時計の時間で生きていた。 砂時計で砂の流れを利用して時間を計ることも行われるようになった。また砂時計は、現在というものが未来と過去の間にあることを象徴している。くびれた部分(現在)を見つめる。すると時間というのは上(未来)から流れてきて下(過去)へと流れてゆく流れ、と感じられることになる。 時間(じかん)は、出来事や変化を認識するための基礎的な概念である。芸術、哲学、自然科学、心理学などの重要なテーマとなっている。それぞれの分野で異なった定義がなされる。.

新しい!!: 可逆と時間 · 続きを見る »

ここにリダイレクトされます:

不可逆可逆性

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »