ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
インストール
ブラウザよりも高速アクセス!
 

冷却

索引 冷却

冷却(れいきゃく)とは物体から熱を奪うことにより温度を下げ、その奪った熱を(最終的には)別の場所へと放出する過程をいう。.

48 関係: 吸収式冷凍機宇宙機対流低温物理学ペルティエ効果ミスト散布マイケル・ファラデーレーザー冷却トーマス・ゼーベックヒートポンプフィルム冷却ベンジャミン・フランクリンアンモニアアブレーションウィリアム・カレングラスゴー大学ジャン=シャルル・ペルティエジョン・リズリー=プリチャードジエチルエーテルスコットランドゼーベック効果再生冷却冷媒冷蔵庫冷房CPUの冷却装置空冷絶対零度無重量状態熱交換器熱伝導熱放射相転移過冷却蒸発熱蒸気圧縮冷凍機電圧電気機器の冷却方式送風機水冷気体沸騰温度1748年1755年

吸収式冷凍機

吸収式冷凍機(きゅうしゅうしきれいとうき)は、吸収力の高い液体に冷媒を吸収させて発生する低圧によって、別の位置の冷媒を気化させて低温を得る冷凍機である。また、熱駆動ヒートポンプとしての利用も可能である。 冷媒 - 吸収液として、空調用の水 - 臭化リチウム・冷凍用のアンモニア - 水を使用したものが実用化されている。 基本サイクルとしては、冷媒を低温低圧の蒸発器で蒸発させ冷水・冷液をつくり、蒸発冷媒は吸収器で吸収液に吸収させる(吸収による低圧が発生して、これが蒸発器で冷媒を蒸発させる)。冷媒を吸収した吸収液は再生器で熱を加え冷媒を蒸発分離してその溶媒は再び吸収器に戻す。蒸発分離した冷媒は、凝縮器で冷却して液化し、再び蒸発器で使用する。.

新しい!!: 冷却と吸収式冷凍機 · 続きを見る »

宇宙機

宇宙機(うちゅうき、spacecraft)とは、打ち上げロケット (launch vehicle) を用いて大気圏外で使用される人工物のことYahoo!百科事典「宇宙機」新羅一郎、久保園晃 執筆 。.

新しい!!: 冷却と宇宙機 · 続きを見る »

対流

対流(たいりゅう、convection)とは、流体において温度や表面張力などが原因により不均質性が生ずるため、その内部で重力によって引き起こされる流動が生ずる現象である。 地球の大気においては、大気の鉛直方向の運動は高度 0 キロメートルから約 11 キロメートルの層に限られ、この領域を対流圏と呼ぶ。また地球や惑星の内部では、対流により内部の熱源から地表面への熱輸送が生じており、地表面の変動を引き起こす原因となっている。 近年、計算機の性能が向上し、流体の運動方程式(ナビエ-ストークスの式)を高精度に計算することが可能となったため、コンピュータを用いたシミュレーションによる対流現象の研究が盛んに行われており、工学的な技術としても重要な分野である。また惑星内部の対流など、実験・観測が不可能な領域における流体の挙動を理論的に解明する研究も行われている。.

新しい!!: 冷却と対流 · 続きを見る »

低温物理学

低温物理学(ていおんぶつりがく)は、絶対零度に非常に近い超低温領域における物理学の1分野である。この様な超低温では、熱的な擾乱が小さくなるために、凝縮系内の微小な相互作用や巨視的な量子効果による特異な現象が現れてくる。.

新しい!!: 冷却と低温物理学 · 続きを見る »

ペルティエ効果

ペルティエ効果文部省 (1990) 学術用語集 物理学編。(ペルティエこうか、)は、異なる金属を接合し電圧をかけ、電流を流すと、接合点で熱の吸収・放出が起こる効果。ゼーベック効果の逆、電圧から温度差を作り出す現象である。トムソン効果とともに熱電効果のひとつである。ペルチエ効果、ペルチェ効果と表記することもある。.

新しい!!: 冷却とペルティエ効果 · 続きを見る »

ミスト散布

ミスト散布(ミストさんぷ)とは、液体を人工的に霧(ミストまたはフォグ)状にして散布(噴霧)することをいう。自然発生的に生じる霧の利用とは区別する。当項目では、人工的に造られた、スプレーノズルの噴霧口から出る数μmから数十μmにまで細かくされた霧を用い、液体散布・加湿・冷却・冷房などを効率よく行う場合を「ミスト散布」と呼ぶ事にする。 液体は水(水道水・工業用水など様々)の場合が多いが、アルコール系溶剤などの薬剤を用いる事もある。 なお、不審な侵入者に極めて濃い霧を短時間に噴射し、煙幕を張って視界を遮る方法や装置(「霧噴射」や「フォグガード」など)は、湿度や冷却効果を得ることが目的ではないので、ここでのミスト散布とは区別する。.

新しい!!: 冷却とミスト散布 · 続きを見る »

マイケル・ファラデー

マイケル・ファラデー(Michael Faraday, 1791年9月22日 - 1867年8月25日)は、イギリスの化学者・物理学者(あるいは当時の呼称では自然哲学者)で、電磁気学および電気化学の分野での貢献で知られている。 直流電流を流した電気伝導体の周囲の磁場を研究し、物理学における電磁場の基礎理論を確立。それを後にジェームズ・クラーク・マクスウェルが発展させた。同様に電磁誘導の法則、反磁性、電気分解の法則などを発見。磁性が光線に影響を与えること、2つの現象が根底で関連していることを明らかにした entry at the 1911 Encyclopaedia Britannica hosted by LovetoKnow Retrieved January 2007.

新しい!!: 冷却とマイケル・ファラデー · 続きを見る »

レーザー冷却

レーザー冷却(レーザーれいきゃく)とは、レーザー光を用いて、気体分子の温度を絶対零度近くまで冷却する方法のこと。おもに、単原子分子、もしくは単原子イオンに用いられる。.

新しい!!: 冷却とレーザー冷却 · 続きを見る »

トーマス・ゼーベック

トーマス・ヨハン・ゼーベック(Thomas Johann Seebeck, 1770年4月9日 - 1831年12月10日)は、ドイツの物理学者、医師。1821年にゼーベック効果を発見した。.

新しい!!: 冷却とトーマス・ゼーベック · 続きを見る »

ヒートポンプ

ヒートポンプ(heat pump)は、熱媒体や半導体等を用いて低温部分から高温部分へ熱を移動させる技術である。手法はいくつかあるが主流は気体の圧縮・膨張と熱交換を組み合わせたもので、一般家庭でもみられる製品でヒートポンプを使っているものとして冷凍冷蔵庫、エアコン、ヒートポンプ式給湯器などがある。.

新しい!!: 冷却とヒートポンプ · 続きを見る »

フィルム冷却

フィルム冷却とはスリットや冷却孔から流体を噴射することで火炎が直接構造体に触れないように断熱層を形成することにより冷却空気膜を形成して翼表面を保護する方法。ロケットエンジンやガスタービン等に使用されている。.

新しい!!: 冷却とフィルム冷却 · 続きを見る »

ベンジャミン・フランクリン

ベンジャミン・フランクリン(Benjamin Franklin, グレゴリオ暦1706年1月17日<ユリウス暦1705年1月6日> - 1790年4月17日)は、アメリカ合衆国の政治家、外交官、著述家、物理学者、気象学者。印刷業で成功を収めた後、政界に進出しアメリカ独立に多大な貢献をした。また、凧を用いた実験で、雷が電気であることを明らかにしたことでも知られているただ、フランクリンが実際に凧の実験を行ったのかを疑問視する専門家もいる。なお、この実験を提案したのはフランクリンだが、初めて成功したのは1752年5月、フランスのトマ・ダリバード(:en:Thomas-François Dalibard)らである。ダリバードらはフランクリンの提案に従って、嵐の雲が通過するときに鉄の棒(避雷針)から火花を抽出した。フランクリンが凧を用いて同様の実験を行ったのは同年の6月、または6月から10月までの期間である。(アルベルト・マルチネス「科学神話の虚実」)。現在の米100ドル紙幣に肖像が描かれている他、ハーフダラー銀貨にも1963年まで彼の肖像が使われていた。 勤勉性、探究心の強さ、合理主義、社会活動への参加という18世紀における近代的人間像を象徴する人物。己を含めて権力の集中を嫌った人間性は、個人崇拝を敬遠するアメリカの国民性を超え、アメリカ合衆国建国の父の一人として讃えられる。『フランクリン自伝』はアメリカのロング・ベストセラーの一つである。.

新しい!!: 冷却とベンジャミン・フランクリン · 続きを見る »

アンモニア

アンモニア (ammonia) は分子式が NH_3 で表される無機化合物。常温常圧では無色の気体で、特有の強い刺激臭を持つ。 水に良く溶けるため、水溶液(アンモニア水)として使用されることも多く、化学工業では基礎的な窒素源として重要である。また生体において有毒であるため、重要視される物質である。塩基の程度は水酸化ナトリウムより弱い。 窒素原子上の孤立電子対のはたらきにより、金属錯体の配位子となり、その場合はアンミンと呼ばれる。 名称の由来は、古代エジプトのアモン神殿の近くからアンモニウム塩が産出した事による。ラテン語の sol ammoniacum(アモンの塩)を語源とする。「アモンの塩」が意味する化合物は食塩と尿から合成されていた塩化アンモニウムである。アンモニアを初めて合成したのはジョゼフ・プリーストリー(1774年)である。 共役酸 (NH4+) はアンモニウムイオン、共役塩基 (NH2-) はアミドイオンである。.

新しい!!: 冷却とアンモニア · 続きを見る »

アブレーション

アブレーションとは材料の表面が蒸発、侵食によって分解する現象である。材料が気化する時の気化潜熱によって冷却する。.

新しい!!: 冷却とアブレーション · 続きを見る »

ウィリアム・カレン

ウィリアム・カレン(William Cullen、1710年4月15日 - 1790年2月5日)は、スコットランドの医師、化学者である。1748年、エーテルの気化による温度低下を利用して、少量の氷をつくる実験を行ったことで、冷凍技術の歴史の最初に挙げられる科学者である。.

新しい!!: 冷却とウィリアム・カレン · 続きを見る »

グラスゴー大学

ラスゴー大学(英語:The University of Glasgow、ラテン語:Universitas Glasguensis)は、スコットランドのグラスゴー市に本部を置くイギリスの大学である。1451年に設置された。500年以上の歴史を有する英語圏最古の大学の一つであり、オックスフォード大学、ケンブリッジ大学と並ぶアンシャン・ユニヴァシティー(古代の大学)に属する大学。 中世から高位聖職者を輩出し、近世では、蒸気機関の発明や電力単位のワット(W)で知られるジェームズ・ワット、経済学の祖であり国富論を著したアダム・スミス、物理学者のウィリアム・トムソン(ケルヴィン卿)など歴史上の重要人物も多く輩出している。また、日本の産業発展に貢献すべく創設された工部大学校(東京大学工学部の前身)で教鞭を執ったヘンリー・ダイアーも本学の出身である。近代に入ると、世界各国からエリート層が留学して来るようになり、母国で政治家や科学者となって国家に貢献した卒業生も多い。日本からの留学生も帰国後に名声を得たものが多く、著名人としては化学者の高峰譲吉、ニッカの竹鶴政孝(ドラマ「マッサン」モデル)、男爵いもの川田龍吉男爵、三菱財閥の岩崎隆弥、物理学者の田中舘愛橘が挙げられる。 大学は英国のアイビー・リーグとも言われているラッセル・グループの一員で、また国際的に重要な大学から組織されているウニベルジタツ21の創立メンバーの一員でもある。医学、歯学、獣医学の分野では、英国最高峰に位置し、特に医学部はGlasgow Coma Scaleの研究で世界に知られている。また、工学部は英国で最初に設置された工学部(1840年)であり、産業革命で大きな役割を果たした。2007年現在、同大学に関係するノーベル賞受賞者は7名に上る。.

新しい!!: 冷却とグラスゴー大学 · 続きを見る »

ジャン=シャルル・ペルティエ

ャン=シャルル・ペルティエ(Jean-Charles Peltier、1785年2月22日-1845年10月27日)は、フランスの物理学者。ペルティエ効果の発見により知られている。 姓はペルチエ、ペルチェと表記されることもある。 フランスの都市で生まれ、パリで没した。 1834年に、異なる金属を接合した部分に電圧をかけて電流を流すと熱の吸収や放出を生じることを発見した。これは熱電効果の一種で、1821年にトーマス・ゼーベックが発見したゼーベック効果の逆の効果であり、彼の名にちなんでペルティエ効果と呼ばれている。.

新しい!!: 冷却とジャン=シャルル・ペルティエ · 続きを見る »

ジョン・リズリー=プリチャード

ョン・リズリー=プリチャード(出生名:John Henry Augustin Prichard(ジョン・ヘンリー・オーガスティン・プリチャード、後にRiseley-Prichard(リズリー=プリチャード)を名乗る、1924年1月17日 - 1993年7月8日)は、イギリスの保険ブローカー、レースドライバー。.

新しい!!: 冷却とジョン・リズリー=プリチャード · 続きを見る »

ジエチルエーテル

チルエーテル(diethyl ether)とは、エチル基とエチル基がエーテル結合した分子構造をしている有機化合物である。したがって、分子式は で、示性式は 、又は、で表される。分子量 74.12 。密度は0.708 g/cm。特徴的な甘い臭気を持つ、無色透明の液体である。エチルエーテル、硫酸エーテルとも呼び、また単にエーテルというときはこのジエチルエーテルのことを指す場合が多い。IUPAC名ではエトキシエタンとも呼ばれる。.

新しい!!: 冷却とジエチルエーテル · 続きを見る »

スコットランド

ットランド()は、北西ヨーロッパに位置するグレートブリテン及び北アイルランド連合王国(イギリス)を構成するカントリーの一つ。1707年の合同法によってグレートブリテン王国が成立するまでは独立した王国(スコットランド王国)であった。 スコットランドはグレートブリテン島の北部3分の1を占め、本島と別に790以上の島嶼部から構成される。 首都のエディンバラは第2の都市であり、ヨーロッパ最大の金融センターの一つである。最大の都市であるグラスゴーは、人口の40%が集中する。 スコットランドの法制度、教育制度および裁判制度はイングランドおよびウェールズならびに北アイルランドとは独立したものとなっており、そのために、国際私法上の1法域を構成する。スコットランド法、教育制度およびスコットランド教会は、連合王国成立後のスコットランドの文化および独自性の3つの基礎であった。しかしスコットランドは独立国家ではなく、国際連合および欧州連合の直接の構成国ではない。.

新しい!!: 冷却とスコットランド · 続きを見る »

ゼーベック効果

ーベック効果(ゼーベックこうか、Seebeck effect)は物体の温度差が電圧に直接変換される現象で、熱電効果の一種。逆に電圧を温度差に変換するペルティエ効果もある。類似の現象としてトムソン効果やジュール熱がある。ゼーベック効果を利用して温度を測定することができる(→熱電対)。ゼーベック効果、ペルティエ効果、トムソン効果は可逆であるが、ジュール熱はそうではない。 ゼーベック効果は、1821年にエストニアの物理学者トーマス・ゼーベックによって偶然発見された。ゼーベックは金属棒の内部に温度勾配があるとき、両端間に電圧が発生することに気づいた。 また、2 種類の金属からなるループの接点に温度差を設けると、近くに置いた方位磁針の針が振れることも発見した。これは2種類の金属が温度差に対して異なる反応をしたため、ループに電流が流れ、磁場を発生させたためである。.

新しい!!: 冷却とゼーベック効果 · 続きを見る »

再生冷却

再生冷却とは気化潜熱を利用して冷却する方法。ロケットエンジンや冷凍機や冷房装置に使用されている。.

新しい!!: 冷却と再生冷却 · 続きを見る »

冷媒

冷媒(れいばい、)とは、冷凍サイクルにおいて熱を移動させるために用いられる熱媒体のことを言う。.

新しい!!: 冷却と冷媒 · 続きを見る »

冷蔵庫

家庭用電気冷蔵庫を開けた状態 冷蔵庫(れいぞうこ、英: Refrigerator)とは、食料品等の物品を低温で保管することを目的とした製品である。現代では電気エネルギーを冷却に用いる電気冷蔵庫を指すことが多い。.

新しい!!: 冷却と冷蔵庫 · 続きを見る »

冷房

冷房(れいぼう)とは、室内の空気を冷やすこと。.

新しい!!: 冷却と冷房 · 続きを見る »

CPUの冷却装置

一般的な空冷式CPUクーラー。銀色の部分はヒートシンクで、CPUはその下にある。 CPUの冷却装置(シーピーユーのれいきゃくそうち)の記事では専ら、「CPUクーラー」と呼ばれているパソコンのCPUの冷却およびその装置について解説する。CPU以外のGPUなどのプロセッサ、あるいはもっと他の集積回路で発熱の著しいものにおける冷却、あるいはパソコン以前から存在して冷却が行われていたメインフレームやスーパーコンピュータ、あるいはワークステーションやサーバにおける冷却と、本質的には何ら変わる所は無いのだが、パソコンの場合はフォームファクタによる制限という歴史的な都合などにより、「CPUクーラー」と、ビデオカードの主にGPUを冷却する「VGAクーラー」で形態が著しく異なるとか、本来は通風させる方向に沿っているべきであるマザーボード上の子基板がその向きに沿っていない(メモリモジュール等)といった事情がある。特に、互換性のあるパーツを集めて作るショップ系BTOや自作機ではそういった影響が大きい。一方でカスタムの幅が狭い前提で設計されるメーカー製PCやPCサーバ等では、フォームファクタに囚われず全体最適な設計が見られることも多い例えば、気流の発生源をCPUクーラーのファン1基に集中させ、それを中心に吸排気が流れるよう配置する、といったような設計は、外気に接する吸排気ファンが無いため静音化に有利だが、ケースやダクトを専用に設計する必要があり、自作PCでは現実的ではない。また、サーバ用をうたったマザーボードなどでは、メモリモジュールの向きを、一般的なパソコン用の場合とは90度違う向きにしているものがある。。.

新しい!!: 冷却とCPUの冷却装置 · 続きを見る »

空冷

原子力発電所における冷却塔 空冷(くうれい)とは、機械装置などにおける冷却法の一つであり、空気との熱交換により放熱する方法である。熱せられた空気が上昇気流となることを利用するなどして空気の入れ替えを行う「自然空冷方式」と、ファン等により積極的に(強制的に)通風させる「強制空冷式」、などといった分類がある。液冷と比較すると構造が簡単であるというメリットがある反面、単位面積あたりの熱の移動量が液体に比べ少ないことから、多数枚のフィンなどを備えた構造の放熱器といった形態が多く見られる。 家庭用ではオートバイやラジコン、汎用機械などの発動機(四輪自動車用としてはポルシェ、フォルクスワーゲン、スバル360、マツダ・R360クーペ、トヨタ・パブリカなど一部車種に採用されたのみ)、パソコンのCPUの冷却装置などが空冷である。業務用では一部航空機用のレシプロエンジンや、更に大規模なものでは内陸部に建設された原子力発電所の原子炉や冷却塔などといった空冷のケースもある。また、液冷システムの場合も、その多くは、温まった冷却液を、熱源から離れた場所まで移動させて空冷で冷やすという形で空冷を併用している。.

新しい!!: 冷却と空冷 · 続きを見る »

絶対零度

絶対零度(ぜったいれいど、Absolute zero)とは、絶対温度の下限で、理想気体のエントロピーとエンタルピーが最低値になった状態、つまり 0 度を表す。理想気体の状態方程式から導き出された値によるとケルビンやランキン度の0 度は、セルシウス度で −273.15 ℃、ファーレンハイト度で −459.67 である。 絶対零度は最低温度とされるが、エンタルピーは0にはならない。統計力学では0 K未満の負温度が存在する。.

新しい!!: 冷却と絶対零度 · 続きを見る »

無重量状態

無重力状態 無重量状態(むじゅうりょう じょうたい)とは、万有引力および遠心力などの慣性力が互いに打ち消しあい、それらの合力が0ないしは0とみなしうる程度に小さくなっている状態。台ばかりで計られるような類の重さ(すなわち重量)が0となっている状態であることから無重量状態と呼ばれる。類義語ないしは同義語としての無重力(むじゅうりょく)という言葉が用いられる。近年では、微小重力という語も用いられる。 無重量環境下の特徴は、無対流、無静圧、無浮力、無沈降、無接触浮遊などであり、薬品や合金の製造などにおいて、地表のような重力下では実現不能な現象を観察・利用できる。 無重量状態は、スペースシャトルのような宇宙機や宇宙ステーション内、飛行機の放物線飛行(パラボリックフライト、嘔吐彗星)によるもの、塔からの自由落下などにより、人工的につくることができる。 宇宙開発機関・企業に加えて、現代では航空会社が研究者向けのサービスとして無重量状態を含む飛行を請け負うこともあり、フランスのや日本のダイヤモンドエアサービスなどが実験支援する装置を搭載した航空機を飛行させている。.

新しい!!: 冷却と無重量状態 · 続きを見る »

熱の流れは様々な方法で作ることができる。 熱(ねつ、heat)とは、慣用的には、肌で触れてわかる熱さや冷たさといった感覚である温度の元となるエネルギーという概念を指していると考えられているが、物理学では熱と温度は明確に区別される概念である。本項目においては主に物理学的な「熱」の概念について述べる。 熱力学における熱とは、1つの物体や系から別の物体や系への温度接触によるエネルギー伝達の過程であり、ある物体に熱力学的な仕事以外でその物体に伝達されたエネルギーと定義される。 関連する内部エネルギーという用語は、物体の温度を上げることで増加するエネルギーにほぼ相当する。熱は正確には高温物体から低温物体へエネルギーが伝達する過程が「熱」として認識される。 物体間のエネルギー伝達は、放射、熱伝導、対流に分類される。温度は熱平衡状態にある原子や分子などの乱雑な並進運動の運動エネルギーの平均値であり、熱伝達を生じさせる性質をもつ。物体(あるいは物体のある部分)から他に熱によってエネルギーが伝達されるのは、それらの間に温度差がある場合だけである(熱力学第二法則)。同じまたは高い温度の物体へ熱によってエネルギーを伝達するには、ヒートポンプのような機械力を使うか、鏡やレンズで放射を集中させてエネルギー密度を高めなければならない(熱力学第二法則)。.

新しい!!: 冷却と熱 · 続きを見る »

熱交換器

熱交換器(ねつこうかんき)は、保有する熱エネルギーの異なる2つの流体間で熱エネルギーを交換するために使用する機器 特許庁。温度の高い物体から低い物体へ効率的に熱を移動させることで物体の加熱や冷却を行う目的で用いられる。.

新しい!!: 冷却と熱交換器 · 続きを見る »

熱伝導

熱伝導(ねつでんどう、英語: thermal conduction)は、物質の移動を伴わずに高温側から低温側へ熱が伝わる移動現象のひとつである。固体中では、熱伝導は原子の振動及びが担う。特に、金属においては、.

新しい!!: 冷却と熱伝導 · 続きを見る »

熱放射

熱放射(ねつほうしゃ、thermal radiation)は、伝熱の一種で、熱が電磁波として運ばれる現象。または物体が熱を電磁波として放出する現象をさす。熱輻射(ねつふくしゃ)、あるいは単に輻射ともいう。 熱を運ぶ過程には大きく分けて次の三通りがある。.

新しい!!: 冷却と熱放射 · 続きを見る »

相転移

転移(そうてんい、英語:phase transition)とは、ある系の相(phase)が別の相へ変わることを指す。しばしば相変態(そうへんたい、英語:phase transformation)とも呼ばれる。熱力学または統計力学において、相はある特徴を持った系の安定な状態の集合として定義される。一般には物質の三態(固体・固相、液体・液相、気体・気相)の相互変化として理解されるが、同相の物質中の物性変化(結晶構造や密度、磁性など)や基底状態の変化に対しても用いられる。相転移に現れる現象も単に「相転移」と呼ぶことがある。.

新しい!!: 冷却と相転移 · 続きを見る »

過冷却

過冷却(かれいきゃく、supercooling、undercooling)とは、物質の相変化において、変化するべき温度以下でもその状態が変化しないでいる状態を指す。たとえば液体が凝固点(転移点)を過ぎて冷却されても固体化せず、液体の状態を保持する現象。水であれば摂氏零度以下でもなお凍結しない状態を指す。第一種相転移でいう準安定状態にあたる。.

新しい!!: 冷却と過冷却 · 続きを見る »

蒸発熱

蒸発熱(じょうはつねつ、heat of evaporation)または気化熱(きかねつ、heat of vaporization)とは、液体を気体に変化させるために必要な熱のことである。気化熱は潜熱の一種であるので、蒸発潜熱または気化潜熱ともいう。固体を気体に変化させるために必要な熱は昇華熱(しょうかねつ、heat of sublimation)または昇華潜熱という『新物理小事典』「気化熱」。。単に気化熱というときは液体の蒸発熱を指すことが多いが、液体の蒸発熱と固体の昇華熱を合わせて気化熱ということもある。以下この項目では、便宜上、液体の気化熱を蒸発熱と呼び、液体の蒸発熱と固体の昇華熱を合わせて気化熱と呼ぶ。 固体や液体が気体に変化する現象を気化という。気化にはエネルギーが必要である。物質が気化するとき、多くの場合、気化に必要なエネルギーは熱として物質に吸収される。多くのエアコンや冷蔵庫で、この吸熱作用を利用したヒートポンプという技術が使われている。 気化に必要なエネルギーは物質により異なる。データ集などでは、物質 1 キログラム当たりの値または物質 1 モル当たりの値が気化熱として記載されている。単位はそれぞれ kJ/kg (キロジュール毎キログラム)および kJ/mol (キロジュール毎モル)である。例えば 25 ℃ における水の蒸発熱は 2442 kJ/kg であり 44.0 kJ/mol である平衡蒸気圧の下での値。特記ない限り本文中の蒸発熱は次のサイトに依る: 。気化熱の大きさは、同じ物質でも気化する状況により変わる。通常は、1 気圧における沸点での値か、25 ℃ における平衡蒸気圧での値が物質の蒸発熱としてデータ集に記載されている本文中で引用した蒸発熱の値は、とくに断らない限り、1 気圧における沸点での値である。。例えば 1 気圧、100 ℃ の水の蒸発熱は 2257 kJ/kg であり、飽和水蒸気圧(32 hPa)の下での 25 ℃ の蒸発熱 2442 kJ/kg より1割近く減少する。 気体が液体に変化するときに放出される凝縮熱(ぎょうしゅくねつ、heat of condensation)の値は、同じ温度と同じ圧力の蒸発熱の値に符号も含めて等しい。 モル当たりの蒸発熱は、液体中で分子の間に働く引力に、分子が打ち勝つためのエネルギーであると解釈される。たとえばヘリウムの蒸発熱が 0.08 kJ/mol と極端に小さいのは、ヘリウム原子の間に働くファンデルワールス力が非常に弱いためである。 それに対して、液体中の分子の間に水素結合が働いていると、水やアンモニアのように蒸発熱が大きくなる。金属のモル当たりの昇華熱は、金属結合で結ばれた 1 モルの金属結晶の塊をバラバラにして 6.02×1023 個の原子にするのに必要なエネルギーに相当する。遷移金属の昇華熱は、数百キロジュール毎モルの程度である。.

新しい!!: 冷却と蒸発熱 · 続きを見る »

蒸気圧縮冷凍機

蒸気圧縮冷凍機(じょうきあっしゅくれいとうき、vapor-compression refrigerator)は気体の冷媒を圧縮機で圧縮し凝縮器で冷却して圧力が高い液体をつくり、膨張弁で圧力を下げ蒸発器で低温で気化させ気化熱で熱を奪い取るものである。 圧縮機の駆動には、電気式の場合電動機が使用される。業務用ではガスエンジン・ガスタービンエンジン・蒸気タービン利用のものがある。 圧縮機を潤滑するため冷媒となじみの良い冷凍機油が使用される。.

新しい!!: 冷却と蒸気圧縮冷凍機 · 続きを見る »

電圧

電圧(でんあつ、voltage)とは直観的には電気を流そうとする「圧力のようなもの」である-->。単位としては, SI単位系(MKSA単位系)ではボルト(V)が使われる。電圧を意味する記号には、EやVがよく使われる。 電圧は電位差ないしその近似によって定義される。 電気の流れに付いては「電流」を参照の事。.

新しい!!: 冷却と電圧 · 続きを見る »

電気機器の冷却方式

電気機器の冷却方式 (でんきききのれいきゃくほうしき) の記事では、多種多様な電気機器(含、電子機器)のうちでも、特に冷却が重要である、いわゆる強電の機器・電力機器の冷却について述べる。電力機器では、主に損失によって熱が発生する。たとえば、トランスによる電力の変換などにおいて、もし仮に損失が無く100%理想的に変換されれば、エネルギー収支として熱は絶対に発生しない。しかし一般には銅損や鉄損などといった損失をゼロにはできず熱が発生する。ある程度は自然の熱伝導に任せることもできるが、自身の発熱により自身の正常動作する温度範囲を越える、であるとか、正のフィードバックがあるため熱暴走を起こすであるとか、使用している部品が高温の環境下では極端に寿命が縮まる(例えばキャパシタには、「摂氏85度品」と「摂氏105度品」といったようなグレードがある)といった問題がある場合は、適切な熱設計が必要となる。熱設計の一部として冷却の設計があり、以下で述べるような各種の冷却法が選択される。電子機器等の冷却についても一部触れるが、主な記述はCPUの冷却装置の記事などを、また冷却に関する一般的な話は空冷・水冷・液冷の各記事も参照のこと。.

新しい!!: 冷却と電気機器の冷却方式 · 続きを見る »

送風機

送風機(そうふうき)とは、羽根車の回転運動によって気体にエネルギーを与える機械で、単位質量当たりのエネルギーが 25 kNm/kg(kJ/kg)未満のものをいう。 単位質量当たりのエネルギー25 kNm/kg は、標準空気の場合の送風機全圧約 30 kPa に相当する(JIS B 0132:2005 送風機・圧縮機用語)。 尚、改正前のJIS規格(JIS B 0132:1984)では、送風機とは圧力比2未満のものを言い、圧力比2以上のものは圧縮機に分類されていたが、ISOなどの国際規格との整合性を保つため2005年に改正された(JIS B 0132:2005 送風機・圧縮機用語 解説)。.

新しい!!: 冷却と送風機 · 続きを見る »

水面から跳ね返っていく水滴 海水 水(みず)とは、化学式 HO で表される、水素と酸素の化合物である広辞苑 第五版 p. 2551 【水】。特に湯と対比して用いられ、温度が低く、かつ凝固して氷にはなっていないものをいう。また、液状のもの全般を指すエンジンの「冷却水」など水以外の物質が多く含まれているものも水と呼ばれる場合がある。日本語以外でも、しばしば液体全般を指している。例えば、フランス語ではeau de vie(オー・ドゥ・ヴィ=命の水)がブランデー類を指すなど、eau(水)はしばしば液体全般を指している。そうした用法は、様々な言語でかなり一般的である。。 この項目では、HO の意味での水を中心としながら、幅広い意味の水について解説する。.

新しい!!: 冷却と水 · 続きを見る »

水冷

水冷(すいれい)とは、水による液冷で、水冷エンジンなどが代表例である。.

新しい!!: 冷却と水冷 · 続きを見る »

氷(冰、こおり)とは、固体の状態にある水のこと。 なお、天文学では宇宙空間に存在する一酸化炭素や二酸化炭素、メタンなど水以外の低分子物質の固体をも氷(誤解を避けるためには「○○の氷」)と呼ぶこともある。また惑星科学では、天王星や海王星の内部に存在する高温高密度の水やアンモニアの液体のことを氷と呼ぶことがある。さらに日常語でも、固体の二酸化炭素をドライアイスと呼ぶ。しかしこの記事では、水の固体を扱う。.

新しい!!: 冷却と氷 · 続きを見る »

気体

気体(きたい、gas)とは、物質の状態のひとつであり岩波書店『広辞苑』 第6版 「気体」、一定の形と体積を持たず、自由に流動し圧力の増減で体積が容易に変化する状態のこと。 「ガス体」とも。.

新しい!!: 冷却と気体 · 続きを見る »

沸騰

沸騰(ふっとう、boiling)とは、液体から気体へ相転移する気化が、液体の表面からだけでなく内部からも激しく起こる現象である。つまり水の場合で言えば、水の内部から水の分子が出て行くこととも言える。液体の内部からの気化を沸騰というのに対して、液体の表面で起こる気化は蒸発という。.

新しい!!: 冷却と沸騰 · 続きを見る »

温度

温度(おんど、temperature)とは、温冷の度合いを表す指標である。二つの物体の温度の高低は熱的な接触により熱が移動する方向によって定義される。すなわち温度とは熱が自然に移動していく方向を示す指標であるといえる。標準的には、接触により熱が流出する側の温度が高く、熱が流入する側の温度が低いように定められる。接触させても熱の移動が起こらない場合は二つの物体の温度が等しい。 統計力学によれば、温度とは物質を構成する分子がもつエネルギーの統計値である。熱力学温度の零点(0ケルビン)は絶対零度と呼ばれ、分子の運動が静止する状態に相当する。ただし絶対零度は極限的な状態であり、有限の操作で物質が絶対零度となることはない。また、量子的な不確定性からも分子運動が止まることはない。 温度はそれを構成する粒子の運動であるから、化学反応に直結し、それを元にするあらゆる現象における強い影響力を持つ。生物にはそれぞれ至適温度があり、ごく狭い範囲の温度の元でしか生存できない。なお、日常では単に温度といった場合、往々にして気温のことを指す場合がある。.

新しい!!: 冷却と温度 · 続きを見る »

1748年

記載なし。

新しい!!: 冷却と1748年 · 続きを見る »

1755年

記載なし。

新しい!!: 冷却と1755年 · 続きを見る »

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »