ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
ダウンロード
ブラウザよりも高速アクセス!
 

停止性問題

索引 停止性問題

計算可能性理論において停止(性)問題(ていしせいもんだい・ていしもんだい、halting problem)は、あるチューリング機械(≒コンピュータプログラム・アルゴリズム)が、そのテープのある初期状態(≒入力)に対し、有限時間で停止するか、という問題。アラン・チューリングが1936年、停止性問題を解くチューリング機械が存在しない事をある種の対角線論法のようにして証明した。すなわち、そのようなチューリング機械の存在を仮定すると「自身が停止すると判定したならば無限ループを行い、停止しないと判定したならば停止する」ような別のチューリング機械が構成でき、矛盾となる。.

19 関係: 帰納的可算集合帰納的集合チャイティンの定数チューリングマシンラムダ計算ライスの定理ロビンソン算術プログラム (コンピュータ)アラン・チューリングアルゴリズムエンコードカントールの対角線論法ゲーデルの不完全性定理ゲーデル数ゲオルク・カントール理論計算機科学算術的階層無限ループ計算可能性理論

帰納的可算集合

帰納的可算集合(きのうてきかさんしゅうごう、Recursively enumerable set)は、計算理論または再帰理論におけるある種の集合に付与された名前。自然数の集合 S について以下が成り立つ場合、その集合を指して帰納的可算、計算可枚挙、半決定可能、証明可能、チューリング-認識可能などと称する。.

新しい!!: 停止性問題と帰納的可算集合 · 続きを見る »

帰納的集合

指示関数が帰納的関数となるような集合を帰納的集合(きのうてきしゅうごう)という。 たとえば、素数の集合は、帰納的集合である。一方で停止性問題(実行すると停止するプログラムと入力の組の集合)は帰納的でない。.

新しい!!: 停止性問題と帰納的集合 · 続きを見る »

チャイティンの定数

チャイティンの定数(チャイティンのていすう、Chaitin's constant)は、計算機科学の一分野であるアルゴリズム情報理論の概念で、非形式的に言えば無作為に選択されたプログラムが停止する確率を表した実数である。グレゴリー・チャイティンの研究から生まれた。停止確率(ていしかくりつ、Halting probability)とも。 停止確率は無限に多数存在するが、Ω という文字でそれらをあたかも1つであるかのように表すのが普通である。Ω はプログラムを符号化する方式に依存するので、符号化方式を特定せずに議論する場合は Chaitin's construction と呼ぶことがある。 個々の停止確率は正規かつ超越的な実数であり、計算不可能である。つまりその各桁を列挙するアルゴリズムは存在しない。.

新しい!!: 停止性問題とチャイティンの定数 · 続きを見る »

チューリングマシン

チューリングマシン (Turing Machine) は計算模型のひとつで、計算機を数学的に議論するための単純化・理想化された仮想機械である。.

新しい!!: 停止性問題とチューリングマシン · 続きを見る »

ラムダ計算

ラムダ計算(ラムダけいさん、lambda calculus)は、計算模型のひとつで、計算の実行を関数への引数の評価(evaluation)と適用(application)としてモデル化・抽象化した計算体系である。ラムダ算法とも言う。関数を表現する式に文字ラムダ (λ) を使うという慣習からその名がある。アロンゾ・チャーチとスティーヴン・コール・クリーネによって1930年代に考案された。1936年にチャーチはラムダ計算を用いて一階述語論理の決定可能性問題を(否定的に)解いた。ラムダ計算は「計算可能な関数」とはなにかを定義するために用いられることもある。計算の意味論や型理論など、計算機科学のいろいろなところで使われており、特にLISP、ML、Haskellといった関数型プログラミング言語の理論的基盤として、その誕生に大きな役割を果たした。 ラムダ計算は1つの変換規則(変数置換)と1つの関数定義規則のみを持つ、最小の(ユニバーサルな)プログラミング言語であるということもできる。ここでいう「ユニバーサルな」とは、全ての計算可能な関数が表現でき正しく評価されるという意味である。これは、ラムダ計算がチューリングマシンと等価な数理モデルであることを意味している。チューリングマシンがハードウェア的なモデル化であるのに対し、ラムダ計算はよりソフトウェア的なアプローチをとっている。 この記事ではチャーチが提唱した元来のいわゆる「型無しラムダ計算」について述べている。その後これを元にして「型付きラムダ計算」という体系も提唱されている。.

新しい!!: 停止性問題とラムダ計算 · 続きを見る »

ライスの定理

ライスの定理(ライスのていり、Rice's theorem)は、計算機科学における計算可能関数の理論に関する定理で、 定められた性質Fを満たすかどうかを任意の部分計算可能関数について判定する方法は(Fが自明な場合を除いて)存在しない、というもの。 名称の由来は Henry Gordon Rice から。.

新しい!!: 停止性問題とライスの定理 · 続きを見る »

ロビンソン算術

数理論理学においてロビンソン算術(Robinson arithmetic)あるいはQとはペアノ算術(PA)の有限部分理論であり、において最初に導入された。Qは本質的にはPAから帰納法の公理図式を取り除いたものである。それゆえQはPAよりも弱いが同一の言語を持つ不完全な理論である。Qは重要かつ興味深い対象である。というのもQは本質的決定不能かつ有限公理化可能なPAの部分理論だからである。.

新しい!!: 停止性問題とロビンソン算術 · 続きを見る »

プログラム (コンピュータ)

ンピュータプログラム(英:computer programs)とは、コンピュータに対する命令(処理)を記述したものである。コンピュータが機能を実現するためには、CPUで実行するプログラムの命令が必要である。 コンピュータが、高度な処理を人間の手によらず遂行できているように見える場合でも、コンピュータは設計者の意図であるプログラムに従い、忠実に処理を行っている。実際には、外部からの割り込み、ノイズなどにより、設計者の意図しない動作をすることがある。また設計者が、外部からの割り込みの種類を網羅的に確認していない場合もある。.

新しい!!: 停止性問題とプログラム (コンピュータ) · 続きを見る »

アラン・チューリング

アラン・マシスン・チューリング(Alan Mathieson Turing、〔テュァリング〕, 1912年6月23日 - 1954年6月7日)はイギリスの数学者、論理学者、暗号解読者、コンピュータ科学者。.

新しい!!: 停止性問題とアラン・チューリング · 続きを見る »

アルゴリズム

フローチャートはアルゴリズムの視覚的表現としてよく使われる。これはランプがつかない時のフローチャート。 アルゴリズム(algorithm )とは、数学、コンピューティング、言語学、あるいは関連する分野において、問題を解くための手順を定式化した形で表現したものを言う。算法と訳されることもある。 「問題」はその「解」を持っているが、アルゴリズムは正しくその解を得るための具体的手順および根拠を与える。さらに多くの場合において効率性が重要となる。 コンピュータにアルゴリズムをソフトウェア的に実装するものがコンピュータプログラムである。人間より速く大量に計算ができるのがコンピュータの強みであるが、その計算が正しく効率的であるためには、正しく効率的なアルゴリズムに基づいたものでなければならない。.

新しい!!: 停止性問題とアルゴリズム · 続きを見る »

エンコード

ンコード(encode)、符号化(ふごうか)とは、アナログ信号やデジタルデータに特定の方法で、後に元の(あるいは類似の)信号またはデータに戻せるような変換を加えることである。 一般的には、エンコードするための機器・回路・プログラムをエンコーダ、デコード(記事内後述を参照)するための機器・回路・プログラムをデコーダと呼んでいる。 特にコンピュータ(特にパーソナルコンピュータ)分野では、エンコードとは、音声や動画などをコーデックを用いて圧縮する事を言う。一部では「エンコ」と略して呼ぶこともある。.

新しい!!: 停止性問題とエンコード · 続きを見る »

カントールの対角線論法

ントールの対角線論法(カントールのたいかくせんろんぽう)は、数学における証明テクニック(背理法)の一つ。1891年にゲオルク・カントールによって非可算濃度を持つ集合の存在を示した論文の中で用いられたのが最初だとされている。 その後対角線論法は、数学基礎論や計算機科学において写像やアルゴリズム等が存在しない事を示す為の代表的な手法の一つとなり、例えばゲーデルの不完全性定理、停止性問題の決定不能性、時間階層定理といった重要な定理の証明で使われている。.

新しい!!: 停止性問題とカントールの対角線論法 · 続きを見る »

ゲーデルの不完全性定理

ーデルの不完全性定理(ゲーデルのふかんぜんせいていり、)又は単に不完全性定理とは、数学基礎論における重要な定理で、クルト・ゲーデルが1930年に証明したものである。;第1不完全性定理: 自然数論を含む帰納的公理化可能な理論が、ω無矛盾であれば、証明も反証もできない命題が存在する。;第2不完全性定理: 自然数論を含む帰納的公理化可能な理論が、無矛盾であれば、自身の無矛盾性を証明できない。.

新しい!!: 停止性問題とゲーデルの不完全性定理 · 続きを見る »

ゲーデル数

ーデル数(ゲーデルすう、Gödel number)は、数理論理学において何らかの形式言語のそれぞれの記号や整論理式に一意に割り振られる自然数である。クルト・ゲーデルが不完全性定理の証明に用いたことから、このように呼ばれている。また、ゲーデル数を割り振ることをゲーデル数化(Gödel numbering)と呼ぶ。 ゲーデル数のアイデアを暗に使っている例としては、コンピュータにおけるエンコードが挙げられる。 コンピュータでは何でも0と1で表し、「apple」のような文字列も0と1による数字で表す。 ゲーデル数化とは、このように文字列に数字を対応させる事を指す。 ゲーデル数化は、数式におけるシンボルに数を割り当てる符号化の一種でもあり、それによって生成された自然数の列が文字列を表現する。この自然数の列をさらに1つの自然数で表現することもでき、自然数についての形式的算術理論を適用可能となる。 ゲーデルの論文が発表された1931年以来、ゲーデル数はより広範囲な様々な数学的オブジェクトに自然数を割り振るのに使われるようになっていった。.

新しい!!: 停止性問題とゲーデル数 · 続きを見る »

ゲオルク・カントール

ルク・カントール ゲオルク・フェルディナント・ルートヴィッヒ・フィリップ・カントール(Georg Ferdinand Ludwig Philipp Cantor, 1845年3月3日 - 1918年1月6日)は、ドイツで活躍した数学者。.

新しい!!: 停止性問題とゲオルク・カントール · 続きを見る »

理論計算機科学

論計算機科学(りろんけいさんきかがく、英語:theoretical computer science)は計算機を理論的に研究する学問で、計算機科学の一分野である。計算機を数理モデル化して数学的に研究することを特徴としている。「数学的」という言葉は広義には公理的に扱えるもの全てを指すので、理論計算機科学は広義の数学の一分野でもある。理論計算機科学では、現実のコンピュータを扱うことも多いが、チューリングマシンなどの計算モデルを扱うことも多い。 理論計算機科学の代表的な分野として以下のものがある。.

新しい!!: 停止性問題と理論計算機科学 · 続きを見る »

算術的階層

算術的階層(さんじゅつてきかいそう、Arithmetical hierarchy)は、数理論理学において、集合を定義する式の複雑さに基づいて、その集合を分類した階層である。クリーネ階層(Kleene hierarchy)とも。このような分類が可能な集合は算術的である。 算術的階層は、再帰理論やペアノ算術のような形式理論の研究で重要である。 算術的階層での式や集合の分類の拡張として、超算術的階層や解析的階層がある。.

新しい!!: 停止性問題と算術的階層 · 続きを見る »

無限ループ

無限ループ(むげんループ、infinite loop)は、コンピュータ・プログラムの一連の命令が無限に繰り返される(ループする)ことである。永久ループ(えいきゅうループ)ともいう。 専門用語としては一応きちんとした意味があるが、刺激的に感じられる他の用語(例えばメモリリーク)と同様に、通俗的な使い方もされる(「日常会話での使用」を参照)。専門的な意味としての無限ループは、ようだが、実際のところそうではないこともある(#無限ループの検出)。.

新しい!!: 停止性問題と無限ループ · 続きを見る »

計算可能性理論

計算可能性理論(けいさんかのうせいりろん、computability theory)では、チューリングマシンなどの計算模型でいかなる計算問題が解けるか、またより抽象的に、計算可能な問題のクラスがいかなる構造をもっているかを調べる、計算理論や数学の一分野である。 計算可能性は計算複雑性の特殊なものともいえるが、ふつう複雑性理論といえば計算可能関数のうち計算資源を制限して解ける問題を対象とするのに対し、計算可能性理論は、計算可能関数またはより大きな問題クラスを主に扱う。.

新しい!!: 停止性問題と計算可能性理論 · 続きを見る »

ここにリダイレクトされます:

チューリングマシンの停止問題停止問題

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »