ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
インストール
ブラウザよりも高速アクセス!
 

充足可能性問題

索引 充足可能性問題

充足可能性問題(じゅうそくかのうせいもんだい、satisfiability problem, SAT)は、一つの命題論理式が与えられたとき、それに含まれる変数の値を偽 (False) あるいは真 (True) にうまく定めることによって全体の値を'真'にできるか、という問題をいう。SATisfiabilityの頭3文字を取ってしばしば「SAT」と呼ばれる。.

21 関係: 否定多項式時間変数 (数学)リテラルデービス・パトナムのアルゴリズム制約充足問題命題論理タブローの方法充足可能性問題Co-NP真理値DPLLアルゴリズム非決定性チューリングマシン論理和論理積論理演算子NPNP完全問題NP困難恒真式数理論理学

否定

数理論理学において否定 (ひてい、Negation) とは、命題の真と偽を反転する論理演算である。否定は英語で Not であるが、Invert とも言われ論理演算ではインバージョン(Inversion)、論理回路では Not回路やインバータ回路(Inverter)とも呼ばれ入力に対して出力が反転する。 命題 P に対する否定を ¬P, P, !P などと書いて、「P でない」とか「P の否定」、「P 以外の場合」などと読む。 ベン図による論理否定(NOT).

新しい!!: 充足可能性問題と否定 · 続きを見る »

多項式時間

多項式時間(たこうしきじかん)とは計算理論において多項式で表される計算時間。 多項式時間のアルゴリズムとは、解くべき問題の入力サイズnに対して、処理時間の上界としてnの多項式で表現できるものが存在するアルゴリズムを指す。問題入力サイズの増大に対する、処理時間の増大を表すものであることに注意されたい。 たとえばバブルソートの処理時間は要素数nに対して要素の比較・交換を行う回数は高々 \frac n(n-1) である。したがって、この場合の最悪計算量のオーダーは''O''記法を用いてO()と表される。 またクイックソートの期待計算量のオーダーはO(n \log n)、最悪計算量のオーダーはO()である。.

新しい!!: 充足可能性問題と多項式時間 · 続きを見る »

変数 (数学)

数学、特に解析学において変数(へんすう、variable)とは、未知あるいは不定の数・対象を表す文字記号のことである。代数学の文脈では不定元(ふていげん、indeterminate)の意味で変数と言うことがしばしばある。方程式において、特別な値をとることがあらかじめ期待されている場合、(みちすう)とも呼ばれる。また、記号論理学などでは(変数の表す対象が「数」に限らないという意味合いを込めて)変項(へんこう)とも言う。.

新しい!!: 充足可能性問題と変数 (数学) · 続きを見る »

リテラル

リテラル(literal)は、「文字どおり」「字義どおり」を意味する語で、 と同じくラテン語の (文字)に由来する。数理論理学とコンピュータプログラミングで異なる意味の専門用語として使われる。.

新しい!!: 充足可能性問題とリテラル · 続きを見る »

デービス・パトナムのアルゴリズム

デービス・パトナムのアルゴリズム(Davis–Putnam algorithm)は、与えられた論理式の充足可能性を調べるアルゴリズムで、連言標準形で表現された命題論理式を対象とする。アメリカ国家安全保障局の支援を受け、一階述語論理での定理自動証明のための方法として(Martin Davis)とヒラリー・パトナム(Hilary Putnam)により1958年に考案され Davis Martin.

新しい!!: 充足可能性問題とデービス・パトナムのアルゴリズム · 続きを見る »

制約充足問題

制約充足問題(せいやくじゅうそくもんだい、Constraint satisfaction problem, CSP)は、複数の制約条件を満たすオブジェクトや状態を見つけるという数学の問題を指す。CSPは特に人工知能やオペレーションズ・リサーチで研究されている。多くのCSPでは、それなりの時間内に解くのにヒューリスティクスと組合せ最適化手法を組み合わせる必要がある。 制約充足問題の具体例.

新しい!!: 充足可能性問題と制約充足問題 · 続きを見る »

命題論理

命題論理(propositional logic)とは、数理論理学(記号論理学)の基礎的な一部門であり、命題全体を1つの記号に置き換えて単純化し、論理演算を表す記号(論理記号・論理演算子)を用いて、その命題(記号)間の結合パターンを表現・研究・把握することを目的とした分野のこと。ブール論理はブール代数で形式化され2値の意味論を与えられた命題論理とみることができる。 命題を1つの記号で大まかに置き換える命題論理に対して、命題の述語(P)と主語(S)を、関数のF(x)のように別記号で表現し、更に量化子で主語(S)の数・量・範囲もいくらか表現し分けることを可能にした、すなわちより詳細に命題の内部構造を表現できるようにしたものを、述語論理と呼ぶ。.

新しい!!: 充足可能性問題と命題論理 · 続きを見る »

タブローの方法

タブローの方法(英 tableau method)とは、真理の木(truth tree)あるいは意味論的タブロー(semantic tableau)または分析タブロー(analytic tableau)と呼ばれるものを用いて、論証の妥当性や、論理式が矛盾しているかやトートロジーであるかを機械的に調べる判定手続き(decision procedure)の一種である。ヤーッコ・ヒンティッカらのモデル集合という考え方を応用して作られ、レイモンド・スマリヤンによって広められた。.

新しい!!: 充足可能性問題とタブローの方法 · 続きを見る »

充足可能性問題

充足可能性問題(じゅうそくかのうせいもんだい、satisfiability problem, SAT)は、一つの命題論理式が与えられたとき、それに含まれる変数の値を偽 (False) あるいは真 (True) にうまく定めることによって全体の値を'真'にできるか、という問題をいう。SATisfiabilityの頭3文字を取ってしばしば「SAT」と呼ばれる。.

新しい!!: 充足可能性問題と充足可能性問題 · 続きを見る »

Co-NP

co-NPとは計算量理論における問題クラスの一つである。.

新しい!!: 充足可能性問題とCo-NP · 続きを見る »

真理値

真理値 (しんりち、truth value) は、命題論理などの命題の真偽を示す値である。英語のTrueとFalseから、真に対してT、偽に対してFという記号をあてることもある。論理値 (logical value) も同じ。真と偽という値をとることから真偽値ともいうが、非古典論理などで多値論理における「真らしさ」の値も(真と偽以外の値にもなる)真理値である。 コンピュータプログラミング言語などのデータ型では、真理値のような型として真理値型(真偽値型、ブーリアン型などとも)があるものがある。関係演算子の結果などがブーリアン型であり、さらに論理演算子などで組み合わせることができ、それをif文などの制御構造や、条件演算子などで使用できる。.

新しい!!: 充足可能性問題と真理値 · 続きを見る »

DPLLアルゴリズム

Davis-Putnam-Logemann-Lovelandアルゴリズム(DPLLアルゴリズム、Davis-Putnam-Logemann-Loveland algorithm)とは、数理論理学および計算機科学において、論理式の充足可能性を調べるアルゴリズムである。連言標準形で表現された命題論理式を対象とし、論理式を真(True)にできるかどうかを判定する。この判定問題はCNF-SATと呼ばれる。 このアルゴリズムは、1960年に発表されたデービス・パトナムのアルゴリズム(Davis–Putnam algorithm)の改良版として、1962年に、、が発表した 。 なお、文献によってはDPLLアルゴリズムのことをデービス・パトナムのアルゴリズムと呼ぶことがある。それぞれは異なった規則を使用し、正確には異なる。.

新しい!!: 充足可能性問題とDPLLアルゴリズム · 続きを見る »

非決定性チューリングマシン

非決定性チューリング機械(ひけっていせいチューリングきかい、Non-deterministic Turing machine, NTM)は、理論計算機科学において、非決定性有限オートマトンのように働く制御機構を持つチューリング機械である。.

新しい!!: 充足可能性問題と非決定性チューリングマシン · 続きを見る »

論理和

''P'' ∨ ''Q'' のベン図による表現 数理論理学において論理和(ろんりわ、Logical disjunction)とは、与えられた複数の命題のいずれか少なくとも一つが真であることを示す論理演算である。離接(りせつ)、選言(せんげん)とも呼び、ORとよく表す。 二つの命題 P, Q に対する論理和を P ∨ Q と書き、「P または Q」と読む。後述のように、日常会話における「または」とは意味が異なる。.

新しい!!: 充足可能性問題と論理和 · 続きを見る »

論理積

数理論理学において論理積(ろんりせき、logical conjunction)とは、与えられた複数の命題のいずれもが例外なく真であることを示す論理演算である。合接(ごうせつ)、連言(れんげん、れんごん)とも呼び、ANDとよく表す。 二つの命題 P, Q に対する論理積を P ∧ Q と書き、「P かつ Q」や「P そして Q」などと読む。 ベン図による論理積P \wedge Q の表.

新しい!!: 充足可能性問題と論理積 · 続きを見る »

論理演算子

論理演算子(ろんりえんざんし、Logical operator)は、コンピュータプログラミング言語など(コンピュータ関係に限らず、命題論理の命題においてなど、普通にもっと一般に使われる)における論理演算の演算子である。プログラミング言語の場合は短絡評価の演算子であることが多い。 ベン図による論理積 (AND) ベン図による論理和 (OR) ベン図による論理否定 (NOT) Category:プログラミング言語の構文.

新しい!!: 充足可能性問題と論理演算子 · 続きを見る »

NP

NPは、複雑性クラスのひとつで、Non-deterministic Polynomial time(非決定性多項式時間)の略である(「Non-P」ないしは「Not-P」ではない)。.

新しい!!: 充足可能性問題とNP · 続きを見る »

NP完全問題

NP完全(な)問題(エヌピーかんぜん(な)もんだい、NP-complete problem)とは、(1) クラスNP(Non-deterministic Polynomial)に属する決定問題(言語)で、かつ (2) 任意のクラスNPに属する問題から多項式時間還元(帰着)可能なもののことである。条件 (2) を満たす場合は、問題の定義が条件 (1) を満たさない場合にも、NP困難な問題とよびその計算量的な困難性を特徴づけている。多項式時間還元の推移性から、クラスNPに属する問題で、ある一つのNP完全問題から多項式時間還元可能なものも、またNP完全である。現在発見されているNP完全問題の証明の多くはこの推移性によって充足可能性問題などから導かれている。充足可能性問題がNP完全であることは1971年、スティーブン・クック(Stephen Cook (1971).

新しい!!: 充足可能性問題とNP完全問題 · 続きを見る »

NP困難

NP完全、'''NP困難'''の相関を表すベン図 NP困難(エヌピーこんなん、NP-hard)とは計算量理論において、問題が「NPに属する任意の問題と比べて、少なくとも同等以上に難しい」ことである。正確にいうと問題 H がNP困難であるとは、「NPに属する任意の問題 L が H へ帰着可能である」と定義される。この「帰着」の定義として何を用いるかにより微妙に定義が異なることになるが、例えば多項式時間多対一帰着や多項式時間チューリング帰着を用いる。NP困難問題を解ける多項式時間の機械がもしあれば、それを利用してNPに属するどの問題も多項式時間で解くことができる。 NP完全問題とは、NP困難であり、かつNPに属する問題である。これと異なり、NP困難である問題はNPに属するとは限らない。NPは決定問題のクラスなのでNP完全もまた決定問題に限られるが、定義に用いる帰着の種類によってはNP困難には決定問題、探索問題(en)、組合せ最適化問題など様々な問題が属しうる。 上に挙げた定義から、問題 H がNP困難なとき次のことが言える(以下は定義ではなく主張)。.

新しい!!: 充足可能性問題とNP困難 · 続きを見る »

恒真式

恒真式(こうしんしき、トートロジー、tautology、ギリシャ語のταυτο「同じ」に由来)とは論理学の用語で、「aならば aである(a → a)」「aである、または、aでない(a ∨ ¬a)」のように、そこに含まれる命題変数の真理値、あるいは解釈に関わらず常に真となる論理式である。.

新しい!!: 充足可能性問題と恒真式 · 続きを見る »

数理論理学

数理論理学(mathematische Logik、mathematical logic)は、論理学(形式論理学)の数学への応用の探求ないしは論理学の数学的な解析を主たる目的とする、数学の関連分野である。局所的には数理論理学は超数学、数学基礎論、理論計算機科学などと密接に関係している。数理論理学の共通な課題としては形式体系の表現力や形式証明系の演繹の能力の研究が含まれる。 数理論理学はしばしば集合論、モデル理論、再帰理論、証明論の4つの領域に分類される。これらの領域はロジックのとくに一階述語論理や定義可能性に関する結果を共有している。計算機科学(とくに)における数理論理学の役割の詳細はこの記事には含まれていない。詳細はを参照。 この分野が始まって以来、数理論理学は数学基礎論の研究に貢献し、また逆に動機付けられてきた。数学基礎論は幾何学、算術、解析学に対する公理的な枠組みの開発とともに19世紀末に始まった。20世紀初頭、数学基礎論は、ヒルベルトのプログラムによって、数学の基礎理論の無矛盾性を証明するものとして形成された。クルト・ゲーデルとゲルハルト・ゲンツェンによる結果やその他は、プログラムの部分的な解決を提供しつつ、無矛盾性の証明に伴う問題点を明らかにした。集合論における仕事は殆ど全ての通常の数学を集合の言葉で形式化できることを示した。しかしながら、集合論に共通の公理からは証明することができない幾つかの命題が存在することも知られた。むしろ現代の数学基礎論では、全ての数学を展開できる公理系を見つけるよりも、数学の一部がどのような特定の形式的体系で形式化することが可能であるか(逆数学のように)ということに焦点を当てている。.

新しい!!: 充足可能性問題と数理論理学 · 続きを見る »

ここにリダイレクトされます:

充足可能性

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »