ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
インストール
ブラウザよりも高速アクセス!
 

場の古典論

索引 場の古典論

場の古典論、もしくは古典場の理論(classical field theory)は、(物理的な)場がどのように物質と相互作用するかについて研究する理論物理学の領域である。古典的という単語は、量子力学と協調する場の量子論(単に、場の理論とも言われる)と対比して使われる。 物理的な場は各々の空間と時間の点に物理量を対応させたとして考えることができる。例えば、天気図を考えると、ある国の一日を通じての風速は、空間の各々の点にベクトルを対応させることにより記述できる。各々のベクトルは、その点での大気の運動の方向を表現する。日が進むにつれて、ベクトルの指す方向はこの方向に応じて変化する。数学的な観点からは、古典場はファイバーバンドル((covariant classical field theory))の切断として記述される。古典場理論という用語は、電磁気と重力という自然界の基本的力のうちの 2つを記述する物理理論に共通に使われる。 物理的な場の記述は、相対論の発見の前に行われており、相対論に照らして修正された。従って、古典場の理論は通常、非相対論的と相対論的なカテゴリ分けがなされる。.

56 関係: 基本相互作用偏微分単位ベクトル場の量子論万有引力一般相対性理論作用 (物理学)保存則マイケル・ファラデーマクスウェルの方程式ハイデルベルクラグランジアン (場の理論)リッチテンソルローレンツ変換ビオ・サバールの法則テンソルテンソル場ファイバー束ニューヨークベルリンアルベルト・アインシュタインアインシュタイン・ヒルベルト作用アインシュタインテンソルアインシュタイン方程式オイラー=ラグランジュ方程式クーロンの法則ゲージ理論シュプリンガー・サイエンス・アンド・ビジネス・メディアジェームズ・クラーク・マクスウェルスカラー曲率勾配 (ベクトル解析)理論物理学磁場磁性空間等価原理物理量特殊相対性理論相対論遅延ポテンシャル計量テンソル質量重力重力場重力ポテンシャル電場電磁場電磁ポテンシャル電磁テンソル...電磁気学電荷・電流密度電気電気力線時空時間 インデックスを展開 (6 もっと) »

基本相互作用

基本相互作用(きほんそうごさよう、Fundamental interaction)は、物理学で素粒子の間に相互にはたらく基本的な相互作用。 素粒子の相互作用、自然界の四つの力、相互作用とも。.

新しい!!: 場の古典論と基本相互作用 · 続きを見る »

偏微分

数学の多変数微分積分学における偏微分(へんびぶん、partial derivative)は、多変数関数に対して一つの変数のみに関する(それ以外の変数は)微分である(全微分では全ての変数を動かしたままにするのと対照的である)。偏微分はベクトル解析や微分幾何学などで用いられる。 函数 の変数 に関する偏微分は など様々な表し方がある。一般に函数の偏微分はもとの函数と同じ引数を持つ函数であり、このことを のように記法に明示的に含めてしまうこともある。偏微分記号 ∂ が数学において用いられた最初の例の一つは、1770年以降マルキ・ド・コンドルセによるものだが、それは偏差分の意味で用いられたものである。現代的な偏微分記法はアドリアン=マリ・ルジャンドル が導入しているが、後が続かなかった。これを1841年に再導入するのがカール・グスタフ・ヤコブ・ヤコビである。 偏微分は方向微分の特別の場合である。また無限次元の場合にこれらはガトー微分に一般化される。.

新しい!!: 場の古典論と偏微分 · 続きを見る »

単位ベクトル

単位ベクトル(たんい-ベクトル、unit vector)とは、長さ(ノルム)が 1 のベクトルの事である。 二つのベクトル, があって、 が単位ベクトル( |\mathbf|.

新しい!!: 場の古典論と単位ベクトル · 続きを見る »

場(ば、field、工学分野では電界・磁界など界とも)とは、物理量を持つものの存在が、その近傍・周囲に連続的に影響を与えること、あるいはその影響を受けている状態にある空間のこと。.

新しい!!: 場の古典論と場 · 続きを見る »

場の量子論

場の量子論(ばのりょうしろん、英:Quantum Field Theory)は、量子化された場(素粒子物理ではこれが素粒子そのものに対応する)の性質を扱う理論である。.

新しい!!: 場の古典論と場の量子論 · 続きを見る »

万有引力

万有引力(ばんゆういんりょく、universal gravitation)または万有引力の法則(ばんゆういんりょくのほうそく、law of universal gravitation)とは、「地上において質点(物体)が地球に引き寄せられるだけではなく、この宇宙においてはどこでも全ての質点(物体)は互いに gravitation(.

新しい!!: 場の古典論と万有引力 · 続きを見る »

一般相対性理論

一般相対性理論(いっぱんそうたいせいりろん、allgemeine Relativitätstheorie, general theory of relativity)は、アルベルト・アインシュタインが1905年の特殊相対性理論に続いて1915年から1916年にかけて発表した物理学の理論である。一般相対論(いっぱんそうたいろん、general relativity)とも。.

新しい!!: 場の古典論と一般相対性理論 · 続きを見る »

作用 (物理学)

物理学における作用(さよう、action)は、の動力学的な性質を示すもので、数学的には経路トラジェクトリとか軌道とも呼ばれる。を引数にとる実数値の汎関数として表現される。一般には、異なる経路に対する作用は異なる値を持つ。古典力学においては、作用の停留点における経路が実現される。この法則を最小作用の原理と呼ぶ。 作用は、エネルギーと時間の積の次元を持つ。従って、国際単位系 (SI) では、作用の単位はジュール秒 (J⋅s) となる。作用の次元を持つ物理定数としてプランク定数がある。そのため、プランク定数は作用の物理的に普遍な単位としてしばしば用いられる。なお、作用と同じ次元の物理量として角運動量がある。 物理学において「作用」という言葉は様々な意味で用いられる。たとえば作用・反作用の法則や近接作用論・遠隔作用論の中で論じられる「作用」とは物体に及ぼされる力を指す。本項では力の意味での作用ではなく、解析力学におけるラグランジアンの積分としての作用についてを述べる。.

新しい!!: 場の古典論と作用 (物理学) · 続きを見る »

保存則

保存則(ほぞんそく、conservation law)とは、物理的変化あるいは化学的変化の前後で物理量(あるいは物理量の結合)の値が変わらない、という法則出典:『ブリタニカ国際大百科事典』「保存則」。言い方を変えると、。保存則が成り立つ系のことを保存系と呼ぶ。 最も基本的な保存則としては、運動量保存則、角運動量保存則、エネルギー保存則、質量保存則、電荷保存則などがある。 ネーターの定理により、系が持つある一つの保存則は系の持つ一つの対称性に対応することが示されている。 なお、保存則の破れ(例外)が発見されることで、新しい物理理論が構築されるきっかけとなることがある。.

新しい!!: 場の古典論と保存則 · 続きを見る »

マイケル・ファラデー

マイケル・ファラデー(Michael Faraday, 1791年9月22日 - 1867年8月25日)は、イギリスの化学者・物理学者(あるいは当時の呼称では自然哲学者)で、電磁気学および電気化学の分野での貢献で知られている。 直流電流を流した電気伝導体の周囲の磁場を研究し、物理学における電磁場の基礎理論を確立。それを後にジェームズ・クラーク・マクスウェルが発展させた。同様に電磁誘導の法則、反磁性、電気分解の法則などを発見。磁性が光線に影響を与えること、2つの現象が根底で関連していることを明らかにした entry at the 1911 Encyclopaedia Britannica hosted by LovetoKnow Retrieved January 2007.

新しい!!: 場の古典論とマイケル・ファラデー · 続きを見る »

マクスウェルの方程式

マクスウェルの方程式(マクスウェルのほうていしき、Maxwell's equations)は、電磁場のふるまいを記述する古典電磁気学の基礎方程式である。マイケル・ファラデーが幾何学的考察から見出した電磁力に関する法則が1864年にジェームズ・クラーク・マクスウェルによって数学的形式として整理された。マクスウェル-ヘルツの電磁方程式、電磁方程式などとも呼ばれ、マクスウェルはマックスウェルとも表記される。 真空中の電磁気学に限れば、マクスウェルの方程式の一般解は、ジェフィメンコ方程式として与えられる。 なお、電磁気学の単位系は、国際単位系に発展したMKSA単位系のほか、ガウス単位系などがあるが、以下では原則として、国際単位系を用いることとする。.

新しい!!: 場の古典論とマクスウェルの方程式 · 続きを見る »

ハイデルベルク

ハイデルベルク(Heidelberg )は、ドイツ連邦共和国バーデン=ヴュルテンベルク州北西部に位置する都市。ライン川とネッカー川の合流点近くに位置する。ネッカー川及び旧市街を見下ろす高台にあるかつてのプファルツ選帝侯の宮廷であった城跡や、ドイツで最も古い大学ループレヒト=カールス大学で知られ、世界中の数多くの観光客や学者を惹きつけている。人口140,000人強のこの都市はバーデン=ヴュルテンベルク州で5番目に大きな都市である。この都市は郡独立市であると同時にライン=ネッカー郡の郡庁所在地でもある。ハイデルベルクが近隣のマンハイムやルートヴィヒスハーフェン・アム・ラインと形成する人口密集地域はライン=ネッカー大都市圏と呼ばれている。.

新しい!!: 場の古典論とハイデルベルク · 続きを見る »

ラグランジアン (場の理論)

ラグランジアン場の理論 は、古典場理論のひとつの定式化であり、ラグランジュ力学の場の理論における類似物である。ラグランジュ力学は、それぞれが有限の自由度を持つ離散的な粒子を扱う。ラグランジアン場の理論は、自由度が無限である連続体や場に適用される。 本記事は、ラグランジアン密度を \scriptstyle \mathcal と記し、ラグランジアンは L と記すこととする. ラグランジュ力学の定式化は、より拡張され場の理論を扱うようになった。場の理論において、独立変数は時空 (x, y, z, t) の中の事象、あるいはさらに一般的に、多様体上の点 s へと置き換わった。独立変数 (q) は時空での点での場の値 φ(x, y, z, t) へ置き換わるので、運動方程式は作用原理があるおかげで得ることができ、 と書くことができる。ここに「作用」 \scriptstyle\mathcal は微分可能な独立変数 φi(s) と s 自身の汎函数 であり、s.

新しい!!: 場の古典論とラグランジアン (場の理論) · 続きを見る »

リッチテンソル

微分幾何学において、リッチ曲率テンソル とは、歪んだリーマン多様体上の測地球の体積がユークリッド空間上の球体からどれだけずれるかを表す量である。に因んでその名がある。あるリーマン計量が与えられたとき、その記述する幾何が通常の 次元ユークリッド空間からどれだけ違うか表わす尺度として使うことができる。リッチテンソルはどんな擬リーマン多様体に対しても、リーマン曲率テンソルのトレースとして定義される。計量それ自体と同様、リッチテンソルは多様体の接空間上の対称双線型形式である。 相対性理論では、リッチテンソルは時空の曲率(Rμvと表す)の一部であり、レイチャウデューリ方程式を通じて物質が時間とともにどれだけ収縮もしくは拡散するかの程度に関連する。アインシュタイン方程式を通じて、宇宙に含まれる物質の量にも関連する。微分幾何学では、あるリーマン多様体上のリッチテンソルの下界により、一様な曲率をもつと比較した場合の(も参照)大域的幾何学および位相幾何学的な情報を得ることができる。リッチテンソルが真空のアインシュタイン方程式を満たすとき、その多様体はアインシュタイン多様体であるといい、特に研究されている (cf.)。これと関係して、リッチフロー方程式はある計量がアインシュタイン計量へ発展するさまを記述する。この方法により、ポアンカレ予想が最終的に解決することとなった。.

新しい!!: 場の古典論とリッチテンソル · 続きを見る »

ローレンツ変換

ーレンツ変換(ローレンツへんかん、Lorentz transformation)は、2 つの慣性系の間の座標(時間座標と空間座標)を結びつける線形変換で、電磁気学と古典力学間の矛盾を回避するために、アイルランドのジョセフ・ラーモア(1897年)とオランダのヘンドリック・ローレンツ(1899年、1904年)により提案された。 アルベルト・アインシュタインが特殊相対性理論(1905年)を構築したときには、慣性系間に許される変換公式として、理論の基礎を形成した。特殊相対性理論では全ての慣性系は同等なので、物理法則はローレンツ変換に対して不変な形、すなわち同じ変換性をもつ量の間のテンソル方程式として与えられなければならない。このことをローレンツ不変性(共変性)をもつという。 幾何学的には、ミンコフスキー空間における 2 点間の世界間隔を不変に保つような、原点を中心にした回転変換を表す(ミンコフスキー空間でみたローレンツ変換節参照)。.

新しい!!: 場の古典論とローレンツ変換 · 続きを見る »

ビオ・サバールの法則

ビオ・サバールの法則(ビオ・サバールのほうそく、Biot–Savart law)とは電流の存在によってその周りに生じる磁場を計算する為の電磁気学における法則である。この法則は静電場に対するクーロンの法則に対応する。 この法則によって磁場は距離、方向、およびその電流の大きさなどに依存することが論じられる。この法則は静的な近似の元ではアンペールの法則および磁場に対するガウスの法則と同等のものである。 1820年にフランスの物理学者ジャン=バティスト・ビオとフェリックス・サヴァールによって発見された。.

新しい!!: 場の古典論とビオ・サバールの法則 · 続きを見る »

テンソル

テンソル(tensor, Tensor)とは、線形的な量または線形的な幾何概念を一般化したもので、基底を選べば、多次元の配列として表現できるようなものである。しかし、テンソル自身は、特定の座標系によらないで定まる対象である。個々のテンソルについて、対応する量を記述するのに必要な配列の添字の組の数は、そのテンソルの階数とよばれる。 例えば、質量や温度などのスカラー量は階数0のテンソルだと理解される。同様にして力や運動量などのベクトル的な量は階数1のテンソルであり、力や加速度ベクトルの間の異方的な関係などをあらわす線型変換は階数2のテンソルで表される。 物理学や工学においてしばしば「テンソル」と呼ばれているものは、実際には位置や時刻を引数としテンソル量を返す関数である「テンソル場」であることに注意しなければならない。いずれにせよテンソル場の理解のためにはテンソルそのものの概念の理解が不可欠である。.

新しい!!: 場の古典論とテンソル · 続きを見る »

テンソル場

数学、物理学および工学におけるテンソル場(テンソルば、tensor field)は、数学的な空間(典型的にはユークリッド空間や多様体)の各点にテンソルを割り当てるものである。テンソル場は微分幾何学、代数幾何学、一般相対論において用いられ、物質の応力および歪みの解析やその他物理科学および工学における様々な応用に供される。テンソルがスカラー(長さのような値を表す数値)やベクトル(空間内の幾何学的な矢印)の一般化であるのと同様に、テンソル場はスカラー場およびベクトル場(それぞれ空間の各点にスカラーおよびベクトルを割り当てる)の一般化になっている。 一口に「テンソル」と呼ばれている概念でも、実際の数学的構造は「テンソル場」であるという場合も多い。例えばリーマン曲率テンソルなど。.

新しい!!: 場の古典論とテンソル場 · 続きを見る »

ファイバー束

ファイバー束(ファイバーそく、fiber bundle, fibre bundle)とは、位相空間に定義される構造の一つで、局所的に 2 種類の位相空間の直積として表現できる構造の事である。.

新しい!!: 場の古典論とファイバー束 · 続きを見る »

ニューヨーク

ニューヨーク市(New York City)は、アメリカ合衆国ニューヨーク州にある都市。 1790年以来、同国最大の都市であり、市域人口は800万人を超え、都市圏人口では定義にもよるが2000万人以上である.

新しい!!: 場の古典論とニューヨーク · 続きを見る »

ベルリン

ベルリン(Berlin 、伯林)は、ドイツ北東部、ベルリン・ブランデンブルク大都市圏地域の中心に位置する都市である。16ある連邦州のうちの一つで、市域人口は万人とドイツでは最大の都市で欧州連合の市域人口ではロンドンに次いで2番目に多く、都市的地域の人口は7番目に多い。同国の首都と定められている。.

新しい!!: 場の古典論とベルリン · 続きを見る »

アルベルト・アインシュタイン

アルベルト・アインシュタイン日本語における表記には、他に「アルト・アインシュタイン」(現代ドイツ語の発音由来)、「アルト・アインタイン」(英語の発音由来)がある。(Albert Einstein アルベルト・アインシュタイン、アルバート・アインシュタイン アルバ(ー)ト・アインスタイン、アルバ(ー)タインスタイン、1879年3月14日 - 1955年4月18日)は、ドイツ生まれの理論物理学者である。 特殊相対性理論および一般相対性理論、相対性宇宙論、ブラウン運動の起源を説明する揺動散逸定理、光量子仮説による光の粒子と波動の二重性、アインシュタインの固体比熱理論、零点エネルギー、半古典型のシュレディンガー方程式、ボーズ=アインシュタイン凝縮などを提唱した業績などにより、世界的に知られている偉人である。 「20世紀最高の物理学者」や「現代物理学の父」等と評され、それまでの物理学の認識を根本から変えるという偉業を成し遂げた。(光量子仮説に基づく光電効果の理論的解明によって)1921年のノーベル物理学賞を受賞。.

新しい!!: 場の古典論とアルベルト・アインシュタイン · 続きを見る »

アインシュタイン・ヒルベルト作用

アインシュタイン・ヒルベルト作用()、あるいはヒルベルト作用は、一般相対性理論において、最小作用の原理を通してアインシュタイン方程式を導く作用である。 この作用は、1915年にダフィット・ヒルベルトにより最初に提案された。 (- + + +) 計量符号を用いると、作用の重力場の部分は で与えられる。 ここに g.

新しい!!: 場の古典論とアインシュタイン・ヒルベルト作用 · 続きを見る »

アインシュタインテンソル

微分幾何学において、アインシュタインテンソル(Einstein tensor)(アルベルト・アインシュタインの名前に因んでいて、逆トレースリッチテンソルとしても知られている)は、擬リーマン多様体の曲率を表現することに使われる。一般相対論において、アインシュタインテンソルは、エネルギーと整合性を持つような方法で、時空の曲率を記述する重力のアインシュタイン方程式の中で発生する。.

新しい!!: 場の古典論とアインシュタインテンソル · 続きを見る »

アインシュタイン方程式

一般相対性理論におけるアインシュタイン方程式(アインシュタインほうていしき、)アインシュタインの重力場方程式(じゅうりょくばのほうていしき、Einstein's field equations;EFE)とも呼ばれる。は、万有引力・重力場を記述する場の方程式である。アルベルト・アインシュタインによって導入された。 アイザック・ニュートンが導いた万有引力の法則を、強い重力場に対して適用できるように拡張した方程式であり、中性子星やブラックホールなどの高密度・大質量天体や、宇宙全体の幾何学などを扱える。.

新しい!!: 場の古典論とアインシュタイン方程式 · 続きを見る »

オイラー=ラグランジュ方程式

イラー=ラグランジュ方程式(オイラー=ラグランジュほうていしき、Euler–Lagrange equation)は汎関数の停留値を与える関数を求める微分方程式である。 オイラーとラグランジュらの仕事により1750年代に発展した。 単に、オイラー方程式、ラグランジュ方程式とも呼ばれる。 ニュートン力学における運動方程式をより数学的に洗練された方法で定式化しなおしたもので、物理学上重要な微分方程式である。 オイラー=ラグランジュ方程式を基礎方程式としたニュートン力学の定式化をラグランジュ形式の解析力学と呼ぶ。.

新しい!!: 場の古典論とオイラー=ラグランジュ方程式 · 続きを見る »

クーロンの法則

ーロンの法則(クーロンのほうそく、Coulomb's law)とは、荷電粒子間に働く反発し、または引き合う力がそれぞれの電荷の積に比例し、距離の2乗に反比例すること(逆2乗の法則)を示した電磁気学の基本法則。 ヘンリー・キャヴェンディッシュにより1773年に実験的に確かめられ、シャルル・ド・クーロンが1785年に法則として再発見した。磁荷に関しても同様の現象が成り立ち、これもクーロンの法則と呼ばれる。一般的にクーロンの法則と言えば、通常前者の荷電粒子間の相互作用を指す。クーロンの法則は、マクスウェルの方程式から導くことができる。 また、導体表面上の電場はその場所の電荷密度に比例するという法則も「クーロンの法則」と呼ばれる。こちらは「クーロンの電荷分布の法則」といい区別する。.

新しい!!: 場の古典論とクーロンの法則 · 続きを見る »

ゲージ理論

ージ理論(ゲージりろん、gauge theory)とは、連続的な局所変換の下でラグランジアンが不変となるような系を扱う場の理論である。.

新しい!!: 場の古典論とゲージ理論 · 続きを見る »

シュプリンガー・サイエンス・アンド・ビジネス・メディア

ュプリンガー・サイエンス・アンド・ビジネス・メディア(Springer Science+Business Media, Springer)は、科学(Science)、技術(Technology、工学など)、医学(Medicine)、すなわちSTM関連の書籍、電子書籍、査読済みジャーナルを出版するグローバル企業である。シュプリンガーはまた、"SpringerLink"(「シュプリンガー・リンク」) 、"SpringerProtocols"(「」) 、"SpringerImages"(「シュプリンガー・イメージ」) 、"SpringerMaterials"(「シュプリンガー・マテリアル」) などいくつかの科学データベース・サービスのホスティングも行っている。 出版物には、参考図書(Reference works、レ(リ)ファレンス・ワークス)、教科書、モノグラフ(Monograph)、(Proceedings)、叢書など多数が含まれる。また、シュプリンガー・リンクには45,000以上のタイトルが自然科学など13の主題・テーマで集められており、それらは電子書籍として利用可能である。シュプリンガーはSTM分野の書籍に関しては世界最大の出版規模を持ち、ジャーナルでは世界第2位である(第1位はエルゼビア)。 多数のインプリントや、20ヶ国に約55の発行所(パブリッシング・ハウス)、5,000人以上の従業員を抱え、毎年約2,000のジャーナル、7,000以上の新書(これにはSTM分野だけではなく、B2B分野のものも含まれる)を発刊している。シュプリンガーはベルリン、ハイデルベルク、ドルトレヒト、ニューヨークに主要オフィスを構える。近年成長著しいアジア市場のために、アジア地域本部を香港に置いており、2005年8月からは北京に代表部を設置している 。 2015年5月、シュプリンガー・サイエンス+ビジネスメディアとマクミラン・サイエンス・アンド・エデュケーションの大半の事業の合併が、欧州連合や米国司法省などの主要な公正競争監視機関により承認された。新会社の名称は「シュプリンガー・ネイチャー(Springer Nature)」。.

新しい!!: 場の古典論とシュプリンガー・サイエンス・アンド・ビジネス・メディア · 続きを見る »

ジェームズ・クラーク・マクスウェル

ェームズ・クラーク・マクスウェル(英:James Clerk Maxwell、1831年6月13日 - 1879年11月5日)は、イギリスの理論物理学者である。姓はマックスウェルと表記されることもある。 マイケル・ファラデーによる電磁場理論をもとに、1864年にマクスウェルの方程式を導いて古典電磁気学を確立した。さらに電磁波の存在を理論的に予想しその伝播速度が光の速度と同じであること、および横波であることを示した。これらの業績から電磁気学の最も偉大な学者の一人とされる。また、土星の環や気体分子運動論・熱力学・統計力学などの研究でも知られている。.

新しい!!: 場の古典論とジェームズ・クラーク・マクスウェル · 続きを見る »

スカラー曲率

リーマン幾何学におけるスカラー曲率(すからーきょくりつ、Scalar curvature)またはリッチスカラー(Ricci scalar)は、リーマン多様体の最も単純な曲率不変量である。リーマン多様体の各点に、その近傍における多様体の内在的な形状から定まる単一の実数を対応させる。 2次元においては、スカラー曲率はリーマン多様体の曲率を完全に特徴付ける。しかし、次元が3以上の場合は、曲率の決定にはさらに情報が必要である。詳しい議論はリーマン多様体の曲率(en) を参照。 スカラー曲率はしばしば S (その他の表記としてSc, R)と表され、計量テンソル g に関するリッチ曲率 Ric のトレース として定義される。リッチテンソルは (0,2)-型テンソルであり、トレースをとるためには最初の添字を上げて (1,1)-型テンソルとしなければならないから、このトレースは計量の取り方に依存する。局所座標系を用いて と書き表すことができる。ただし である。座標系と計量テンソルが与えられたとき、スカラー曲率は のように表示できる。ここで Γabc は計量のクリストッフェル記号である。 任意のアフィン接続に対して自然に定義されるリーマン曲率テンソルやリッチテンソルとは異なり、スカラー曲率は(その定義がまさに計量と不可分な方法で与えられたことを思えば)完全にリーマン幾何学の領域に特有の概念であることが分かる。.

新しい!!: 場の古典論とスカラー曲率 · 続きを見る »

勾配 (ベクトル解析)

ベクトル解析におけるスカラー場の勾配(こうばい、gradient; グラディエント)は、各点においてそのスカラー場の変化率が最大となる方向への変化率の値を大きさにもつベクトルを対応させるベクトル場である。簡単に言えば、任意の量の空間における変位を、傾きとして表現(例えば図示)することができるが、そこで勾配はこの傾きの向きや傾きのきつさを表している。 ユークリッド空間上の関数の勾配を、別なユークリッド空間に値を持つ写像に対して一般化したものは、ヤコビ行列で与えられる。さらに一般化して、バナッハ空間から別のバナッハ空間への写像の勾配をフレシェ微分を通じて定義することができる。.

新しい!!: 場の古典論と勾配 (ベクトル解析) · 続きを見る »

理論物理学

論物理学(りろんぶつりがく、)は、物理学において、理論的な模型や理論的仮定(主に数学的な仮定)を基に理論を構築し、既知の実験事実(観測や観察の結果)や、自然現象などを説明し、かつ未知の現象に対しても予想する物理理論を扱う分野のこと。実験物理学と対比して使われる言葉。 手段として、伝統的な紙と鉛筆によるもの以外に、現在ではコンピュータによる数値的なシミュレーション、数値解析、物理シミュレーションなどにおいて使用される計算機も重要なものの一つとなっている。このシミュレーションなどによる計算物理学分野も、通常は理論物理学に含める。ただ計算物理学を、理論、実験以外の第三の分野と捉える考え方もある。 物理学が理論物理学と実験物理学に分化したのは、19世紀後半から20世紀初頭にかけての物理学の急速な発展に原因がある。それまでの物理学の知識の集積は、一人の物理学者が実験と理論の両方を十分カバーできる程度のものであった。しかし急速な発展の結果、物理学の領域はあまりにも巨大化・複雑化しすぎて、全体を把握することが困難となった。理論的な考察を行なうために習得しなければならない数学的手法や既存の物理理論も膨大な量になって、習得に何年もかかるようになった。このため、それぞれ担当分野に分かれて研究を進める他なくなったのである。ロシア(旧ソ連)のレフ・ダヴィドヴィッチ・ランダウが自国の物理学者志望の学生に課した「理論ミニマム」教程(最低限の知識)にもそれが現れている。.

新しい!!: 場の古典論と理論物理学 · 続きを見る »

磁場

磁場(じば、Magnetic field)は、電気的現象・磁気的現象を記述するための物理的概念である。工学分野では、磁界(じかい)ということもある。 単に磁場と言った場合は磁束密度Bもしくは、「磁場の強さ」Hのどちらかを指すものとして用いられるが、どちらを指しているのかは文脈により、また、どちらの解釈としても問題ない場合も多い。後述のとおりBとHは一定の関係にあるが、BとHの単位は国際単位系(SI)でそれぞれWb/m², A/m であり、次元も異なる独立した二つの物理量である。Hの単位はN/Wbで表すこともある。なお、CGS単位系における、磁場(の強さ)Hの単位は、Oeである。 この項では一般的な磁場の性質、及びHを扱うこととする。 磁場は、空間の各点で向きと大きさを持つ物理量(ベクトル場)であり、電場の時間的変化または電流によって形成される。磁場の大きさは、+1のN極が受ける力の大きさで表される。磁場を図示する場合、N極からS極向きに磁力線の矢印を描く。 小学校などの理科の授業では、砂鉄が磁石の周りを囲むように引きつけられる現象をもって、磁場の存在を教える。このことから、磁場の影響を受けるのは鉄だけであると思われがちだが、強力な磁場の中では、様々な物質が影響を受ける。最近では、磁場や電場(電磁場、電磁波)が生物に与える影響について関心が寄せられている。.

新しい!!: 場の古典論と磁場 · 続きを見る »

磁性

物理学において、磁性(じせい、magnetism)とは、物質が原子あるいは原子よりも小さいレベルで磁場に反応する性質であり、他の物質に対して引力や斥力を及ぼす性質の一つである。磁気(じき)とも言う。.

新しい!!: 場の古典論と磁性 · 続きを見る »

空間

間(くうかん)とは、.

新しい!!: 場の古典論と空間 · 続きを見る »

等価原理

等価原理(とうかげんり、)は、物理学における概念の一つで、重力を論じる一般相対性理論の構築原理として用いられる他に、異なる座標系での物理量測定の一致性についての議論でも登場する。.

新しい!!: 場の古典論と等価原理 · 続きを見る »

物理量

物理量(ぶつりりょう、physical quantity)とは、.

新しい!!: 場の古典論と物理量 · 続きを見る »

特殊相対性理論

特殊相対性理論(とくしゅそうたいせいりろん、Spezielle Relativitätstheorie、Special relativity)とは、慣性運動する観測者が電磁気学的現象および力学的現象をどのように観測するかを記述する、物理学上の理論である。アルベルト・アインシュタインが1905年に発表した論文に端を発する。特殊相対論と呼ばれる事もある。.

新しい!!: 場の古典論と特殊相対性理論 · 続きを見る »

相対論

対論(そうたいろん).

新しい!!: 場の古典論と相対論 · 続きを見る »

遅延ポテンシャル

電磁気学における遅延ポテンシャル(ちえんぽてんしゃる、retarded potentials)は、真空におけるの解の一つで、与えられた電荷分布と電流分布によって作られる電磁場を表す。.

新しい!!: 場の古典論と遅延ポテンシャル · 続きを見る »

計量テンソル

計量テンソル(けいりょうテンソル、metric tensor)は、リーマン幾何学において、空間内の距離と角度を定義する、階数()が2のテンソルである。多様体が与えられたとき、多様体の接空間で、滑らかに変化する非負の2次関数を選ぶことができる場合、その多様体をリーマン多様体と呼ぶ。そのため、計量テンソルは、リーマン計量()と呼ばれることもある。 ひとたび、ある座標系 が選ばれると、計量テンソルは行列形式で定義される。通常、 として表記され、各成分は と表される。以下では、添え字の和に関してアインシュタインの縮約記法を用いる。 点 から までの曲線の長さは、 をパラメータとして、 と定義される。2つの接ベクトル()U.

新しい!!: 場の古典論と計量テンソル · 続きを見る »

質量

質量(しつりょう、massa、μᾶζα、Masse、mass)とは、物体の動かしにくさの度合いを表す量のこと。.

新しい!!: 場の古典論と質量 · 続きを見る »

重力

重力(じゅうりょく)とは、.

新しい!!: 場の古典論と重力 · 続きを見る »

重力場

重力場の概念図 重力場(じゅうりょくば、)とは、万有引力(重力)が作用する時空中に存在する場のこと。 重力を記述する手法としては、ニュートンの重力理論に基づく手法と、アインシュタインによる一般相対性理論に基づく手法がある。.

新しい!!: 場の古典論と重力場 · 続きを見る »

重力ポテンシャル

重力ポテンシャル()とは、ニュートン力学において、重力による質量あたりの位置エネルギーである。すなわち、空間内の位置へ質点を動かす際に重力が質点に行う質量あたりの仕事の符号を変えたものに等しい。 静電ポテンシャルとの類推で電荷の役割を質量が果たす。通常は無限の遠方を重力ポテンシャルの基準点(重力ポテンシャルが0となる点)として選び、有限の距離では重力ポテンシャルは常に負値をとる。 数学では、重力ポテンシャルはとも呼ばれ、ポテンシャル論の研究において基本的である。.

新しい!!: 場の古典論と重力ポテンシャル · 続きを見る »

電場

電場(でんば)または電界(でんかい)(electric field)は、電荷に力を及ぼす空間(自由電子が存在しない空間。絶縁空間)の性質の一つ。E の文字を使って表されることが多い。おもに理学系では「電場」、工学系では「電界」ということが多い。また、電束密度と明確に区別するために「電場の強さ」ともいう。時間によって変化しない電場を静電場(せいでんば)または静電界(せいでんかい)とよぶ。また、電場の強さ(電界強度)の単位はニュートン毎クーロンなので、アンテナの実効長または実効高を掛けると、アンテナの誘起電圧 になる。.

新しい!!: 場の古典論と電場 · 続きを見る »

電磁場

電磁場(でんじば,, EMF)、あるいは電磁界(でんじかい)は、電場(電界)と磁場(磁界)の総称。 電場と磁場は時間的に変化する場合には、互いに誘起しあいながらさらにまた変化していくので、まとめて呼ばれる。 電磁場の変動が波動として空間中を伝播するとき、これを電磁波という。 電場、磁場が時間的に一定で 0 でない場合は、それぞれは分離され静電場、静磁場として別々に扱われる。 電磁場という用語を単なる概念として用いる場合と、物理量として用いる場合がある。 概念として用いる場合は電場の強度と電束密度、あるいは磁場の強度と磁束密度を明確に区別せずに用いるが、物理量として用いる場合は電場の強度と磁束密度の組であることが多い。 また、これらの物理量は電磁ポテンシャルによっても記述され、ラグランジュ形式などで扱う場合は電磁ポテンシャルが基本的な物理量として扱われる。このような場合には電磁ポテンシャルを指して電磁場という事もある。 電磁場のふるまいは、マクスウェルの方程式、あるいは量子電磁力学(QED)によって記述される。マクスウェルの方程式を解いて、電磁場のふるまいについて解析することを電磁場解析と言う。.

新しい!!: 場の古典論と電磁場 · 続きを見る »

電磁ポテンシャル

電磁ポテンシャル(でんじポテンシャル)とは、電磁場のポテンシャル概念で、スカラーポテンシャルとベクトルポテンシャルの総称である。 物理学、特に電磁気学とその応用分野で使われる。 以下断りがない限り、古典電磁気学のケースを想定して説明する。.

新しい!!: 場の古典論と電磁ポテンシャル · 続きを見る »

電磁テンソル

電磁テンソルとは、電磁場を相対性理論にもとづいた形式で記述したものである。以後、相対論と言えば、特に断りがなければ特殊相対性理論を指す。.

新しい!!: 場の古典論と電磁テンソル · 続きを見る »

電磁気学

電磁気学(でんじきがく、)は、物理学の分野の1つであり、電気と磁気に関する現象を扱う学問である。工学分野では、電気磁気学と呼ばれることもある。.

新しい!!: 場の古典論と電磁気学 · 続きを見る »

電荷・電流密度

電荷・電流密度(でんか・でんりゅうみつど, )、或いは4元電流密度とは、電荷密度と電流密度を相対論的に記述したものである。 電荷・電流密度は4元ベクトルでありローレンツ変換に従う。 電荷密度 \rho(t,\boldsymbol)、電流密度 \boldsymbol(t,\boldsymbol) によって と書かれる。ここで c は光速度であり、電荷密度の次元を電流密度の次元に換算する定数である。 電荷・電流密度は連続の方程式 を満たす。 電荷・電流密度は電磁場の源(ソース)でありマクスウェルの方程式 を満たす。ここで F は電磁場テンソル、A は電磁ポテンシャルである。 また、μ0は透磁率である。 また、電荷・電流密度は、電磁場からローレンツ力 を受ける。.

新しい!!: 場の古典論と電荷・電流密度 · 続きを見る »

電気

電気(でんき、electricity)とは、電荷の移動や相互作用によって発生するさまざまな物理現象の総称である。それには、雷、静電気といった容易に認識可能な現象も数多くあるが、電磁場や電磁誘導といったあまり日常的になじみのない概念も含まれる。 雷は最も劇的な電気現象の一つである。 電気に関する現象は古くから研究されてきたが、科学としての進歩が見られるのは17世紀および18世紀になってからである。しかし電気を実用化できたのはさらに後のことで、産業や日常生活で使われるようになったのは19世紀後半だった。その後急速な電気テクノロジーの発展により、産業や社会が大きく変化することになった。電気のエネルギー源としての並外れた多才さにより、交通機関の動力源、空気調和、照明、などほとんど無制限の用途が生まれた。商用電源は現代産業社会の根幹であり、今後も当分の間はその位置に留まると見られている。また、多様な特性から電気通信、コンピュータなどが開発され、広く普及している。.

新しい!!: 場の古典論と電気 · 続きを見る »

電気力線

電気力線(でんきりきせん、、)とは、マイケル・ファラデーによって考え出された、電気力の様子を視覚的に表現するための仮想的な線をいう。.

新しい!!: 場の古典論と電気力線 · 続きを見る »

時空

時空(じくう、spacetime)は、時間と空間を合わせて表現する物理学の用語、または、時間と空間を同時に、場合によっては相互に関連したものとして扱う概念である。時空間()とも。.

新しい!!: 場の古典論と時空 · 続きを見る »

時間

人類にとって、もともとは太陽や月の動きが時間そのものであった。 アイ・ハヌム(紀元前4世紀~紀元前1世紀の古代都市)で使われていた日時計。人々は日時計の時間で生きていた。 砂時計で砂の流れを利用して時間を計ることも行われるようになった。また砂時計は、現在というものが未来と過去の間にあることを象徴している。くびれた部分(現在)を見つめる。すると時間というのは上(未来)から流れてきて下(過去)へと流れてゆく流れ、と感じられることになる。 時間(じかん)は、出来事や変化を認識するための基礎的な概念である。芸術、哲学、自然科学、心理学などの重要なテーマとなっている。それぞれの分野で異なった定義がなされる。.

新しい!!: 場の古典論と時間 · 続きを見る »

ここにリダイレクトされます:

古典場古典場の理論古典場理論

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »