ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

原始惑星系円盤

索引 原始惑星系円盤

原始惑星系円盤(げんしわくせいけいえんばん、protoplanetary disk)は新しく生まれた恒星(おうし座T型星)の周囲を取り巻く濃いガスが回転している円盤である。英語では proplyd という略称で呼ばれる場合もある。原始惑星系円盤のガス物質は円盤の内側の境界から中心星の表面に向かって落ち込んでいるため、この円盤は一種の降着円盤であると見ることもできる。(この降着過程は円盤内部で物質が集積して惑星が作られる過程とは別である。) おうし座T型星を取り巻く原始惑星系円盤は、近接連星系の周囲に存在する円盤とは大きさや温度の点で異なっている。原始惑星系円盤の半径は約1,000天文単位までで、連星系の円盤に比べて低温である。その温度は円盤の最も内側でようやく1,000Kを越える程度である。原始惑星系円盤には多くの場合ジェットが付随している。 典型的な原始星は水素分子を主成分とする分子雲から生まれる。分子雲の一部で大きさ・質量・密度などがある上限値に達すると、その雲の塊は自己重力によって収縮を始める。このような収縮しつつあるガス雲は原始太陽系星雲 (solar nebula) と呼ばれ、収縮によって密度が次第に高くなる。この収縮過程でガス雲が元々持っていたガスの乱雑運動は均される一方で、ガス雲の全角運動量は角運動量保存則によって不変なため、原始太陽系星雲が収縮して小さくなるにつれて星雲全体がある回転軸の周りに自転するようになる。この自転によって(生地を回転させることで平たいピザができるのと同様に)ガス雲は扁平になり、円盤状の形状を持つようになる。この最初の収縮過程は約10万年続く。この収縮が終わる頃には中心星の表面温度は同じ質量を持つ主系列星と同程度にまで上昇し、光を放射して外部から見えるようになる。この段階に達した星はおうし座T型星と呼ばれる。その後、円盤から中心星へのガスの降着が約1,000万年続いた後、円盤は外部から見えなくなる。円盤が観測されなくなる原因は、中心星の恒星風によって吹き飛ばされるか、あるいは単に質量降着が終わって円盤が光を放射しなくなるためだと考えられている。これまでに発見されている原始惑星系円盤で最も年齢が古いものは約2,500万年である。 太陽系の形成を説明する星雲説では原始惑星系円盤がどのようにして惑星系へと進化するかを次のように説明している。原始惑星系円盤の内部では、塵や氷の微粒子が静電気力や重力相互作用によって集積し、微惑星が作られる。この集積過程は、円盤のガスを系の外に四散させようとする中心のおうし座T型星からの恒星風や、円盤の物質を中心星に落とし込もうとする降着過程との競争となる。 我々の銀河系の中では、いくつかの若い星の周囲で原始惑星系円盤が観測されている。このような原始惑星系円盤は1984年にがか座β星で最初に発見された。最近のハッブル宇宙望遠鏡による観測で、オリオン大星雲の中に多くの原始惑星系円盤が見つかっている。 また太陽に近い明るい恒星の中でも、こと座のベガやかんむり座α星、みなみのうお座のフォーマルハウトなどでガスや塵からなる大きな円盤が恒星を取り巻いているのが発見され、当初は原始惑星系円盤ではないかと考えられた。これらのうち、ベガとフォーマルハウトはカストル運動星群 (Castor co-moving group) と呼ばれるほぼ同じ空間運動をしている恒星で、かつては同じ星間雲から生まれたと考えられている。最近のヒッパルコス衛星による観測で、この運動星群の年齢は約2±1億年と見積もられている。このことから、ベガとフォーマルハウトに見られる赤外線放射の超過は原始惑星系円盤というよりは、微惑星同士の衝突の過程で弾き飛ばされた小天体からなる円盤という解釈が妥当であると現在では考えられている。この説はハッブル宇宙望遠鏡によるフォーマルハウトの円盤の観測によっても裏付けられている。.

36 関係: 原始惑星原始星おうし座T型星みなみのうお座がか座ベータ星こと座かんむり座アルファ星天文単位太陽宇宙ジェット主系列星微惑星ハービッグ・ハロー天体ハッブル宇宙望遠鏡ヒッパルコス (人工衛星)ピザフォーマルハウトベガ分子分子雲オリオン大星雲クーロンの法則ケルビン銀河系角運動量角運動量保存の法則赤外線重力連星降着円盤恒星恒星風水素惑星星雲説1984年

原始惑星

原始惑星(げんしわくせい Protoplanet)とは、惑星系が誕生する過程で原始惑星系円盤の中に形成される天体である。「惑星の胚子」(planet embryo) が特に大きく成長したもので、大きさは地球の月程度と考えられている。一般的な理論では、原始惑星は、キロメートルサイズの微惑星が衝突・集積して形成されると考えられている。原始惑星同士は互いの重力の影響で軌道交差を起こし、巨大衝突を経て最終的に惑星になるとされている。.

新しい!!: 原始惑星系円盤と原始惑星 · 続きを見る »

原始星

原始星(げんしせい)(protostar)とは、誕生初期の恒星のことで、暗黒星雲の一部が自己の重力で収縮しはじめ、可視光でも観測できるおうし座T型星になる前の状態までを指す。 暗黒星雲が近くの超新星爆発などによる衝撃波を受けると、それによって物質の濃淡ができる。濃くなった部分は重力が強くなるので、周囲の物質を引きつけさらに物質の濃度が濃くなる。するとさらに重力が強くなり、加速度的に濃度が濃くなっていく。このようにして原始星が誕生する。 原始星には周囲からさらに物質が集積してくるので、降着円盤が形成され、原始星に取り込まれきれなかった物質は、円盤に垂直な方向へ宇宙ジェットとして放出される。この宇宙ジェットが周囲の星雲の物質と衝突して輝いているのがハービッグ・ハロー天体である。 原始星には周囲の物質が超音速で落下していき衝撃波面が形成されている。その面で落下物質の運動エネルギーが一気に熱に変わっている。そのため、原始星は主系列星よりも非常に明るく輝いている。この時は原始星はまだ周囲を暗黒星雲に覆われているため、星雲の外からは可視光では観測できず赤外線だけが観測される。この状態は、それを理論的に導出した日本の宇宙物理学者・林忠四郎にちなんで林フェイズと呼ばれる。 原始星は自己の重力でゆっくりと収縮していき、その際の重力エネルギーの解放で徐々に中心核の温度を上げていく。また、恒星風により周囲の暗黒星雲を吹き飛ばす。こうして可視光でも観測可能になった星がおうし座T型星である。さらに中心核の温度が上昇し、水素の核融合反応が開始されると主系列星となる。 原始星フレアの温度はおよそ1億度で、エネルギーは太陽フレアの約1万倍にもなる。.

新しい!!: 原始惑星系円盤と原始星 · 続きを見る »

おうし座T型星

おうし座T型星を取り囲む降着円盤の想像図 おうし座T型星(おうしざテ(ィ)ーがたせい、T Tauri star, TTS)は、爆発型変光星の一種である。.

新しい!!: 原始惑星系円盤とおうし座T型星 · 続きを見る »

みなみのうお座

みなみのうお座(南の魚座、Piscis Austrinus)は、トレミーの48星座の1つ。 星座の先端にあるα星は、全天21の1等星の1つであり、フォーマルハウトと呼ばれる。この星以外には明るい星はない。.

新しい!!: 原始惑星系円盤とみなみのうお座 · 続きを見る »

がか座ベータ星

がか座β星(がかざベータせい、β Pic / β Pictoris)はがか座で2番目に明るい恒星である。地球からの距離は約63.4光年で、太陽の約1.75倍の質量と8.7倍の光度を持つ。がか座β星は誕生してから、まだ800万から2000万年しか経過していないが、すでに主系列星の段階にある。この恒星はがか座β星運動星団に属する代表星で、この運動星団に属している恒星はがか座β星と同じく若い恒星である。 がか座β星は赤外超過と呼ばれる、他の恒星に比べて赤外線を多く放射する現象が観測されている。これは、周辺に大きな原始惑星系円盤などの塵円盤や星間塵(一酸化炭素を含む)がある事を示す。初めて恒星の周りを塵やガスから出来た大きな塵円盤が観測されると、まず宇宙望遠鏡などを使用して画像を撮影する事が多い。がか座β星にはそれに加えて、いくつかの微惑星が集合した領域や、彗星活動などが確認されている。通常、このような塵円盤は、惑星が形成される過程にあるとされるが、ダストからなる円盤を持つことが初めて発見された恒星として知られている。がか座β星の円盤の大半は太陽系でいう流星サイズの星間塵から形成されていると思われている。 2008年11月、ヨーロッパ南天天文台(ESO)は、恒星の周辺にある塵円盤を超大型望遠鏡VLTを使用して直接観測を行った結果、以前の理論で惑星が存在出来るであろう領域に惑星がか座β星bを発見した。この惑星は、2016年時点で、直接撮影で発見された太陽系外惑星では最も恒星に近い軌道を公転している。その距離は太陽系に置き換えると太陽から土星までの距離に相当する。.

新しい!!: 原始惑星系円盤とがか座ベータ星 · 続きを見る »

こと座

こと座(ことざ、琴座、ラテン語:Lyra)は、トレミーの48星座の1つ。北天の星座で、比較的小さい星座である。 α星は、全天21の1等星の1つであり、ベガ(七夕のおりひめ星、織女星)と呼ばれる。ベガと、はくちょう座α星のデネブ、わし座α星のアルタイル(七夕のひこ星、牽牛星)の3つの1等星で、夏の大三角と呼ばれる大きな二等辺三角形を形成する。 都会など空の条件のよくないところでは、明るいベガしか見えないが、そのすぐ近くに3-4等星が平行四辺形に並んでいるため、空の環境が良ければ比較的見つけやすい星座である。.

新しい!!: 原始惑星系円盤とこと座 · 続きを見る »

かんむり座アルファ星

かんむり座α星は、かんむり座で最も明るい恒星で2等星。.

新しい!!: 原始惑星系円盤とかんむり座アルファ星 · 続きを見る »

天文単位

天文単位(てんもんたんい、astronomical unit、記号: au)は長さの単位で、正確に である。2014年3月に「国際単位系 (SI) 単位と併用される非 SI 単位」(SI併用単位)に位置づけられた。それ以前は、SIとの併用が認められている単位(SI単位で表される、数値が実験的に得られるもの)であった。主として天文学で用いられる。.

新しい!!: 原始惑星系円盤と天文単位 · 続きを見る »

太陽

太陽(たいよう、Sun、Sol)は、銀河系(天の川銀河)の恒星の一つである。人類が住む地球を含む太陽系の物理的中心尾崎、第2章太陽と太陽系、pp. 9–10であり、太陽系の全質量の99.86%を占め、太陽系の全天体に重力の影響を与えるニュートン (別2009)、2章 太陽と地球、そして月、pp. 30–31 太陽とは何か。 太陽は属している銀河系の中ではありふれた主系列星の一つで、スペクトル型はG2V(金色)である。推測年齢は約46億年で、中心部に存在する水素の50%程度を熱核融合で使用し、主系列星として存在できる期間の半分を経過しているものと考えられている尾崎、第2章太陽と太陽系、2.1太陽 2.1.1太陽の概観 pp. 10–11。 また、太陽が太陽系の中心の恒星であることから、任意の惑星系の中心の恒星を比喩的に「太陽」と呼ぶことがある。.

新しい!!: 原始惑星系円盤と太陽 · 続きを見る »

宇宙ジェット

ブラックホールからの宇宙ジェット(M87銀河) 宇宙ジェット(うちゅうジェット、Relativistic jet)とは、重力天体を中心として細く絞られたプラズマガスなどが一方向又は双方向に噴出する現象をいう。 重力天体周辺の激しい天体活動がジェットを高速に加速すると考えられる。 宇宙ジェットの中心となる重力天体には、原始星、コンパクト星、大質量ブラックホールなどの場合がある。 また、この現象は、ブラックホール近傍で特徴的に見られるため、ブラックホールが存在する証拠としてしばしば用いられる。写真(1) それに比べ、原始星の形成期に見られる宇宙ジェットは比較的小規模である。.

新しい!!: 原始惑星系円盤と宇宙ジェット · 続きを見る »

主系列星

主系列星(しゅけいれつせい、main sequence star)とは、ヘルツシュプルング・ラッセル図(HR図)上で、左上(明るく高温)から図の右下(暗く低温)に延びる線である主系列 (Main Sequence) に位置する恒星をいう。矮星ともいう。.

新しい!!: 原始惑星系円盤と主系列星 · 続きを見る »

微惑星

微惑星(びわくせい、planetesimal)とは太陽系の形成初期に存在したと考えられている微小天体である。.

新しい!!: 原始惑星系円盤と微惑星 · 続きを見る »

ハービッグ・ハロー天体

ハービッグ・ハロー天体(ハービッグハローてんたい、Herbig-Haro object、HH object、HH天体)とは新しく生まれた恒星に付随する星雲状の小領域で、若い星から放出されたガスが数百km/sの速度で周辺のガスや塵の雲と衝突して作られるものである。ハービッグ・ハロー天体は星形成領域にはしばしば見られる天体で、一つの恒星の自転軸に沿って複数個が存在する場合も多い。 ハービッグ・ハロー天体の実体は一時的な現象で、長くても数千年しか持続しない。HH 天体はガスの放出元である親星から星間空間のガス雲(星間物質)に向かって高速で移動するに従い、数年単位という短期間で見た目の形状が変化する場合がある。ハッブル宇宙望遠鏡を用いた数年にわたる観測で、HH 天体のガスが星間物質の密度の高い領域と衝突することで、HH 天体の一部が暗くなる一方で別の場所が明るくなる、といった複雑な変化が起こる過程が明らかになっている。 この種の天体は19世紀にシャーバーン・バーナムによって最初に観測されていたが、輝線星雲の中で独立した一種として識別されるようになったのは1940年代になってからであった。この天体を詳細に研究した最初の天文学者はアメリカのジョージ・ハービッグとメキシコのギイェルモ・アロで、彼らの名前にちなんで天体の名称が付けられている。ハービッグとアロは星形成の研究の過程で HH 天体の分析を独立に行い、HH 天体が星形成過程の副産物であることを明らかにした。.

新しい!!: 原始惑星系円盤とハービッグ・ハロー天体 · 続きを見る »

ハッブル宇宙望遠鏡

ハッブル宇宙望遠鏡(ハッブルうちゅうぼうえんきょう、Hubble Space Telescope、略称:HST)は、地上約600km上空の軌道上を周回する宇宙望遠鏡であり、グレートオブザバトリー計画の一環として打ち上げられた。名称は宇宙の膨張を発見した天文学者・エドウィン・ハッブルに因む。長さ13.1メートル、重さ11トンの筒型で、内側に反射望遠鏡を収めており、主鏡の直径2.4メートルのいわば宇宙の天文台である。大気や天候による影響を受けないため、地上からでは困難な高い精度での天体観測が可能。.

新しい!!: 原始惑星系円盤とハッブル宇宙望遠鏡 · 続きを見る »

ヒッパルコス (人工衛星)

ヒッパルコス (Hipparcos) とは、1989年8月8日に欧州宇宙機関によって打ち上げられ、1993年まで運用された高精度位置天文衛星である。世界で最初の位置天文衛星でもある。日本ではヒッパルコス衛星(ヒッパルコスえいせい)と呼ばれることが多い。なお、HipparcosはHIgh Precision PARallax COllecting Satellite(高精度視差観測衛星)の略である。.

新しい!!: 原始惑星系円盤とヒッパルコス (人工衛星) · 続きを見る »

ピザ

アメリカ風ピザ ピザ(pizza ピッツァ ピッツァ、ピーツァ ピッザ)は、小麦粉、水、塩、イースト、砂糖、少量のオリーブ油をこねた後に発酵させて作った生地を丸く薄くのばし、その上に具を乗せ、オーブンや専用の竃などで焼いた食品である。ピッツァとも言う。小サイズのものは、区別してピッツェッタ(pizzetta)と呼ばれることもある。.

新しい!!: 原始惑星系円盤とピザ · 続きを見る »

フォーマルハウト

フォーマルハウト()、またはみなみのうお座α星(α PsA)は、みなみのうお座にある恒星で、全天に21個ある1等星の1つである。.

新しい!!: 原始惑星系円盤とフォーマルハウト · 続きを見る »

ベガ

ベガ(ヴェガ、Vega ヴィーガまたは ヴェィガ)は、こと座α星、こと座で最も明るい恒星で全天21の1等星の1つ。七夕のおりひめ星(織女星(しょくじょせい))としてよく知られている。わし座のアルタイル、はくちょう座のデネブとともに、夏の大三角を形成している。.

新しい!!: 原始惑星系円盤とベガ · 続きを見る »

分子

分子(ぶんし)とは、2つ以上の原子から構成される電荷的に中性な物質を指すIUPAC.

新しい!!: 原始惑星系円盤と分子 · 続きを見る »

分子雲

イータカリーナ星雲の分子雲 分子雲(Molecular cloud)は星雲の一種であり、その大部分は水素分子である。星形成が行われている場合は、育星場、星のゆりかごとも言う。典型的な分子雲の大きさは、直径が100万光年、質量は太陽の10万倍、温度は25K(-248℃)程度、密度は水素分子が10~100万個/cm。 低温の水素分子は放射を出さず検出が難しいため、しばしば一酸化炭素輝線を用いて水素分子ガスの総質量を決定する。ここで一酸化炭素輝線の光度と水素分子ガスの質量の比は一定と仮定されているものの、この比の値は場所によってばらつきがある 。.

新しい!!: 原始惑星系円盤と分子雲 · 続きを見る »

オリオン大星雲

リオン大星雲(オリオンだいせいうん、M42、NGC 1976)は、オリオン座の三つ星付近に存在する散光星雲である。.

新しい!!: 原始惑星系円盤とオリオン大星雲 · 続きを見る »

クーロンの法則

ーロンの法則(クーロンのほうそく、Coulomb's law)とは、荷電粒子間に働く反発し、または引き合う力がそれぞれの電荷の積に比例し、距離の2乗に反比例すること(逆2乗の法則)を示した電磁気学の基本法則。 ヘンリー・キャヴェンディッシュにより1773年に実験的に確かめられ、シャルル・ド・クーロンが1785年に法則として再発見した。磁荷に関しても同様の現象が成り立ち、これもクーロンの法則と呼ばれる。一般的にクーロンの法則と言えば、通常前者の荷電粒子間の相互作用を指す。クーロンの法則は、マクスウェルの方程式から導くことができる。 また、導体表面上の電場はその場所の電荷密度に比例するという法則も「クーロンの法則」と呼ばれる。こちらは「クーロンの電荷分布の法則」といい区別する。.

新しい!!: 原始惑星系円盤とクーロンの法則 · 続きを見る »

ケルビン

ルビン(kelvin, 記号: K)は、熱力学温度(絶対温度)の単位である。国際単位系 (SI) において基本単位の一つとして位置づけられている。 ケルビンの名は、イギリスの物理学者で、絶対温度目盛りの必要性を説いたケルビン卿ウィリアム・トムソンにちなんで付けられた。なお、ケルビン卿の通称は彼が研究生活を送ったグラスゴーにあるから取られている。.

新しい!!: 原始惑星系円盤とケルビン · 続きを見る »

銀河系

銀河系(ぎんがけい、the Galaxy)または天の川銀河(あまのがわぎんが、Milky Way Galaxy)は太陽系を含む銀河の名称である。地球から見えるその帯状の姿は天の川と呼ばれる。 1000億の恒星が含まれる棒渦巻銀河とされ、局部銀河群に属している。.

新しい!!: 原始惑星系円盤と銀河系 · 続きを見る »

角運動量

角運動量(かくうんどうりょう、)とは、運動量のモーメントを表す力学の概念である。.

新しい!!: 原始惑星系円盤と角運動量 · 続きを見る »

角運動量保存の法則

角運動量保存の法則(かくうんどうりょうほぞんのほうそく)とは、質点系について、単位時間あたりの全角運動量の変化は外力によるトルク(力のモーメント)に等しい(ただし内力が中心力であるときに限る)という法則である。 この特別な場合として、外力が働かない(もしくは外力が働いていたとしてもそれによるトルクが0の)場合、質点系の角運動量は常に一定である。例えば、フィギュアスケートの選手がスピンをする際、前に突き出した腕を体に引きつけることで回転が速くなる(角速度が大きくなる)。このとき回転軸から腕先までの距離が短くなるため、かわりに回転が速くなることによって、角運動量が一定に保たれる。 回転する「こま」は、回転軸にそって、(上から見て)時計回りなら下向きの、反時計回りなら上向きの角運動量を持っている。独楽の回転軸(それは重心を貫いている)が鉛直方向に平行であれば、独楽にかかる重力と、床から独楽が受ける垂直抗力が共に1本の直線上(回転軸上)にあるため、独楽に働く外力によるトルクは0である。従って、この場合独楽の角運動量は一定であり、独楽は軸周りの回転だけを続ける。ところが、独楽が傾くと独楽にかかる重力と、床から独楽が受ける垂直抗力は、1本の直線上には乗らず、従って、これらの力がトルクを生じる。このトルクが独楽の角運動量を変化される。その結果、独楽は本来の回転軸のまわりの回転に加えて、それとは別の軸(独楽と床が接する点を通る鉛直線)のまわりでも回転をする。それが独楽の「みそすり運動」すなわち歳差運動である。.

新しい!!: 原始惑星系円盤と角運動量保存の法則 · 続きを見る »

赤外線

赤外線(せきがいせん)は、可視光線の赤色より波長が長く(周波数が低い)、電波より波長の短い電磁波のことである。ヒトの目では見ることができない光である。英語では infrared といい、「赤より下にある」「赤より低い」を意味する(infra は「下」を意味する接頭辞)。分光学などの分野ではIRとも略称される。対義語に、「紫より上にある」「紫より高い」を意味する紫外線(英:ultraviolet)がある。.

新しい!!: 原始惑星系円盤と赤外線 · 続きを見る »

重力

重力(じゅうりょく)とは、.

新しい!!: 原始惑星系円盤と重力 · 続きを見る »

連星

連星(れんせい、)とは2つの恒星が両者の重心の周りを軌道運動している天体である。双子星(ふたごぼし)とも呼ばれる。連星は、地球から遠距離にあると、一つの恒星と思われ、その後に連星である事が判明する場合もある。この2世紀間の観測で、肉眼で見える恒星の半数以上が連星である可能性が示唆されている。通常は明るい方の星を主星、暗い方を伴星と呼ぶ。また、3つ以上の星が互いに重力的に束縛されて軌道運動している系もあり、そのような場合にはn連星またはn重連星などと呼ばれる。 また、二重星という言葉も連星を示す場合が多い。しかし、実際には、複数の恒星が地球から見て、同じ方向に位置しており、「見かけ上、連星のように見える」場合を表す。それぞれの恒星の、地球からの距離は全く異なり、物理的にも何の関連性も無い。二重星は、距離が異なるので、光度の差から、年周視差や視線速度を正確に求める事が出来る。しかし、中にはアルビレオのように、二重星か真の連星かが分かっていないものもある。.

新しい!!: 原始惑星系円盤と連星 · 続きを見る »

降着円盤

降着円盤と若い恒星からの宇宙ジェット:HH-30(上左) 降着円盤(こうちゃくえんばん、accretion disk)とは、ブラックホールや中性子星や白色矮星のようなコンパクト星に落ち込むガスや塵が、高密度天体の周りに形成する円盤のこと。 これらの物質は、コンパクト星に落下しながら差動回転運動をしている。落下運動による重力のポテンシャルの開放に加え、中心天体に近くなるほど角速度が大きくなるが、これがガスの粘性による摩擦によって次第に角運動量を失い、ついには物質は106K〜108Kもの高温となり、円盤状にとり巻きながら可視光線やX線などのさまざまな電磁波を放射する。あるいは、中心に集積された物質がなんらかの機構で降着円盤フレアや宇宙ジェットなどの形でエネルギーが放出され、ここからも電波が放出される。さらには、こうした宇宙ジェットが周囲の物質に干渉し、新たな電波源になることもある。この降着円盤は、質量を非常に効率よくエネルギーに変換し、実に全質量の約50%をエネルギーに変換できる。これは核融合(エネルギー変換効率は質量の数%)に比べてもはるかに効率的な機構である。 降着円盤を形成するには、大きな重力をもつ中心天体の周囲に十分な量の物質が何らかの形で供給されつづけていなければならない。実際の観測では、明るく輝く降着円盤を直接観測出来る場合と、降着円盤によって集積され高温となった物質が発するさまざまな電波によって間接的に観測できる場合とがある。 連星系は降着円盤を持つ条件を満たす天体であり、なかでもX線連星は典型的な系である。コンパクト星と恒星の近接連星では、恒星から重力の強いコンパクト星にガスが供給される場合がある。するとガスは角運動量を持っているためにコンパクト星に真っ直ぐ落下せず、コンパクト星を周回し、降着円盤を形成する。降着円盤内縁は高温になり、X線を放射する。これがX線連星である。 X線連星以外の降着円盤をもつ天体には、活動銀河核がある。活動銀河核の場合は、連星系よりも物質が周囲に大規模に存在しているとの仮定が必要になるが、クエーサーを含む近年の観測と研究により、強い電波源が、そのような仮定のもとで中心の強い重力源によって形成された降着円盤と宇宙ジェットにあるとの理解が進んでいる。.

新しい!!: 原始惑星系円盤と降着円盤 · 続きを見る »

恒星

恒星 恒星(こうせい)は、自ら光を発し、その質量がもたらす重力による収縮に反する圧力を内部に持ち支える、ガス体の天体の総称である。人類が住む地球から一番近い恒星は、太陽系唯一の恒星である太陽である。.

新しい!!: 原始惑星系円盤と恒星 · 続きを見る »

恒星風

恒星風(こうせいふう)あるいは単に星風(せいふう)とは、恒星表面から吹き出すガスの流れのことである。太陽からも太陽風という形で常時ガスが放出されており、太陽フレアの際には太陽風の速度が上昇する。 恒星は自分自身の重力によってガスを保持している。しかし表面でガスの圧力や輻射圧(光圧)、磁気的な圧力などが高くなることによって一部のガスが重力を振り切って恒星から放出される。 おうし座T型星においては、主系列星に移行する途中のある時期に急激に恒星風が強くなり周囲のガスを吹き飛ばすと考えられている。 赤色巨星の表面においては重力が弱いために容易にガスが放出される。そのため赤色巨星が恒星風として放出する質量は太陽よりも数万倍も多い。 また大質量星においては星の表面が高温であるためガスの圧力や輻射圧が高く恒星風が強い。このような星が恒星風によって水素の外層を失ったと考えられるのがウォルフ・ライエ星である。.

新しい!!: 原始惑星系円盤と恒星風 · 続きを見る »

水素

水素(すいそ、hydrogenium、hydrogène、hydrogen)は、原子番号 1 、原子量 1.00794の非金属元素である。元素記号は H。ただし、一般的には「水素」と言っても、水素の単体である水素分子(水素ガス) H を指していることが多い。 質量数が2(原子核が陽子1つと中性子1つ)の重水素(H)、質量数が3(原子核が陽子1つと中性子2つ)の三重水素(H)と区別して、質量数が1(原子核が陽子1つのみ)の普通の水素(H)を軽水素とも呼ぶ。.

新しい!!: 原始惑星系円盤と水素 · 続きを見る »

惑星

惑星(わくせい、πλανήτης、planeta、planet)とは、恒星の周りを回る天体のうち、比較的低質量のものをいう。正確には、褐色矮星の理論的下限質量(木星質量の十数倍程度)よりも質量の低いものを指す。ただし太陽の周りを回る天体については、これに加えて後述の定義を満たすものだけが惑星である。英語 planet の語源はギリシア語のプラネテス(さまよう者、放浪者などの意。IPA: /planítis/ )。 宇宙のスケールから見れば惑星が全体に影響を与える事はほとんど無く、宇宙形成論からすれば考慮の必要はほとんど無い。だが、天体の中では非常に多種多様で複雑なものである。そのため、天文学だけでなく地質学・化学・生物学などの学問分野では重要な対象となっている別冊日経サイエンス167、p.106-117、系外惑星が語る惑星系の起源、Douglas N. C.Lin。.

新しい!!: 原始惑星系円盤と惑星 · 続きを見る »

星雲説

星雲説(せいうんせつ、Nebular hypothesis)は、太陽の周囲を回る星間物質が固まって惑星ができたという説である。1970年代までは対する説として潮汐説が存在していた。 基本的には、星間ガス、チリなどが原始太陽系星雲を作り、太陽の生成過程で、軌道上の星間物質が個々に固まり惑星となったものとしている。 現在、多くの惑星誕生の説はこれに基づいたものが主流となっている。.

新しい!!: 原始惑星系円盤と星雲説 · 続きを見る »

1984年

この項目では、国際的な視点に基づいた1984年について記載する。.

新しい!!: 原始惑星系円盤と1984年 · 続きを見る »

ここにリダイレクトされます:

原始太陽系円盤

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »