ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
ダウンロード
ブラウザよりも高速アクセス!
 

凸共役性

索引 凸共役性

数学において凸共役(とつきょうやく、)とは、ルジャンドル変換の一般化である。ルジャンドル=フェンシェル変換あるいはフェンシェル変換としても知られる(アドリアン=マリ・ルジャンドルとの名にちなむ)。.

31 関係: 半連続双対ベクトル空間双対問題実数上限区分線形関数ノルム線型空間ヤングの不等式ルジャンドル変換フェンシェルの双対性定理フェンシェル=モローの定理ベクトル空間の双対系アフィン写像アドリアン=マリ・ルジャンドルエピグラフ (数学)冪函数凸包凸関数確率変数確率分布真凸函数絶対値直交行列随伴作用素順序集合閉凸函数指数関数有界作用素最大最小不等式数学拡大実数

半連続

解析学における半連続性(semi-continuity)とは、拡張実数値関数(値として ±∞ を取り得る)に対して定義される「連続性」よりも弱い性質である。概略的に言うと、拡張実数値関数 f が点 x0 で上(下)半連続であるとは、x0 の十分近くで函数の値が f(x0) に近いかもしくは f(x0) よりも小さい(大きい)ことを言う。.

新しい!!: 凸共役性と半連続 · 続きを見る »

双対ベクトル空間

数学におけるベクトル空間の双対ベクトル空間(そうついベクトルくうかん、dual vector space)あるいは単に双対空間(そうついくうかん、dual space)は、そのベクトル空間上の線型汎函数(一次形式)全体の成す空間として定義される。有限次元ベクトル空間の双対空間はテンソルの研究に利用することができる。函数の成す(典型的には無限次元の)ベクトル空間に対する双対空間は、測度や超函数、あるいはヒルベルト空間のような概念の定義や研究に用いられ、結果として双対空間は函数解析学の研究における重要な観念となっている。 一般に双対空間には、代数的双対と連続的双対の二種類が用いられており、代数的双対は任意のベクトル空間に対して定義することができるが、位相線型空間を扱うときは代数的双対よりもその部分線型空間として、連続線型汎函数全体の成す連続的双対空間を考えるのが自然である。.

新しい!!: 凸共役性と双対ベクトル空間 · 続きを見る »

双対問題

双対問題(そうついもんだい、dual problem)とは、数学において、最適化問題における主問題(primary problem)の補問題を指す。どちらか一方の解法が両方の問題の解法となる。.

新しい!!: 凸共役性と双対問題 · 続きを見る »

実数

数学における実数(じっすう、 nombre réel, reelle Zahl, real number)は、様々な量の連続的な変化を表す数の体系である。実数全体の空間は、途切れのなさにあたる完備性とよばれる位相的な性質を持ち、代数的には加減乗除ができるという体の構造を持っている。幾何学や解析学ではこれらのよい性質を利用して様々な対象が定義され、研究されている。一方でその構成方法に自明でない手続きが含まれるため、実数の空間は数学基礎論の観点からも興味深い性質を持っている。また、自然科学における連続的なものの計測値を表すのに十分な数の体系だとも考えられている。 実数の概念は、その形式的な定義が19世紀に達成される前から数の体系として使われていた。「実数」という名前は複素数の概念が導入された後に「普通の数」を表現する言葉として導入されたものである。.

新しい!!: 凸共役性と実数 · 続きを見る »

上限

上限(じょうげん).

新しい!!: 凸共役性と上限 · 続きを見る »

区分線形関数

関数(青)とその区分線形近似(赤) 2次元の区分線形関数(上)とそれが線形となる凸多面体(下) 数学における区分的に一次な函数あるいは区分線形関数(くぶんせんけいかんすう、Piecewise linear function)とは、区分的に定義される函数で、各区分が一次函数(線型函数)となっていうようなものをいう。 区分的に線型な函数の概念は、いくつか異なる文脈で意味を持つ。区分的に線型な函数 の定義域 としては、-次元ユークリッド空間や、より一般のベクトル空間あるいはアフィン空間をとることもできるし、他にもや単体的複体などといったようなものの上でも定義される。いずれの場合にも、終域 は実数の全体やベクトル空間、アフィン空間であったり、あるいはPL多様体や単体複体に値をとる区分線型函数(区分線型写像)をも考えることができる。なお、この文脈における「線型」は専ら線型写像の意味で用いられているのではなく、より一般のアフィン線型写像の意味にとる必要がある。 次元が 2 以上の場合には、定義域 の各小片 が多角形や多面体となるものと仮定することが多く、こうすれば函数のグラフが多角形や多面体の小片の貼り合わせとなることが保証される。 区分的に一次な函数のクラスの重要な部分クラスとして、区分的に線型な連続函数のクラスや区分線型凸函数のクラスなどが挙げられる。区分的に線型な実函数が連続ならば、そのグラフはになる。スプライン曲線は区分的に一次な函数を一般化するもので、区分的に高次の多項式やさらに言えばを考えるものである。.

新しい!!: 凸共役性と区分線形関数 · 続きを見る »

ノルム線型空間

数学におけるノルム線型空間(ノルムせんけいくうかん、normed vector space; ノルム付きベクトル空間、ノルム付き線型空間)または短くノルム空間は、ノルムの定義されたベクトル空間を言う。 各成分が実数の、二次元あるいは三次元のベクトルからなる空間では、直観的にベクトルの「大きさ」(長さ)の概念が定義できる。この直観的アイデアを任意有限次元の実数ベクトル空間 に拡張するのは容易い。ベクトル空間におけるそのようなベクトルの大きさは以下のような性質を持つ.

新しい!!: 凸共役性とノルム線型空間 · 続きを見る »

ヤングの不等式

ヤングの不等式(-ふとうしき、Young's inequality)とは、積とべき乗の和との間に成り立つ不等式であり、様々な分野で広く用いられている。 a,bを非負値な実数、1 ab \le \frac + \frac.

新しい!!: 凸共役性とヤングの不等式 · 続きを見る »

ルジャンドル変換

ルジャンドル変換(ルジャンドルへんかん、Legendre transformation)とは、凸解析において、関数の変数を変えるために用いられる変換である。名前はフランスの数学者、アドリアン=マリ・ルジャンドルに因む。ルジャンドル変換は点と線の双対性、つまり下に凸な関数 は の点の集合によって表現できるが、それらの傾きと切片の値で指定される接線の集合によっても等しく充分に表現できることに基いている。 ルジャンドルは解析力学におけるラグランジアンをハミルトニアンに変換する際にルジャンドル変換を用いた。他にも、熱力学における熱力学関数間の変換など、物理学において広く応用されている。 ルジャンドル変換の一般化としてルジャンドル=フェンシェル変換がある(ルジャンドル=フェンシェル変換については凸共役性を参照)。.

新しい!!: 凸共役性とルジャンドル変換 · 続きを見る »

フェンシェルの双対性定理

数学においてフェンシェルの双対性定理(フェンシェルのそうついせいていり、)は、の名にちなむ、凸函数の理論における一結果である。 ƒ を Rn 上の真凸函数とし、g を Rn を真凹函数とする。このとき、正則性の条件が満たされるなら、 が成り立つ。ここで ƒ * は ƒ の凸共役(フェンシェル=ルジャンドル変換とも呼ばれる)であり、g * は g の凹共役である。すなわち、次が成り立つ。.

新しい!!: 凸共役性とフェンシェルの双対性定理 · 続きを見る »

フェンシェル=モローの定理

数学の凸解析において、フェンシェル=モローの定理(フェンシェル=モローのていり、)あるいはフェンシェルの双共役定理(あるいは単に双共役定理)とは、ある函数がそのと等しくなるための必要十分条件を与える定理である。との名にちなむ。これは任意の函数に対して f^ \leq f が成立するという一般的な性質とは対照的である。これは双極定理の一般化と見なすことが出来る。双対性の理論において、(摂動函数を介して)強双対性を証明するために用いられる。.

新しい!!: 凸共役性とフェンシェル=モローの定理 · 続きを見る »

ベクトル空間の双対系

数学の函数解析学周辺分野におけるベクトル空間の双対系(そうついけい、dual system)あるいは双対組 (dual pair; 双対対) は、付随する双線型形式(内積, pairing)を持つようなベクトル空間の対である。 ノルム線型空間の研究においてよく用いられる函数解析学的方法に、もとの空間とその連続的双対空間、すなわちもとの空間上の連続線型形式全体の成すベクトル空間との関係性を調べるというものがある。双対対はこのような双対性の概念を一般化して、素性の良い双線型形式によって「双対性」が与えられる任意のベクトル空間の対を考えるものである。付随する双線型形式を用いて、半ノルムから極位相を定めると、ベクトル空間は局所凸空間(ノルム空間の一般化)になる。.

新しい!!: 凸共役性とベクトル空間の双対系 · 続きを見る »

アフィン写像

幾何学におけるアフィン写像(アフィンしゃぞう、affine map)はベクトル空間(厳密にはアフィン空間)の間で定義される、平行移動を伴う線型写像である。アフィン (affine) はラテン語で「類似・関連」を意味する affinis に由来する。 始域と終域が同じであるようなアフィン写像はアフィン変換(アフィンへんかん、affine transformation)と呼ばれる。アフィン写像はアフィン空間の構造を保つ。.

新しい!!: 凸共役性とアフィン写像 · 続きを見る »

アドリアン=マリ・ルジャンドル

アドリアン=マリ・ルジャンドル(Adrien-Marie Legendre、1752年9月18日 - 1833年1月10日)は、フランスのパリトゥールーズ出身ともされる。出身の数学者。統計学、数論、代数学、解析学で様々な功績を残した。中でも整数論や楕円積分に大きく貢献したとして名高い。.

新しい!!: 凸共役性とアドリアン=マリ・ルジャンドル · 続きを見る »

エピグラフ (数学)

数学の分野においてエピグラフ (epigraph) とはある関数の上側の領域を指す。すなわち、関数f:Rn → Rのエピグラフとは、 なる領域を指す。狭義には不等号から等式を外して をエピグラフということもある。 これと同様にして関数の下側を表す領域をという。.

新しい!!: 凸共役性とエピグラフ (数学) · 続きを見る »

冪函数

数学の特に解析学における冪函数(巾函数、べきかんすう、power function)は、適当な定数 に対して定義される函数 を言う。ここに定数 は、この冪函数の冪指数 (exponent) と呼ばれ、文脈により自然数、整数、有理数、実数、複素数などに値をとることができるが、 の持つ性質によって対応する函数 の自然な定義域が異なってくることに注意が必要である。 冪函数は実変数に対する函数として一般に定義することができる。自然数冪を持つ冪函数は、多項式函数あるいは冪級数の展開の基底を与える。また実数冪を持つ冪函数は物理学、生物学、経済学などにおいて関係するモデルを与える。 複素変数に関して有効な議論も中にはあるが、以下では専ら実変数 に関する冪函数について述べる。またより一般には、上記函数の定数倍 (単項式函数)をも含む意味で冪函数と呼ぶ場合もあるが、本項では常に のみを扱う。.

新しい!!: 凸共役性と冪函数 · 続きを見る »

凸包

数学における凸包(とつほう、convex hull)または凸包絡(とつほうらく、convex envelope)は、与えられた集合を含む最小の凸集合である。例えば がユークリッド平面内の有界な点集合のとき、その凸包は直観的には をゴム膜で包んだときにゴム膜が作る図形として視認することができる。 精確に言えば、 の凸包は を含む全ての凸集合の交わり、あるいは同じことだが に属する点の凸結合全体の成す集合として定義される。後者の定式化であれば、凸包をユークリッド空間だけでなく任意の実線型空間や、より一般にに対して考えることができる。 平面上あるいは低次元ユークリッド空間内の有限点集合に対してその凸包を計算するアルゴリズム問題は、計算幾何学の基本的問題の一つである。.

新しい!!: 凸共役性と凸包 · 続きを見る »

凸関数

凸関数(とつかんすう、convex function)、下に凸関数 とは、ある区間で定義された実数値関数 で、区間内の任意の 2 点 と開区間 内の任意の に対して を満たすものをいう。言い換えれば、エピグラフ(グラフ上およびグラフの上部の点の集合)が凸集合である関数である。より一般に、ベクトル空間の凸集合上定義された関数に対しても同様に定義する。 また、狭義凸関数とは、任意の異なる 2 点 と開区間 内の任意の に対して を満たす関数である(従って、下に凸な関数の事である)。 が凸関数のとき、 を凹関数(おうかんすう、)と呼ぶ。凸関数を「下に凸な関数」、凹関数を「上に凸な関数」と称することもある。.

新しい!!: 凸共役性と凸関数 · 続きを見る »

確率変数

率変数(かくりつへんすう、random variable, aleatory variable, stochastic variable)とは、確率論ならびに統計学において、ランダムな実験により得られ得る全ての結果を指す変数である。 数学で言う変数は関数により一義的に決まるのに対し、確率変数は確率に従って定義域内の様々な値を取ることができる。.

新しい!!: 凸共役性と確率変数 · 続きを見る »

確率分布

率分布(かくりつぶんぷ, probability distribution)は、確率変数の各々の値に対して、その起こりやすさを記述するものである。日本工業規格では、「確率変数がある値となる確率,又はある集合に属する確率を与える関数」と定義している。.

新しい!!: 凸共役性と確率分布 · 続きを見る »

真凸函数

数学の解析学(特に、凸解析)と数理最適化の分野において、真凸函数(しんとつかんすう、)とは、拡大実数に値を取る凸函数 f で、少なくとも一つの x に対して が成立し、すべての x に対して が成立するもののことを言う。すなわち凸函数が真であるとは、その有効領域が空でなく、値として -\infty を取ることがないことを言う。真でない凸函数は広義凸函数(improper convex function)と呼ばれる。 真凹函数とは、f.

新しい!!: 凸共役性と真凸函数 · 続きを見る »

絶対値

数の絶対値は零からの距離と考えられる 数学における実数 の絶対値(ぜったいち、absolute value)または母数(ぼすう、modulus) は、その符号を無視して得られる非負の値を言う。つまり正数 に対して および負数 に対して (このとき は正)であり、また である。例えば の絶対値は であり の絶対値も である。数の絶対値はその数の零からの距離と見なすことができる。 実数の絶対値を一般化する概念は、数学において広範で多様な設定のもとで生じてくる。例えば、絶対値は複素数、四元数、順序環、体などに対しても定義することができる。様々な数学的あるいは物理学的な文脈における (magnitude) や距離およびノルムなどの概念は、絶対値と緊密な関係にある.

新しい!!: 凸共役性と絶対値 · 続きを見る »

直交行列

交行列(ちょっこうぎょうれつ, )とは、転置行列と逆行列が等しくなる正方行列のこと。つまりn × n の行列 M の転置行列を MT と表すときに、MTM.

新しい!!: 凸共役性と直交行列 · 続きを見る »

随伴作用素

数学の特に函数解析学において、ヒルベルト空間上の各有界線型作用素は、対応する随伴作用素(ずいはんさようそ、adjoint operator)を持つ。作用素の随伴は正方行列の随伴行列の概念の無限次元の場合をも許すような一般化である。ヒルベルト空間上の作用素を「一般化された複素数」と考えれば、作用素の随伴は複素数に対する複素共軛の役割を果たすものである。 作用素 の随伴は、シャルル・エルミートに因んでエルミート共軛 (Hermitian conjugate) とも呼ばれ、 あるいは などで表される(後者は特にブラケット記法とともに用いられる)。.

新しい!!: 凸共役性と随伴作用素 · 続きを見る »

順序集合

数学において順序集合(じゅんじょしゅうごう、ordered set)とは「順序」の概念が定義された集合の事で、「順序」とは大小、高低、長短等の序列に関わる概念を抽象化したものである。ただし、順序集合内の2つの元, に順序関係が定まっている(「比較可能」である)必要はなく、両者が「比較不能」であってもよい。 比較不能のケースを許容していることを強調して順序集合の事を半順序集合(はんじゅんじょしゅうごう、partially ordered set, poset)ともいう。一方、半順序集合の中で比較不能のケースがないものを特に全順序集合 という。(「半順序」という言葉が「全順序」の対義語ではない事に注意。全順序集合も半順序集合の一種である。) 全順序集合の簡単な例は整数の集合や実数の集合で、通常の大小比較を順序とみなしたものがある。 一方、全順序ではない半順序集合の例としては、正の整数全体の集合に整除関係で順序を入れたものや、(2つ以上元を含む)集合の冪集合において、包含関係を順序とみなしたものがある。例えば2元集合 において と はいずれも他方を包含していないので S の冪集合は全順序ではない。 実生活に近い例では、「AさんはBさんの子孫である」という事を「A<B」という大小関係とみなす事で人間全体の集合を半順序集合とみなせる。AさんとBさんはどちらも他方の子孫でない事もありうる(兄弟同士、叔父と甥、赤の他人等)ので、この順序集合は全順序ではない。.

新しい!!: 凸共役性と順序集合 · 続きを見る »

閉凸函数

数学において、函数 f\colon \mathbb^n \to \mathbb が閉(へい、)であるとは、各 \alpha \in \mathbb に対して劣位集合 \ が閉集合であることをいう。 また同値であるが、 \operatorname f.

新しい!!: 凸共役性と閉凸函数 · 続きを見る »

指数関数

実解析における指数関数(しすうかんすう、exponential function)は、冪における指数 を変数として、その定義域を主に実数の全体へ拡張して定義される初等超越関数の一種である。対数関数の逆関数であるため、逆対数 と呼ばれることもある。自然科学において、指数関数は量の増加度に関する数学的な記述を与えるものとして用いられる(や指数関数的減衰の項を参照)。 一般に、 かつ なる定数 に関して、(主に実数の上を亙る)変数 を へ送る関数は、「a を'''底'''とする指数函数」と呼ばれる。「指数関数」との名称は、与えられた底に関して冪指数を変数とする関数であることを示唆するものであり、冪指数を固定して底を独立変数とする冪関数とは対照的である。 しばしば、より狭義の関数を意図して単に「指数関数」と呼ぶこともある。そのような標準的な (the) 指数関数(あるいはより明示的に「自然指数関数」)はネイピア数 を底とする関数 である。これを のようにも書く。この関数は、導関数が自分自身に一致するなど、他の指数関数と比べて著しい性質を持つ。底 を他の底 に取り換えるには自然対数 を用いて、等式 を適用すればよいから、以下本項では主に自然指数関数について記述し、多くの場合「指数関数」は自然指数関数の意味で用いる。.

新しい!!: 凸共役性と指数関数 · 続きを見る »

有界作用素

数学(関数解析学)において、有界(線形)作用素(ゆうかいさようそ、)とは、二つのノルム空間 X および Y の間の線形変換 L であって、X に含まれるゼロでないすべてのベクトル v に対して L(v) のノルムと v のノルムの比が、v に依存しない一つの数によって上から評価されるようなもののことを言う。言い換えると、次を満たす線形変換 L のことを、有界作用素と言う: ここで \|\cdot\|_X は X が備えるノルムである( \|\cdot\|_Y も同様).上記の正定数 M のうち最小のもの(下限)は L の作用素ノルムと呼ばれ、\|L\|_ \, と記述される。 X から Y への有界作用素全体の集合を \mathcal(X,Y) として,L \in \mathcal(X,Y) に対して \|L\|_ によって作用素ノルムを表すこともある. 一般的に、有界作用素は有界関数ではない。後者は、すべての v に対し L(v) のノルムが上から評価されている必要があるが、これは Y がゼロベクトル空間でないと起こり得ない。有界作用素はである。 線形作用素が有界であることと、連続であることは必要十分である。.

新しい!!: 凸共役性と有界作用素 · 続きを見る »

最大最小不等式

数学における最大最小不等式(さいだいさいしょうふとうしき、)とは次の不等式のことをいう:任意の空でない函数 f\colon Z \times W \to \mathbb に対し \sup_ \inf_ f(z, w) \leq \inf_ \sup_ f(z, w) \, が成り立つ。等号が成り立つとき、f, W, Z は強最大最小性(あるいは鞍点性)を満たすという。.

新しい!!: 凸共役性と最大最小不等式 · 続きを見る »

数学

数学(すうがく、μαθηματικά, mathematica, math)は、量(数)、構造、空間、変化について研究する学問である。数学の範囲と定義については、数学者や哲学者の間で様々な見解がある。.

新しい!!: 凸共役性と数学 · 続きを見る »

拡大実数

数学における拡張実数(かくちょうじっすう、extended real number; 拡大実数)あるいはより精確にアフィン拡張実数 (affinely extended real number) は、通常の実数に正の無限大 と負の無限大 の二つを加えた体系を言う。新しく付け加えられた元(無限大、無限遠点)は(通常の)実数ではないが、文脈によってはこれらを含めた全ての拡張実数を指して便宜的に「実数」と呼ぶこともあり、その場合通常の実数は有限実数と呼んで区別する。拡張実数の概念は、微分積分学や解析学(特に測度論と積分法)において種々の函数の極限についての記述を簡素化するのに有効である。(アフィン)拡張実数全体の成す集合 は、その上の適当な順序構造や位相構造などを持つものとして補完数直線(ほかんすうちょくせん、extended real line; 拡張実数直線)と呼ばれ、 や と書かれる。 文脈から意味が明らかな場合には、正の無限大の記号 はしばしば単に と書かれる。.

新しい!!: 凸共役性と拡大実数 · 続きを見る »

ここにリダイレクトされます:

ルジャンドル・フェンシェル変換ルジャンドル=フェンシェル変換フェンシェル変換凸共役

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »