ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

単位

索引 単位

単位(たんい、unit)とは、量を数値で表すための基準となる、約束された一定量のことである。約束ごとなので、同じ種類の量を表すのにも、社会や国により、また歴史的にも異なる多数の単位がある。.

49 関係: 助数詞お金半群単位の換算一覧単位一覧単位区間単位ベクトル単位円単位元単位球面単位行列単位時間富士山代数的構造区間ペニシリンメートルモノイドダースベクトルインスリン冪乗円 (数学)国際単位系科学絶対値環論物理単位物理学行列行列単位複素数計量単位一覧自然科学英語通貨逆元虚数単位恒等写像正方行列数学11の冪根5年生存率

助数詞

助数詞(じょすうし)は、数を表す語の後ろに付けてどのような事物の数量であるかを表す語要素である。数詞を作る接尾辞の一群。類別詞の一種である。 日本語のほか、中国語・韓国語など東アジア・東南アジアの多くの言語、またアメリカ大陸先住民の言語などにある。.

新しい!!: 単位と助数詞 · 続きを見る »

お金

代の日本においてお金(おかね)は、次の事象を指しうる。.

新しい!!: 単位とお金 · 続きを見る »

半群

数学における半群(はんぐん、semigroup)は集合 S とその上の結合的二項演算とをあわせて考えた代数的構造である。言い換えれば、半群とは演算が結合的なマグマのことをいう。半群の名は、既存の群の概念に由来するものである。半群は、各元が必ずしも逆元を持たないこと(さらに、単位元すら持たないかもしれないこと)が、群と異なる。 半群の演算はほとんど乗法的に書かれる(順序対 (x, y) に対して演算を施した結果を x • y などで、あるいは単に xy で表す)。 半群についてきちんとした形での研究が行われるようになるのは20世紀の初めごろからである。半群は、「無記憶」系 ("memoryless" system) すなわち各反復時点でゼロから開始される時間依存系 (time-dependent system) の抽象代数的な定式化の基盤であるので、数学の各種分野において重要な概念である。応用数学においては、半群はの基本モデルである。また偏微分方程式論では、半群は空間発展的かつ時間非依存な任意の方程式に対応している。有限半群論は1950年代以降、有限半群と有限オートマトンとの間の自然な関連性から、理論計算機科学の分野で特に重要となった。確率論では半群はマルコフ過程に関連付けられている 。.

新しい!!: 単位と半群 · 続きを見る »

単位の換算一覧

単位の換算一覧(たんいのかんさん いちらん)は、さまざまな単位を相互に換算するための一覧http://www.nmij.jp/library/units/si/。単位の換算、国際単位系、SI組立単位、CGS単位系、尺貫法、ヤード・ポンド法、度量衡、計量単位一覧、次元解析、SI接頭辞なども参照のこと。.

新しい!!: 単位と単位の換算一覧 · 続きを見る »

単位一覧

単位一覧(たんいいちらん)はさまざまな単位を列挙したものである。.

新しい!!: 単位と単位一覧 · 続きを見る »

単位区間

数学において、単位区間(たんいくかん、unit interval)とは、閉区間, つまり 0 以上 1 以下の全ての実数からなる集合である(0 と 1 を含む)。しばしば I と表記される。実解析での役割に加えて、単位区間は位相幾何学におけるホモトピーの研究でも使われる。 書籍によっては、上記の定義以外の単位区間(0 と 1 を含むか含まないか)を使う場合もあり、(0, 1、.

新しい!!: 単位と単位区間 · 続きを見る »

単位ベクトル

単位ベクトル(たんい-ベクトル、unit vector)とは、長さ(ノルム)が 1 のベクトルの事である。 二つのベクトル, があって、 が単位ベクトル( |\mathbf|.

新しい!!: 単位と単位ベクトル · 続きを見る »

単位円

数学において単位円(たんいえん、unit circle)とは、半径が 1 の円のことである。解析幾何学(いわゆる“座標幾何”)では特に原点(すなわち x 軸と y 軸の交点) O(0, 0) を中心とするものをいう。これは、原点からの距離が 1 であるような点の全体が描く軌跡のことと言っても同じことである。 単位円はしばしば S1 で表される(これは n 次元の球面 (sphere) という概念の n.

新しい!!: 単位と単位円 · 続きを見る »

単位元

数学、とくに抽象代数学において、単位元(たんいげん, )あるいは中立元(ちゅうりつげん, )は、二項演算を備えた集合の特別な元で、ほかのどの元もその二項演算による単位元との結合の影響を受けない。.

新しい!!: 単位と単位元 · 続きを見る »

単位球面

様々な単位球面 単位球面(たんいきゅうめん、英: unit sphere)とは、中心点からの距離が1の点の集合である。なお、ここでの距離とは一般的な距離の概念である。一方、単位球(たんいきゅう、英: unit ball)は、中心点からの距離が1以下の点の集合(閉単位球 (closed unit ball))、あるいは1未満の点の集合(開単位球 (open unit ball))である。通常、特に断らない限り、対象とする空間の原点を中心点とする。したがって英語で何の前置きもなく "the" をつけて書かれている場合は、原点を中心点とする単位球面や単位球を指す。 単純に言い換えれば、単位球面は半径が1の球面であり、単位球は半径が1の球である。任意の球面は平行移動と拡大・縮小によって単位球面に変換でき、この点が重要である。したがって、球面の研究は一般に単位球面を研究することに還元できる。.

新しい!!: 単位と単位球面 · 続きを見る »

単位行列

数学、特に線型代数学において、単位行列(たんいぎょうれつ、identity matrix)とは、単位的環上で定義される同じ型の正方行列同士の、積演算における単位元のことである。.

新しい!!: 単位と単位行列 · 続きを見る »

単位時間

単位時間(たんいじかん、unit time)には以下の2つの意味がある。.

新しい!!: 単位と単位時間 · 続きを見る »

富士山

富士山(ふじさん、Mount Fuji)は、静岡県(富士宮市、裾野市、富士市、御殿場市、駿東郡小山町)と、山梨県(富士吉田市、南都留郡鳴沢村)に跨る活火山である。標高3776.24 m2等三角点「富士山」の標高は3775.51mである。最高地点はこの三角点から北へ約12mのところにある岩の頂上であり、その高さは、三角点より0.61mだけ高い(1991年の観測)。、日本最高峰(剣ヶ峰)日本が玉山(新高山)のある台湾を領有していた時期を除く。の独立峰で、その優美な風貌は日本国外でも日本の象徴として広く知られている。数多くの芸術作品の題材とされ芸術面で大きな影響を与えただけではなく、気候や地層など地質学的にも大きな影響を与えている。懸垂曲線の山容を有した玄武岩質成層火山で構成され、その山体は駿河湾の海岸まで及ぶ。 古来霊峰とされ、特に山頂部は浅間大神が鎮座するとされたため、神聖視された。噴火を沈静化するため律令国家により浅間神社が祭祀され、浅間信仰が確立された。また、富士山修験道の開祖とされる富士上人により修験道の霊場としても認識されるようになり、登拝が行われるようになった。これら富士信仰は時代により多様化し、村山修験や富士講といった一派を形成するに至る。現在、富士山麓周辺には観光名所が多くある他、夏季シーズンには富士登山が盛んである。 日本三名山(三霊山)、日本百名山『日本百名山』 深田久弥(著)、朝日新聞社、1982年、ISBN 4-02-260871-4、pp269-272、日本の地質百選に選定されている。また、1936年(昭和11年)には富士箱根伊豆国立公園に指定されている。その後、1952年(昭和27年)に特別名勝、2011年(平成23年)に史跡、さらに2013年(平成25年)6月22日には関連する文化財群とともに「富士山-信仰の対象と芸術の源泉」の名で世界文化遺産に登録された。日本の文化遺産としては13件目である。富士の山とは詠んだとしても、「ふじやま」という呼称は誤りである。.

新しい!!: 単位と富士山 · 続きを見る »

代数的構造

数学において代数的構造(だいすうてきこうぞう、algebraic structure)とは、集合に定まっている算法(演算ともいう)や作用によって決まる構造のことである。代数的構造の概念は、数学全体を少数の概念のみを用いて見通しよく記述するためにブルバキによって導入された。 また、代数的構造を持つ集合は代数系(だいすうけい、algebraic system)であるといわれる。すなわち、代数系というのは、集合 A とそこでの算法(演算の規則)の族 R の組 (A, R) のことを指す。逆に、具体的なさまざまな代数系から、それらが共通してもつ原理的な性質を抽出して抽象化・公理化したものが、代数的構造と呼ばれるのである。 なお、分野(あるいは人)によっては代数系そのもの、あるいは代数系のもつ算法族のことを代数的構造とよぶこともあるようである。 後者は、代数系の代数構造とも呼ばれる。 現代では、代数学とは代数系を研究する学問のことであると捉えられている。.

新しい!!: 単位と代数的構造 · 続きを見る »

区間

区間(くかん).

新しい!!: 単位と区間 · 続きを見る »

ペニシリン

ペニシリン(penicillin、)とは、1928年にイギリスのアレクサンダー・フレミング博士によって発見された、世界初の抗生物質である。抗菌剤の分類上ではβ-ラクタム系抗生物質に分類される。博士はこの功績によりノーベル生理学・医学賞を受賞した。 発見後、医療用として実用化されるまでには10年以上の歳月を要したが、1942年にベンジルペニシリン(ペニシリンG、PCG)が単離されて実用化され、第二次世界大戦中に多くの負傷兵や戦傷者を感染症から救った。以降、種々の誘導体(ペニシリン系抗生物質)が開発され、医療現場に提供されてきた。 1980年代以降、日本国内においては主力抗菌剤の座をセファロスポリン系抗生物質やニューキノロンに明け渡した感があるが、ペニシリンの発見はこれらの抗菌剤が開発される礎を築いたものであり、しばしば「20世紀における偉大な発見」の中でも特筆すべき1つとして数え上げられる。.

新しい!!: 単位とペニシリン · 続きを見る »

メートル

メートル(mètre、metre念のためであるが、ここでの「英」は英語(English language)による綴りを表しており、英国における綴りという意味ではない。詳細は「英語表記」の項及びノートの「英語での綴り」を参照。、記号: m)は、国際単位系 (SI) およびMKS単位系における長さの物理単位である。他の量とは関係せず完全に独立して与えられる7つのSI基本単位の一つである。なお、CGS単位系ではセンチメートル (cm) が基本単位となる。 元々は、地球の赤道と北極点の間の海抜ゼロにおける子午線弧長を 倍した長さを意図し、計量学の技術発展を反映して何度か更新された。1983年(昭和58年)に基準が見直され、現在は1秒の 分の1の時間に光が真空中を伝わる距離として定義されている。.

新しい!!: 単位とメートル · 続きを見る »

モノイド

数学、とくに抽象代数学における単系(たんけい、monoid; モノイド)はひとつの二項演算と単位元をもつ代数的構造である。モノイドは単位元をもつ半群(単位的半群)であるので、半群論の研究対象の範疇に属する。 モノイドの概念は数学のさまざまな分野に現れる。たとえば、モノイドはそれ自身が「ただひとつの対象をもつ圏」と見ることができ、したがって「集合上の写像とその合成」といった概念を捉えたものと考えることもできる。モノイドの概念は計算機科学の分野でも、その基礎付けや実用プログラミングの両面で広く用いられる。 モノイドの歴史や、モノイドに一般的な性質を付加した議論などは半群の項に譲る。.

新しい!!: 単位とモノイド · 続きを見る »

ダース

ダース (打) とは個数の単位で、12個の組を表す。.

新しい!!: 単位とダース · 続きを見る »

ベクトル

ベクトル()またはベクター() ベクトルは Vektor に由来し、ベクターは vector に由来する。物理学などの自然科学の領域ではベクトル、プログラミングなどコンピュータ関係ではベクターと表記される、という傾向が見られることもある。また、技術文書などではしばしばJIS規格に準拠する形で、長音を除いたベクタという表記が用いられる。 は「運ぶ」を意味するvehere に由来し、18世紀の天文学者によってはじめて使われた。 ベクトルは通常の数(スカラー)と区別するために矢印を上に付けたり(例: \vec,\ \vec)、太字で書いたりする(例: \boldsymbol, \boldsymbol)が、分野によっては矢印も太字もせずに普通に書くこともある(主に解析学)。 ベクトル、あるいはベクターに関する記事と用法を以下に挙げる。.

新しい!!: 単位とベクトル · 続きを見る »

インスリン

インスリンの分子構造 インスリン(インシュリン、insulin)は、膵臓に存在するランゲルハンス島(膵島)のβ細胞から分泌されるペプチドホルモンの一種。名前はラテン語の insula (島)に由来する。21アミノ酸残基のA鎖と、30アミノ酸残基のB鎖が2つのジスルフィド結合を介してつながったもの。C-ペプチドは、インスリン生成の際、プロインスリンから切り放された部分を指す。 生理作用としては、主として血糖を抑制する作用を有する。インスリンは脂肪組織や骨格筋を中心に存在するグルコーストランスポーターの一種であるGLUT4に作用し、そこから血中のグルコースを取り込ませることによって血糖値を下げる重要な役割を持つ。また骨格筋におけるアミノ酸、カリウムの取り込み促進とタンパク質合成の促進、肝臓における糖新生の抑制、グリコーゲンの合成促進・分解抑制、脂肪組織における糖の取り込みと利用促進、脂肪の合成促進・分解抑制などの作用により血糖を抑制し、グリコーゲンや脂肪などの各種貯蔵物質の新生を促進する。腎尿細管におけるNa再吸収促進作用もある。炭水化物を摂取すると小腸でグルコースに分解され、大量のグルコースが体内に吸収される。体内でのグルコースは、エネルギー源として重要である反面、高濃度のグルコースはそのアルデヒド基の反応性の高さのため生体内のタンパク質と反応して糖化反応を起こし、生体に有害な作用(糖尿病性神経障害・糖尿病性網膜症・糖尿病性腎症の微小血管障害)をもたらすため、インスリンの分泌によりその濃度(血糖)が常に一定範囲に保たれている。 インスリンは血糖値の恒常性維持に重要なホルモンである。血糖値を低下させるため、糖尿病の治療にも用いられている。逆にインスリンの分泌は血糖値の上昇に依存する。 従前は「インシュリン」という表記が医学や生物学などの専門分野でも正式なものとして採用されていたが、2006年現在はこれらの専門分野においては「インスリン」という表記が用いられている。一般にはインスリンとインシュリンの両方の表記がともに頻用されている。.

新しい!!: 単位とインスリン · 続きを見る »

冪乗

冪演算(べきえんざん、英: 独: 仏: Exponentiation)は、底 (base) および冪指数 (exponent) と呼ばれる二つの数に対して定まる数学的算法である。通常は、冪指数を底の右肩につく上付き文字によって示す。自然数 を冪指数とする冪演算は累乗(るいじょう、repeated multiplication) に一致する。 具体的に、 および冪指数 を持つ冪 (power) は、 が自然数(正整数)のとき、底の累乗 で与えられる。このとき は の -乗とか、-次の -冪などと呼ばれる。 よく用いられる冪指数に対しては、固有の名前が与えられているものがある。例えば冪指数 に対して二次の冪(二乗) は の平方 (square of) あるいは -自乗 (-squared) と呼ばれ、冪指数 に対する三次の冪 は の立方 (cube of, -cubed) と呼ばれる。また冪指数 に対して冪 は であり の逆数(あるいは乗法逆元)と呼ばれる。一般に負の整数 に対して底 が零でないとき、冪 はふつう なる性質を保つように と定義される。 冪演算は任意の実数あるいは複素数を冪指数とするように定義を拡張することができる。底および冪指数が実数であるような冪において、底を固定して冪指数を変数と見なせば指数函数が、冪指数を固定して底を変数と見れば冪函数がそれぞれ生じる。整数乗冪に限れば、行列などを含めた非常に多種多様な代数的対象に対してもそれを底とする冪を定義することができるが、冪指数まで同種の対象に拡張するならばその上で定義された自然指数函数と自然対数函数を持つ完備ノルム環(例えば実数全体 や複素数全体 などはそう)を想定するのが自然である。.

新しい!!: 単位と冪乗 · 続きを見る »

円 (数学)

数学において、円(えん)とは、平面(2次元ユークリッド空間)上の、定点 O からの距離が等しい点の集合でできる曲線のことをいう。ここで現れる定点 O を円の中心と呼ぶ。円には、その中心が1つあり、また1つに限る。中心から円周上の 1 点を結んだ線分を輻(や)とよび、その長さを半径というが、現在では輻のことを含めて半径と呼ぶことが多い。中心が点 O である円を、円 O と呼ぶ。定幅図形の一つ。 円が囲む部分、すなわち円の内部を含めて円ということもある。この場合は、曲線のことを円周という。これに対して、内部を含めていることを強調するときには円板という。また、三角形、四角形などと呼称を統一して、円形ということもある。 数学以外の分野ではこの曲線のことを「丸(まる)」という俗称で呼称することがある。 円: 中心、半径・直径、円周.

新しい!!: 単位と円 (数学) · 続きを見る »

上方から入ってきた光の道筋が、散乱によって見えている様子。(米国のアンテロープ・キャニオンにて) 光(ひかり)とは、基本的には、人間の目を刺激して明るさを感じさせるものである。 現代の自然科学の分野では、光を「可視光線」と、異なった名称で呼ぶことも行われている。つまり「光」は電磁波の一種と位置付けつつ説明されており、同分野では「光」という言葉で赤外線・紫外線まで含めて指していることも多い。 光は宗教や、哲学、自然科学、物理などの考察の対象とされている。.

新しい!!: 単位と光 · 続きを見る »

国際単位系

国際単位系(こくさいたんいけい、Système International d'unités、International System of Units、略称:SI)とは、メートル法の後継として国際的に定めた単位系である。略称の SI はフランス語に由来するが、これはメートル法がフランスの発案によるという歴史的経緯による。SI は国際単位系の略称であるため「SI 単位系」というのは誤り。(「SI 単位」は国際単位系の単位という意味で正しい。) なお以下の記述や表(番号を含む。)などは国際単位系の国際文書第 8 版日本語版による。 国際単位系 (SI) は、メートル条約に基づきメートル法のなかで広く使用されていたMKS単位系(長さの単位にメートル m、質量の単位にキログラム kg、時間の単位に秒 s を用い、この 3 つの単位の組み合わせでいろいろな量の単位を表現していたもの)を拡張したもので、1954年の第10回国際度量衡総会 (CGPM) で採択された。 現在では、世界のほとんどの国で合法的に使用でき、多くの国で使用することが義務づけられている。しかしアメリカなど一部の国では、それまで使用していた単位系の単位を使用することも認められている。 日本は、1885年(明治18年)にメートル条約に加入、1891年(明治24年)施行の度量衡法で尺貫法と併用することになり、1951年(昭和26年)施行の計量法で一部の例外を除きメートル法の使用が義務付けられた。 1991年(平成3年)には日本工業規格 (JIS) が完全に国際単位系準拠となり、JIS Z 8203「国際単位系 (SI) 及びその使い方」が規定された。 なお、国際単位系 (SI) はメートル法が発展したものであるが、メートル法系の単位系の亜流として「工学単位系(重力単位系)」「CGS単位系」などがあり、これらを区別する必要がある。 SI単位と非SI単位の分類.

新しい!!: 単位と国際単位系 · 続きを見る »

球(きゅう、ball)とは、.

新しい!!: 単位と球 · 続きを見る »

科学

科学(かがく、scientia、 仏:英:science、Wissenschaft)という語は文脈に応じて多様な意味をもつが、おおむね以下のような意味で用いられている。.

新しい!!: 単位と科学 · 続きを見る »

積(せき)とは数学の乗法の結果を指す。平面や物体の広さや大きさは乗法によって得られるため、転じて広さや大きさという意味も持つ。 同列の言葉として加法の結果を示す和、減法の結果を示す差、除法の結果を示す商があり、まとめて和差積商と呼ぶ。 数学において 1 との乗算は演算前と演算後で値に変化が見られないことから省略される。そのため全ての実数が積であるともいうことが可能である。.

新しい!!: 単位と積 · 続きを見る »

絶対値

数の絶対値は零からの距離と考えられる 数学における実数 の絶対値(ぜったいち、absolute value)または母数(ぼすう、modulus) は、その符号を無視して得られる非負の値を言う。つまり正数 に対して および負数 に対して (このとき は正)であり、また である。例えば の絶対値は であり の絶対値も である。数の絶対値はその数の零からの距離と見なすことができる。 実数の絶対値を一般化する概念は、数学において広範で多様な設定のもとで生じてくる。例えば、絶対値は複素数、四元数、順序環、体などに対しても定義することができる。様々な数学的あるいは物理学的な文脈における (magnitude) や距離およびノルムなどの概念は、絶対値と緊密な関係にある.

新しい!!: 単位と絶対値 · 続きを見る »

環論

数学において、環論(かんろん、ring theory)は(加法と乗法が定義され、整数の持つ性質とよく似た性質を満足する代数的構造である)環を研究する学問分野である。環論の研究対象となるのは、環の構造や環の表現(環上の加群)などについての一般論、および(群環、可除環、普遍展開環などの)具体的な特定の環のクラスあるいは理論と応用の両面で興味深い様々な環の性質(たとえばホモロジー的性質や多項式の等式)などである。 可換環は非可換の場合と比べてその性質はよく調べられている。可換環の自然な例を多く提供する代数幾何学や代数的数論は可換環論の発展の大きな原動力であった。この二つは可換環に密接に関係する分野であるから、一般の環論の一部というよりは、可換環論や可換体論の一部と考えるほうが普通である。 非可換環は可換の場合と比べて奇妙な振る舞いをすることが多くあるので、その理論は可換環論とは極めて毛色の異なったものとなる。非可換論は、それ自身の独自の方法論を用いた発展をする一方で、可換環論の方法論に平行する形で(仮想的な)「非可換空間」上の函数環として幾何学的な方法である種の非可換環のクラスを構築するという方法論が新興している。このような傾向は1980年代の非可換幾何学の発展と量子群の発見に始まる。こうした新たなパラダイムは、非可換環(特に非可換ネーター環)のよりよい理解を導くこととなった 。.

新しい!!: 単位と環論 · 続きを見る »

物理単位

物理単位(ぶつりたんい)とは、種々の物理量を表すための単位である。.

新しい!!: 単位と物理単位 · 続きを見る »

物理学

物理学(ぶつりがく, )は、自然科学の一分野である。自然界に見られる現象には、人間の恣意的な解釈に依らない普遍的な法則があると考え、自然界の現象とその性質を、物質とその間に働く相互作用によって理解すること(力学的理解)、および物質をより基本的な要素に還元して理解すること(原子論的理解)を目的とする。化学、生物学、地学などほかの自然科学に比べ数学との親和性が非常に強い。 古代ギリシアの自然学 にその源があり, という言葉も、元々は自然についての一般的な知識の追求を意味しており、天体現象から生物現象までを含む幅広い概念だった。現在の物理現象のみを追求する として自然哲学から独立した意味を持つようになったのは19世紀からである。 物理学の古典的な研究分野は、物体の運動、光と色彩、音響、電気と磁気、熱、波動、天体の諸現象(物理現象)である。.

新しい!!: 単位と物理学 · 続きを見る »

行列

数学の線型代数学周辺分野における行列(ぎょうれつ、matrix)は、数や記号や式などを行と列に沿って矩形状に配列したものである。行の数と列の数が同じ行列はが成分ごとの計算によって与えられる。行列の積の計算はもっと複雑で、2 つの行列がかけ合わせられるためには、積の左因子の列の数と右因子の行の数が一致していなければならない。 行列の応用として顕著なものは一次変換の表現である。一次変換は のような一次関数の一般化で、例えば三次元空間におけるベクトルの回転などは一次変換であり、 が回転行列で が空間の点の位置を表す列ベクトル(1 列しかない行列)のとき、積 は回転後の点の位置を表す列ベクトルになる。また 2 つの行列の積は、2 つの一次変換の合成を表現するものとなる。行列の別な応用としては、連立一次方程式の解法におけるものである。行列が正方行列であるならば、そのいくつかの性質は、行列式を計算することによって演繹することができる。例えば、正方行列が正則であるための必要十分条件は、その行列式の値が非零となることである。固有値や固有ベクトルは一次変換の幾何学に対する洞察を与える。行列の応用は科学的な分野の大半に及び、特に物理学において行列は、電気回路、光学、量子力学などの研究に利用される。コンピュータ・グラフィックスでは三次元画像の二次元スクリーンへの投影や realistic-seeming motion を作るのに行列が用いられる。は、古典的な解析学における微分や指数関数の概念を高次元へ一般化するものである。 主要な数値解析の分野は、行列計算の効果的なアルゴリズムの開発を扱っており、主題は何百年にもわたって今日では研究領域も広がっている。行列の分解は、理論的にも実用的にも計算を単純化するもので、アルゴリズムは正方行列や対角行列などといった行列の特定の構造に合わせて仕立てられており、有限要素法やそのほかの計が効率的に処理される。惑星運動論や原子論では無限次行列が現れる。関数のテイラー級数に対して作用する微分の表現行列は、無限次行列の簡単な例である。.

新しい!!: 単位と行列 · 続きを見る »

行列単位

数学、特に線型代数学や、環と加群の理論において、行列単位(ぎょうれつたんい、matrix unit)とは、ただ 1 つの成分が 1 で残りの成分が全て 0 である行列のことである。(i, j) 成分が 1 の行列単位は Eij などと書かれる。 体 K 係数の n × m 行列全体は K-ベクトル空間であり、nm 個の行列単位はその基底となる。 行列 M.

新しい!!: 単位と行列単位 · 続きを見る »

複素数

数学における複素数(ふくそすう、complex number)は、実数の対 と と線型独立な(実数ではない)要素 の線型結合 の形に表される数(二元数: 実数体上の二次拡大環の元)で、基底元 はその平方が になるという特別な性質を持ち虚数単位と呼ばれる。 複素数全体の成す集合を太字の あるいは黒板太字で と表す。 は、実数全体の成す集合 と同様に、可換体の構造を持ち、とくに を含む代数閉体を成す。複素数体はケイリー–ディクソン代数(四元数、八元数、十六元数など)の基点となる体系であり、またさまざまな超複素数系の中で最もよく知られた例である。 複素数の概念は、一次元の実数直線を二次元の複素数平面に拡張する。複素数は自然に二次元平面上に存在すると考えることができるから、複素数全体の成す集合上に自然な大小関係(つまり全順序)をいれることはできない。すなわち は順序体でない。 ある数学的な主題や概念あるいは構成において、それが複素数体を基本の体構造として考えられているとき、そのことはしばしばそれら概念等の名称に(おおくは接頭辞「複素-」を付けることで)反映される。例えば、複素解析、複素行列、複素(係数)多項式、複素リー代数など。.

新しい!!: 単位と複素数 · 続きを見る »

計量単位一覧

計量単位一覧(けいりょうたんいいちらん)では、計量単位(物理学で使われる物理量や化学の単位)を一覧する。直接物理や化学の量とは対応しないが現象や性質の程度を表す量は「尺度・指標」の項に分類するとされる。 物理学・化学以外の分野の単位については単位一覧を参照.

新しい!!: 単位と計量単位一覧 · 続きを見る »

この記事では量(りょう、)について解説する。.

新しい!!: 単位と量 · 続きを見る »

自然科学

自然科学(しぜんかがく、英語:natural science)とは、.

新しい!!: 単位と自然科学 · 続きを見る »

英語

アメリカ英語とイギリス英語は特徴がある 英語(えいご、)は、イ・ヨーロッパ語族のゲルマン語派に属し、イギリス・イングランド地方を発祥とする言語である。.

新しい!!: 単位と英語 · 続きを見る »

通貨

通貨(つうか、currency)とは、流通貨幣の略称で、国家もしくは、その地の統治主体によって価値が保証された、決済のための価値交換媒体。 政府は租税の算定にあたって通貨を利用する。 モノやサービスとの交換に用いられる「お金(おかね)」を、経済用語では貨幣、または通貨と呼ぶ。通貨は、現金通貨と預金通貨に大別され、前者は紙幣・硬貨(補助紙幣)であり、後者は普通預金・当座預金などの決済口座である。.

新しい!!: 単位と通貨 · 続きを見る »

逆元

逆元 (ぎゃくげん、)とは、数学、とくに抽象代数学において、数の加法に対する反数や乗法に関する逆数の概念の一般化で、直観的には与えられた元に結合してその効果を「打ち消す」効果を持つ元のことである。逆元のきちんとした定義は、考える代数的構造によって少し異なるものがいくつか存在するが、群を考える上ではそれらの定義する概念は同じものになる。.

新しい!!: 単位と逆元 · 続きを見る »

虚数単位

虚数単位(きょすうたんい、imaginary unit)とは、−1 の平方根(2乗して −1 になる数)である2つの数のうちの1つの数のことである(どちらかを特定することはできない)。そのような数を記号で i または \sqrt で表す。 任意の実数の2乗は0以上なので、虚数単位は実数でない。数の概念を複素数に拡張すると登場する数である。 虚数単位の記号 i は imaginary の頭文字から採られている。ただし、i を別の意味(電流など)の記号として使う場合は、虚数単位を j などで表すことがある(どの文字を用いるかは自由である。その場合にはどの文字を用いるかを初めに必ず宣言する)。 積の交換法則が成り立たないことを許容すると、異なる3個以上の虚数単位からなる数の体系(非可換体)を考えることができる。3個の虚数単位の場合は i,j,k、7つ以上の虚数単位の組には i_1,i_2,\cdots といったように一つずつ添字を付けて表すことが多い。.

新しい!!: 単位と虚数単位 · 続きを見る »

恒等写像

数学における恒等写像(こうとうしゃぞう、identity mapping, identity function)、恒等作用素(こうとうさようそ、identity operator)、恒等変換(こうとうへんかん、identity transformation)は、その引数として用いたのと同じ値を常にそのまま返すような写像である。集合論の言葉で言えば、恒等写像は恒等関係(こうとうかんけい、identity relationである。.

新しい!!: 単位と恒等写像 · 続きを見る »

正方行列

正方行列(せいほうぎょうれつ、square matrix)とは、行要素の数と列要素の数が一致する行列である。サイズが n × n つまり、n 行 n 列であるとき、n 次正方行列という。 \end.

新しい!!: 単位と正方行列 · 続きを見る »

数(かず、すう、number)とは、.

新しい!!: 単位と数 · 続きを見る »

数学

数学(すうがく、μαθηματικά, mathematica, math)は、量(数)、構造、空間、変化について研究する学問である。数学の範囲と定義については、数学者や哲学者の間で様々な見解がある。.

新しい!!: 単位と数学 · 続きを見る »

1

一」の筆順 1(一、いち、ひと、ひとつ)は、最小の正の整数である。0 を自然数に含めない流儀では、最小の自然数とも言える。整数の通常の順序において、0 の次で 2 の前の整数である。1 はまた、実数を位取り記数法で記述するための数字の一つでもある。 「無」を意味する 0 に対して、1 は有・存在を示す最原初的な記号なので、物事を測る基準単位、つまり数や順序を数える際の初めである。英語の序数詞では、1st、first となる。ラテン語では unus(ウーヌス)で、接頭辞 uni- はこれに由来する。.

新しい!!: 単位と1 · 続きを見る »

1の冪根

1の冪根(いちのべきこん、root of unity)、または1の累乗根(いちのるいじょうこん)は、数学において、冪乗して 1 になる(冪単である)ような数のことである。すなわち、ある自然数 n が存在して となる z のことである。通常は複素数の範囲で考えるが、場合によっては ''p'' 進数のような他の数の体系内で考える場合もある。以下では主として複素数の場合について述べる。 自然数 n に対し、m (\zeta_n.

新しい!!: 単位と1の冪根 · 続きを見る »

5年生存率

5年生存率(5ねんせいぞんりつ)とは、ある疾患の予後を測るための医学的な指標である。 主として癌について用いられ、診断から5年経過後に生存している患者の比率を示す。治療効果判定のために使われることが多い。あくまでも集団としての患者群を対象とした指標であり、個々の患者の余命として単純に流用することはできない。また、疾患や研究によっては「1年生存率」、あるいは「10年生存率」といった任意の判定期間による統計も存在する。 多くの癌では、治療により癌が消失してから5年経過後までに再発がない場合を「治癒」と見做す。 最も5年生存率の低い癌として、膵癌が知られている。膵癌では、初期症状が腹痛や体重減少などで早期発見が他の癌と比べ困難である。 なお、がんの終生再発率とは直接の関係にはない。あくまで診断後、治療による寛解をみて、その寛解が患者にもたらした余命延長効果を、特定年数後の時点で計測した数値に過ぎない。.

新しい!!: 単位と5年生存率 · 続きを見る »

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »