ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
インストール
ブラウザよりも高速アクセス!
 

保磁力

索引 保磁力

保磁力(ほじりょく, Coercivity)は磁化された磁性体を磁化されていない状態に戻すために必要な反対向きの外部磁場の強さをいう。 抗磁力(こうじりょく)ともいう。 保磁力の単位には、CGS単位系ではエルステッド 、SI単位ではアンペア毎メートル をもちいる。1 は 4π×10-3 である。 BHカーブ、磁性材料が外部磁場(H)の中に置かれた時の磁化(磁束密度:B)の強さを示す図。 図において、強磁性体を外部磁場の中にいれて外部磁場を大きくしていくと、磁性体は着磁される。そこから外部磁場を減少させていっても、磁性体に着いた磁力の強さは、着磁時のカーブにのって減少することはなく、ヒステリシスをもつ。 外部磁場がゼロになったとき、残っている磁化を残留磁化という。さらに逆向きの磁場を加えて、残留磁化がゼロになったときの外部磁場の強さが保磁力である。 永久磁石の材料としては保磁力が大きいことが望ましく、変圧器の磁芯などの用途では、逆に小さいことが望ましい。 保磁力は外部磁場による磁壁の動きやすさによって決まるので、材料の組織の大きさ、残留ひずみの量などで変化する。 なお、逆磁場や温度変化による磁力の減少を減磁と言い、磁力を失わせることを消磁(しょうじ, Degaussing)と言う。.

13 関係: 変圧器ヒステリシスアンペア毎メートルエルステッド国際単位系CGS単位系磁場磁化磁性体磁性材料鉄損残留応力永久磁石

変圧器

・変電所の大型変圧器 変圧器(へんあつき、transformer、Voltage converter)は、交流電力の電圧の高さを電磁誘導を利用して変換する電力機器・電子部品である。変成器(へんせいき)、トランスとも呼ぶ。電圧だけでなく電流も変化する。 交流電圧の変換(変圧)、インピーダンス整合、平衡系-不平衡系の変換に利用する。.

新しい!!: 保磁力と変圧器 · 続きを見る »

ヒステリシス

ヒステリシス (Hysteresis) とは、ある系の状態が、現在加えられている力だけでなく、過去に加わった力に依存して変化すること。履歴現象、履歴効果とも呼ぶ。.

新しい!!: 保磁力とヒステリシス · 続きを見る »

アンペア毎メートル

アンペア毎メートル(アンペアまいメートル)は、磁場の強さの単位である。1アンペア毎メートルは、磁場の方向に沿って1メートル隔てた二点間の起磁力が1アンペア(アンペア回数)である磁場の強さと定義される。 CGS単位系の磁場の強さの単位であるエルステッド(Oe)との換算は、 となる。.

新しい!!: 保磁力とアンペア毎メートル · 続きを見る »

エルステッド

ルステッド(oersted, 記号:Oe)は、CGS電磁単位系・ガウス単位系における磁場(磁界)の強さの単位である。その名前は、1820年に電流の磁気作用を発見したハンス・クリスティアン・エルステッドにちなむ。 1エルステッドは、磁場の方向に沿って1センチメートル隔てた2点間の起磁力が1ギルバートである磁場の強さと定義されている。また、半径1センチメートルの1巻きの円形の閉回路に1/2πアンペアの電流が流れている時に、閉回路の中央に生じる磁場の強さと定義することもできる。 SIにおける磁場の強さの単位はアンペア毎メートル(A/m)である。1ギルバートは10/(4π)アンペア(アンペア回数)に等しいので、1 Oe.

新しい!!: 保磁力とエルステッド · 続きを見る »

国際単位系

国際単位系(こくさいたんいけい、Système International d'unités、International System of Units、略称:SI)とは、メートル法の後継として国際的に定めた単位系である。略称の SI はフランス語に由来するが、これはメートル法がフランスの発案によるという歴史的経緯による。SI は国際単位系の略称であるため「SI 単位系」というのは誤り。(「SI 単位」は国際単位系の単位という意味で正しい。) なお以下の記述や表(番号を含む。)などは国際単位系の国際文書第 8 版日本語版による。 国際単位系 (SI) は、メートル条約に基づきメートル法のなかで広く使用されていたMKS単位系(長さの単位にメートル m、質量の単位にキログラム kg、時間の単位に秒 s を用い、この 3 つの単位の組み合わせでいろいろな量の単位を表現していたもの)を拡張したもので、1954年の第10回国際度量衡総会 (CGPM) で採択された。 現在では、世界のほとんどの国で合法的に使用でき、多くの国で使用することが義務づけられている。しかしアメリカなど一部の国では、それまで使用していた単位系の単位を使用することも認められている。 日本は、1885年(明治18年)にメートル条約に加入、1891年(明治24年)施行の度量衡法で尺貫法と併用することになり、1951年(昭和26年)施行の計量法で一部の例外を除きメートル法の使用が義務付けられた。 1991年(平成3年)には日本工業規格 (JIS) が完全に国際単位系準拠となり、JIS Z 8203「国際単位系 (SI) 及びその使い方」が規定された。 なお、国際単位系 (SI) はメートル法が発展したものであるが、メートル法系の単位系の亜流として「工学単位系(重力単位系)」「CGS単位系」などがあり、これらを区別する必要がある。 SI単位と非SI単位の分類.

新しい!!: 保磁力と国際単位系 · 続きを見る »

CGS単位系

CGS単位系(シージーエスたんいけい)は、センチメートル (centimetre)・グラム (gram)・秒 (second) を基本単位とする、一貫性のある単位系である。"CGS" は基本単位の頭文字をつなげたものである。 この単位系は1832年にカール・フリードリヒ・ガウスが提唱したのに始まる、物理学における量を距離・質量・時間の3つの独立な次元によって表そうとするものである。今日的な観点からは電磁気学を扱うには電荷の次元が欠けていたが、その導入は後のジョヴァンニ・ジョルジによる理論的な整理を待たなくてはならなかった。現在では電荷の次元が導入された、CGS静電単位系やCGS電磁単位系(後述)などとして用いられる。.

新しい!!: 保磁力とCGS単位系 · 続きを見る »

磁場

磁場(じば、Magnetic field)は、電気的現象・磁気的現象を記述するための物理的概念である。工学分野では、磁界(じかい)ということもある。 単に磁場と言った場合は磁束密度Bもしくは、「磁場の強さ」Hのどちらかを指すものとして用いられるが、どちらを指しているのかは文脈により、また、どちらの解釈としても問題ない場合も多い。後述のとおりBとHは一定の関係にあるが、BとHの単位は国際単位系(SI)でそれぞれWb/m², A/m であり、次元も異なる独立した二つの物理量である。Hの単位はN/Wbで表すこともある。なお、CGS単位系における、磁場(の強さ)Hの単位は、Oeである。 この項では一般的な磁場の性質、及びHを扱うこととする。 磁場は、空間の各点で向きと大きさを持つ物理量(ベクトル場)であり、電場の時間的変化または電流によって形成される。磁場の大きさは、+1のN極が受ける力の大きさで表される。磁場を図示する場合、N極からS極向きに磁力線の矢印を描く。 小学校などの理科の授業では、砂鉄が磁石の周りを囲むように引きつけられる現象をもって、磁場の存在を教える。このことから、磁場の影響を受けるのは鉄だけであると思われがちだが、強力な磁場の中では、様々な物質が影響を受ける。最近では、磁場や電場(電磁場、電磁波)が生物に与える影響について関心が寄せられている。.

新しい!!: 保磁力と磁場 · 続きを見る »

磁化

磁化(じか、magnetization)とは、磁性体に外部磁場をかけたときに、その磁性体が磁気的に分極して磁石となる現象のこと。また、磁性体の磁化の程度を表す物理量も磁化と呼ぶ。磁気分極(magnetic polarization)とも呼ばれる。 強磁性体は磁場をかけて磁化させた後に磁場を取り除いた後も分極が残り永久磁石となる残留磁化と呼ばれる現象があるが、これも磁化と呼ぶ場合がある。.

新しい!!: 保磁力と磁化 · 続きを見る »

磁性体

磁性体(じせいたい)とは、平易には磁性を帯びる事が可能な物質であり、専門的には反磁性体・常磁性体・強磁性体の3つに分けられる。このため、すべての物質が磁性体であるといえるが、普通は強磁性体のみを磁性体と呼ぶ。比較的簡単に磁極が消えたり反転してしまう磁性体は軟質磁性体と呼ばれ、そうでない磁性体は硬質磁性体と呼ばれる「したしむ磁性」 朝倉書店 ISBN 4-254-22764-7。 代表的な磁性体に酸化鉄・酸化クロム・コバルト・フェライトなどがある。 固体状態のものは磁石として、電動機の界磁として使用される。 硬質材料の円盤上に磁性粉を塗布あるいは蒸着したものがハードディスクドライブ(のプラッタ)に用いられる。柔軟な合成ゴムにまぜて板状にするとマグネットシートになり、液体にコロイド分散させると磁性流体となる。医療分野では強力な磁力を使ったMRIやごく微弱な磁力を利用するSQUIDの形で実用化されている。新しい情報記憶素子のMRAMなどを含むスピントロニクスと呼ばれる科学研究分野が注目されている。.

新しい!!: 保磁力と磁性体 · 続きを見る »

磁性材料

磁性材料(じせいざいりょう、magnetic material)は、強磁性体としての性質を利用してさまざまな機能を実現するために用いられる材料である。.

新しい!!: 保磁力と磁性材料 · 続きを見る »

鉄損

鉄損(てつそん、てっそん)は磁性材料(代表的には鉄類)のコアを持つインダクタや変圧器などのコイルにおいて、そのコアの物性の為に発生する損失のことである(理想的なインダクタに交流を掛けた場合、損失はゼロである)。導線における損失である銅損と合わせて、電動機や発電機、変圧器などの効率を低下させる要因の一つである。 鉄損は主としてヒステリシス損と渦電流損から成る。.

新しい!!: 保磁力と鉄損 · 続きを見る »

残留応力

残留応力 (ざんりゅうおうりょく、residual stress)とは、 外力を除去した後でも物体内に存在する応力のことである。フックの法則により残留応力に対応するひずみを、残留ひずみ(ざんりゅうひずみ、residual strain)と呼ぶ。残留応力の分布は様々だが、物体の平衡状態を満足するため、物体全体では正負の残留応力が釣り合っている。 残留応力の発生は望ましいときと望ましくないときがある。一般的に、圧縮の残留応力は強度を向上させ、引張の残留応力は強度を低下させる。例えば、レーザーピーニングはタービンエンジンファンブレードのような金属部品に有益な圧縮の残留応力を与える。また、スマートフォンのディスプレイに使用されている強化ガラスにも応用され、大きくて薄く、かつ、き裂・擦り傷に抵抗のあるものを実現している。しかし、意図しない残留応力の発生は構造物の早期破壊を引き起こす場合もある。 残留応力は様々なメカニズムで発生する。例えば、塑性変形や温度勾配、物質の相転移などがある。溶接時に発生する熱は局所的な材料の膨張を発生させる。溶接中は、溶接されている部品が移動したり、溶融金属が膨張を吸収するが、溶接完了時には、ある部分は他の場所以上に早く冷却され、残留応力が残る結果となる。.

新しい!!: 保磁力と残留応力 · 続きを見る »

永久磁石

永久磁石(えいきゅうじしゃく、permanent magnet)とは、外部から磁場や電流の供給を受けることなく磁石としての性質を比較的長期にわたって保持し続ける物体のことである。強磁性ないしはフェリ磁性を示す物体であってヒステリシスが大きく常温での減磁が少ないものを磁化して用いる。永久磁石材料に関するJIS規格としてJIS C2502、その試験法に関する規格としてJIS C2501が存在する。 実例としてはアルニコ磁石、フェライト磁石、ネオジム磁石などが永久磁石である。これに対して、電磁石や外部磁場による磁化を受けた時にしか磁石としての性質を持たない軟鉄などは一時磁石と呼ばれる。.

新しい!!: 保磁力と永久磁石 · 続きを見る »

ここにリダイレクトされます:

減磁

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »