ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

位相的場の理論

索引 位相的場の理論

位相的場の理論(いそうてきばのりろん)もしくは位相場理論(いそうばりろん)あるいはは、を計算する場の量子論である。 TQFTは物理学者により開拓されたにもかかわらず、数学的にも興味を持たれていて、結び目理論や代数トポロジーの 4次元多様体の理論や代数幾何学のモジュライ空間の理論という他のものにも関係している。サイモン・ドナルドソン, ヴォーン・ジョーンズ, エドワード・ウィッテン, や マキシム・コンツェビッチ は皆、フィールズ賞 をとり、位相的場の理論に関連した仕事を行っている。 物性物理学では、位相的場の理論は、分数量子ホール効果や、凝縮状態や他の状態のような、の低エネルギー有効理論である。.

70 関係: 可換環場の量子論外微分完全系列対称群代数幾何学代数的位相幾何学位相的弦理論位相欠陥微分同相写像圏 (数学)ミンコフスキー空間ノルムマイケル・アティヤマキシム・コンツェビッチチャーン・サイモンズ理論ハミルトニアンハール測度モース理論モジュライ空間ヤン=ミルズ理論ラグランジュ力学リー微分リーマン面ヴォーン・ジョーンズヒルベルト空間フレアーホモロジーフロベニウス多元環フィールズ賞ドナルドソン不変量ホモトピーベクトル空間分配函数 (場の量子論)分配関数エネルギー・運動量テンソルエルミート作用素エドワード・ウィッテンオブザーバブルガウス・ボネの定理キャッソン不変量グロモフ・ウィッテン不変量ケーラー多様体シンプレクティック幾何学シグマモデルジョーンズ多項式サイモン・ドナルドソン円分体共形場理論BFモデル真空期待値...結び目理論統計力学経路積分物性物理学直線束相関関数表現論複素多様体距離函数背景独立性関手連結空間JHEPPublications Mathématiques de l'IHÉS正則正則関数汎函数微分数論トポロジー時間発展4次元多様体 インデックスを展開 (20 もっと) »

可換環

数学、特に抽象代数学の一分野である環論における可換環(かかんかん、commutative ring)は、その乗法が可換であるような環をいう。可換環の研究は可換環論あるいは可換代数学と呼ばれる。 いくつか特定の種類の可換環は以下のようなクラスの包含関係にある。.

新しい!!: 位相的場の理論と可換環 · 続きを見る »

場の量子論

場の量子論(ばのりょうしろん、英:Quantum Field Theory)は、量子化された場(素粒子物理ではこれが素粒子そのものに対応する)の性質を扱う理論である。.

新しい!!: 位相的場の理論と場の量子論 · 続きを見る »

外微分

可微分多様体上、外微分(がいびぶん、exterior derivative)は関数の微分の概念を高次の微分形式に拡張する。外微分はエリ・カルタンによって最初に現在の形式で記述された。それによってベクトル解析のストークスの定理、ガウスの定理、グリーンの定理の自然な、距離に依存しない一般化ができる。 形式を無限小 次元平行面体を通る流量を測るものと考えれば、その外微分を -平行面体の境界を通る正味の流れを測るものと考えることができる。.

新しい!!: 位相的場の理論と外微分 · 続きを見る »

完全系列

ホモロジー代数における完全系列(かんぜんけいれつ、exact sequence)あるいは完全列(かんぜんれつ)とは、環上の加群や群などの系列で各射の像空間が次の射の核空間と正確に合致するという意味で完全であるものをいう。.

新しい!!: 位相的場の理論と完全系列 · 続きを見る »

対称群

対称群(たいしょうぐん、)とは、「ものを並べ替える」という操作を元とする群である。この場合の「ものを並べ替える」操作のことを置換(ちかん、)という。数学の議論の様々な場面で「番号づけられて並んでいるものを入れ替える」「入れ替えの可能性すべてを調べる」ことが問題となり、対称群はそのような議論を定式化するために用いられる。置換のうちで特別なものだけを集めて得られる群は置換群(ちかんぐん、)と呼ばれる。置換群が空間 の変換群として与えられているとき、 の元 の置換は で与えられる の部分群の分だけ潰れているが、これは のなかに と「同じ」元が複数含まれている場合に対応しており、 の中でこれらを区別することができれば の元の置換から対称群 が回復される。.

新しい!!: 位相的場の理論と対称群 · 続きを見る »

代数幾何学

代数幾何学(だいすうきかがく、algebraic geometry)とは、多項式の零点のなすような図形を代数的手法を用いて(代数多様体として)研究する数学の一分野である。大別して、「多変数代数函数体に関する幾何学論」「射影空間上での複素多様体論」とに分けられる。前者は代数学の中の可換環論と関係が深く、後者は幾何学の中の多様体論と関係が深い。20世紀に入って外観を一新し、大きく発展した数学の分野といわれる。 ルネ・デカルトは、多項式の零点を曲線として幾何学的に扱う発想を生みだしたが、これが代数幾何学の始まりとなったといえる。例えば、x, y を実変数として "x2 + ay2 − 1" という多項式を考えると、これの零点のなす R2 の中の集合は a の正、零、負によってそれぞれ楕円、平行な2直線、双曲線になる。このように、多項式の係数と多様体の概形の関係は非常に深いものがある。 上記の例のように、代数幾何学において非常に重要な問題として「多項式の形から、多様体を分類せよ」という問題が挙げられる。曲線のような低次元の多様体の場合、分類は簡単にできると思われがちだが、低次元でも次数が高くなるとあっという間に分類が非常に複雑になる。 当然、次元が上がると更に複雑化し、4次元以上の代数多様体についてはあまり研究は進んでいない。 2次元の場合、多様体に含まれる(−1)カーブと呼ばれる曲線を除外していくことにより、特殊な物をのぞいて極小モデルと呼ばれる多様体が一意に定まるので、2次元の場合の分類問題は「極小モデルを分類せよ」という問題に帰着される。 3次元の場合も同じように極小モデルを分類していくという方針が立てられたが、3次元の場合は、その極小モデルが一意に定まるかどうかが大問題であった。 しかし、1988年森重文により3次元多様体の極小モデル存在定理が証明され、以降「森のプログラム」と呼ばれるプログラムに沿って分類が強力に推し進められている。 19世紀中期に、ベルンハルト・リーマンがアーベル関数論の中で双有理同値など代数幾何学の中心概念を生み出し、19世紀後半には、イタリアの直観的な代数幾何学が発展した(代数幾何学のイタリア学派)。20世紀前半には、アンドレ・ヴェイユ、オスカー・ザリスキによって、抽象的な代数幾何学の研究が進められ、1950年代以降はグロタンディークのスキーム論によって代数幾何学全体が大きく書き直された。.

新しい!!: 位相的場の理論と代数幾何学 · 続きを見る »

代数的位相幾何学

代数的位相幾何学(だいすうてきいそうきかがく、英語:algebraic topology、代数的トポロジー)は代数的手法を用いる位相幾何学の分野のことをいう。 古典的な位相幾何学は、図形として取り扱い易い多面体を扱っていたが、1900年前後のポワンカレの一連の研究を契機として20世紀に発展した。 ポワンカレは 1895年に出版した "Analysis Situs" の中で、ホモトピーおよびホモロジーの概念を導入した。これらはいまや代数的位相幾何学の大きな柱であると考えられている。 多様体、基本群、ホモトピー、ホモロジー、コホモロジー、ファイバー束などの、位相空間の不変量として代数系を対応させ、位相的性質を代数的性質に移して研究する..

新しい!!: 位相的場の理論と代数的位相幾何学 · 続きを見る »

位相的弦理論

論物理学では、位相的弦理論(いそうてきげんりろん、topological string theory)は弦理論の単純化されたバージョンである。位相的弦理論の作用素は、ある個数の超対称性を保存する(物理的に)完全な弦理論の作用素の代数を表わす。位相的弦理論は通常の弦理論のを位相的にツイストすることで得られる。ツイストされると、作用素は異なるスピンを与えられる.この操作は関連する概念である位相場理論の構成の類似物である.結局、位相的弦理論は局所的な自由度を持たない。 位相的弦理論には2つの主要なバージョンがあり、ひとつは位相的A-モデルであり、もうひとつは位相的B-モデルである。一般的に位相的弦理論の計算の結果は、完全な弦理論の時空の量の中の超対称性により保存される値、正則な量をエンコードしている.位相弦の様々な計算はチャーン・サイモンズ理論、グロモフ・ウィッテン不変量、ミラー対称性、ラングランズプログラムやその他、多くのトピックに密接に関連している。 位相的弦理論は、エドワード・ウィッテンやカムラン・ヴァッファなどの物理学者により確立され研究されている。.

新しい!!: 位相的場の理論と位相的弦理論 · 続きを見る »

位相欠陥

数学、物理学における位相欠陥(いそうけっかん、トポロジカルソリトンと呼ばれることもある)とは、ホモトピー非同値な境界条件の存在に起因する偏微分方程式や場の量子論の解のことである。 位相欠陥は、通常、微分方程式において保たれる非自明なホモトピー群によって特徴づけられる境界条件によって生じる。微分方程式のこれらの解は、トポロジカルに異なり、その違いはホモトピー類により分類される。 位相欠陥は摂動に対して安定なだけでなく、崩壊したりすることはない。数学的な言葉でいえば、連続変形により(ホモトピー的に)自明な解に移ることはないということである。 位相欠陥の例として、可解系におけるソリトン(孤立波)や、結晶材料におけるらせん転位、場の量子論におけるWess-Zumino-Witten模型のスキルミオンなどがある。 位相欠陥は、物性物理学における相転移の駆動力となっているとされる。代表的な例として、液晶におけるらせん転位や刃状転位、超伝導体における磁束、超流動における渦などののを持つ系に見られる。.

新しい!!: 位相的場の理論と位相欠陥 · 続きを見る »

微分同相写像

数学において、微分同相写像(びぶんどうそうしゃぞう、diffeomorphism)は滑らかな多様体の同型写像である。それは1つの可微分多様体を別の可微分多様体に写す可逆関数であって、関数と逆関数が両方滑らかであるようなものである。.

新しい!!: 位相的場の理論と微分同相写像 · 続きを見る »

圏 (数学)

数学の一分野である圏論において中核的な概念を成す圏(けん、category)は、数学的構造を取り扱うための枠組みであり、数学的対象をあらわす対象とそれらの間の関係を表す射の集まりによって与えられる。圏はそれ自体、群に類似した代数的構造として理解することができる 二つの圏が等しい(相等)とは、それらの対象の集まりが等しく、かつそれら対象の間の射の集まりが等しく、さらにそれら射の対の結合の仕方が相等となることを言う。圏論の目的に照らせば、圏がまったく相等しいことは非常に強すぎる条件であり(それよりも緩いでさえ強すぎる)、圏同値がしばしば考慮される(二つの圏が同値であるとは、大まかに言えば圏の相等において等式で与えられる関係を、それぞれの圏における同型で置き換えたものとして与えられる)。 圏論が初めて現れるのは Eilenberg–Mac Lane, "General Theory of Natural Equivalences" (1945) と題された論文である。古典的だが今もなお広く用いられる教科書として、マクレーンの がある。.

新しい!!: 位相的場の理論と圏 (数学) · 続きを見る »

ミンコフスキー空間

ミンコフスキー空間(ミンコフスキーくうかん、Minkowski space)とは、非退化で対称な双線型形式を持つ実ベクトル空間である。ドイツの数学者のヘルマン・ミンコフスキーに因んで名付けられている。アルベルト・アインシュタインによる特殊相対性理論を定式化する枠組みとして用いられる。この特定の設定の下では空間に時間を組み合わせた時空を表現するため、物理学の文脈ではミンコフスキー時空とも呼ばれる。.

新しい!!: 位相的場の理論とミンコフスキー空間 · 続きを見る »

ノルム

解析学において、ノルム (norm, Norm) は、平面あるいは空間における幾何学的ベクトルの "長さ" の概念の一般化であり、ベクトル空間に対して「距離」を与えるための数学の道具である。ノルムの定義されたベクトル空間を線型ノルム空間または単にノルム空間という。.

新しい!!: 位相的場の理論とノルム · 続きを見る »

マイケル・アティヤ

マイケル・アティヤ(Michael F. Atiyah、1929年4月22日 - )は、アティヤ=シンガーの指数定理、ゲージ理論の研究などで知られるイギリスの数学者。現代最高の数学者の一人とみなされている。父はアラブ研究で知られる歴史家の、弟は弁護士の。 その発想は素直で自然であり、数学の諸分野、また理論物理学までをも結びつけるスケールの大きさが印象的である。業績が多分野に関係するせいか、数学者には珍しく共著の論文が多い。 サイモン・ドナルドソン、ナイジェル・ヒッチン、ピーター・クロンハイマー、フランシス・カーワン、ルース・ローレンスなど優れた弟子を育て、また、エドワード・ウィッテンを見出したことでも知られる。 1983年に英国王室よりナイトの称号を得る。1990年から1995年まで王立協会会長を務めた。.

新しい!!: 位相的場の理論とマイケル・アティヤ · 続きを見る »

マキシム・コンツェビッチ

マキシム・コンツェビッチ マキシム・コンツェビッチ(Максим Концевич,Maxim Kontsevich, 1964年8月25日 - )は、ロシア出身の数学者。専門は数理物理学、代数幾何学、トポロジー。 モスクワ大学で数学を学び、ドイツのボン大学で の指導の下、1992年に博士号を取得。 1998年のICM(Berlin, German)でフィールズ賞を受賞した。 現在はフランスのIHES教授兼ラトガース大学教授。 業績に、 ウィッテン予想の証明。つまり量子重力の二つのモデルが等価であることの証明や位相的場の理論における貢献。 結び目理論におけるコンツェビッチ不変量(完全な量子不変量として期待されている。)の構成、一般のポアソン多様体の変形量子化、 行列型エアリー関数の構成、量子コホモロジー環の定式化、モチーフ的ガロア群における貢献、オペラドの再発見、 シンプレクティック幾何学の非可換化、モチーフ積分、モチーフ測度の創始、安定曲線や安定写像のモジュライスタックの超弦理論への応用、 ホモロジカルミラー対称性予想の提起、カラビ-ヤウ多様体に対する平坦構造(フロベニウス構造)の構成、リジッド解析幾何学のミラー対称性への応用。ヤコビヤン予想をディクシマー予想に帰着させた。 Cubic K3曲面におけるホモロジー的ミラー対称性予想を解決がある。 関数体上のラングランズ予想の高次元化やヴェイユ予想の高次元化を提唱した。 ドリーニュ61歳記念カンファレンスでは非可換モチーフについて講演した。.

新しい!!: 位相的場の理論とマキシム・コンツェビッチ · 続きを見る »

チャーン・サイモンズ理論

チャーン・サイモンズ理論(Chern–Simons theory)は3次元のシュワルツタイプの位相場理論であり、エドワード・ウィッテンによって発展した。この名前は作用がチャーン・サイモンズ 3-形式を積分した値に比例するからである。 凝縮系物性論では、チャーン・サイモンズ理論は状態のとして表される。数学では、ジョーンズ多項式のように結び目不変量や の不変量の計算に使われている。 特に、チャーン・サイモンズ理論は、理論のゲージ群と呼ばれる単純リー群 G と理論のレベルと呼ばれる作用にかける定数の数値により特徴付けられる。作用はゲージ変換に依存しているが、量子場理論の分配函数として、レベルが整数であり、ゲージが3-次元時空の全ての境界でゼロとなるときにうまく定義される。.

新しい!!: 位相的場の理論とチャーン・サイモンズ理論 · 続きを見る »

ハミルトニアン

ハミルトニアン(Hamiltonian)あるいはハミルトン関数、特性関数(とくせいかんすう)は、物理学におけるエネルギーに対応する物理量である。各物理系の持つ多くの性質は、ハミルトニアンによって特徴づけられる。名称はイギリスの物理学者ウィリアム・ローワン・ハミルトンに因む。 ここでは、古典力学(解析力学)と量子力学の2つの体系に分けて説明するが、量子力学が古典力学から発展した経緯から、両者は密接に関連する。ハミルトニアンはそれぞれの体系に応じて関数または演算子もしくは行列の形式をとる。例えば、古典力学においてはハミルトニアンは正準変数の関数であり、量子力学では正準変数を量子化した演算子(もしくは行列)の形をとる。.

新しい!!: 位相的場の理論とハミルトニアン · 続きを見る »

ハール測度

解析学におけるハール測度(ハールそくど、Haar measure)は、局所コンパクト位相群上で定義される正則不変測度である。ハンガリーの数学者にその名を因む。.

新しい!!: 位相的場の理論とハール測度 · 続きを見る »

モース理論

微分トポロジーにおいて、モース理論(モースりろん、Morse theory)は、多様体上の微分可能函数を研究することにより、多様体の位相的性質の分析を可能とする。 (Marston Morse) の基本的な見方に従うと、多様体上の典型的な微分可能函数はその位相的性質を極めて直接的に反映する。モース理論は、多様体上のやを見つけたり、多様体のホモロジーの本質的な情報をもたらす。 モース以前は、アーサー・ケイリー (Arthur Cayley) とジェームズ・クラーク・マクスウェル (James Clerk Maxwell) がの脈絡で、モース理論のいくつかのアイデアを考え出した。モースの元来の応用は、測地線の理論(経路上のエネルギー汎函数の臨界点への応用であった。これらのテクニックは、ラウル・ボット (Raoul Bott) のの証明に使われた。 モース理論の複素多様体での類似が、ピカール・レフシェッツ理論である。.

新しい!!: 位相的場の理論とモース理論 · 続きを見る »

モジュライ空間

代数幾何学では、モジュライ空間(moduli space)とは(普通、スキーム、もしくは(algebraic stack))空間の点が、決められた種類の代数幾何学的な対象を表す点となっている、もしくは、そのような対象と(isomorphism class)を表現している点からなる幾何学的な空間のことを言う。そのような空間はしばしば分類問題の解として現れる。注目している対象の集まり(例えば、決められた種数を持つ滑らかな代数曲線のような)へ幾何学的空間の構造を与えることができると、出来上がる空間に座標を導入することで対象をパラメータ化することができる。この脈絡では、「モジュラス」という用語は「パラメータ」と同じような意味に使われる。モジュライ空間は、初期には、対象の空間というよりはパラメータの空間として理解されていた。.

新しい!!: 位相的場の理論とモジュライ空間 · 続きを見る »

ヤン=ミルズ理論

ヤン=ミルズ理論(-りろん、Yang-Mills theory)は、1954年に楊振寧とロバート・ミルズによって提唱された非可換ゲージ場の理論のことであるYang and Mills (1954)。 なお、その少し前にヴォルフガング・パウリStraumann, N: "On Pauli's invention of non-abelian Kaluza-Klein Theory in 1953" eprint arXiv.gr.

新しい!!: 位相的場の理論とヤン=ミルズ理論 · 続きを見る »

ラグランジュ力学

ラグランジュ力学(英語:Lagrangian mechanics)は、一般化座標とその微分を基本変数として記述された古典力学である。フランスの物理学者ジョゼフ=ルイ・ラグランジュが創始した。後のハミルトン力学と同様にニュートン力学を再定式化した解析力学の一形式である。.

新しい!!: 位相的場の理論とラグランジュ力学 · 続きを見る »

リー微分

数学においてリー微分(りーびぶん、Lie derivative)は、多様体 M 上のテンソル場全体の成す多元環上に定義される微分(導分とも)の一種である。ソフス・リーにちなんで名づけられた。M 上のリー微分全体の成すベクトル空間は次で定義されるリー括弧積 について無限次元のリー環を成す。リー微分は M 上の流れ(flow; フロー、activeen な微分同相写像)の無限小生成作用素としてベクトル場によって表される。もう少し別な言い方をすれば、リー群論の方法の直接の類似物ではあるが、M 上の微分同相写像全体の成す群は付随するリー環構造(もちろんそれはリー微分全体のなすリー環のことだが)を持つということができる。.

新しい!!: 位相的場の理論とリー微分 · 続きを見る »

リーマン面

数学、特に複素解析においてリーマン面(Riemann surface)とは、連結な複素 1 次元の複素多様体のことである。ベルンハルト・リーマンにちなんで名付けられた。 リーマン面は、複素平面を変形したものと考えられる。 各点の近くで局所的には、複素平面の部分に似ているが、大域的位相は大きく異なり得る。例えば、球面、トーラス、または互いに糊付けした二枚の面のように見え得る。 リーマン面の主要な意味合いは、正則関数がそこで定義できることである。 今日、リーマン面は正則関数、特に、平方根や自然対数等の多価関数の大域的振る舞いを研究するための自然な土台と考えられている。 全てのリーマン面は向きづけ可能な実 2 次元の実解析的多様体(従って曲面)であって、正則関数を一義的に定義するために必要な追加的構造(特に複素構造)を含む。2 次元実多様体は、それが向き付け可能な場合、かつその場合に限り、(通常は、等価でない複数の方法により)リーマン面にすることができる。従って、球面やトーラスは複素構造を持ち得るが、メビウスの輪、クラインの壺および射影平面は持ち得ない。 リーマン面は、でき得る限り良い特性を有しているという幾何学的事実から、他の曲線、多様体または代数多様体に対し一般化の直感および動機をしばしばもたらす。リーマン・ロッホの定理は、この影響の第一の例である。.

新しい!!: 位相的場の理論とリーマン面 · 続きを見る »

ヴォーン・ジョーンズ

ヴォーン・ジョーンズ(Sir Vaughan Frederick Randal Jones、KNZM、1952年12月31日 - )は、ニュージーランド出身の数学者。ヴァンダービルト大学特別教授、カリフォルニア大学バークレー校名誉教授、オークランド大学招聘教授。 1990年フィールズ賞受賞。専門はフォン・ノイマン環、数理物理学、低次元位相幾何学、代数解析学の研究。.

新しい!!: 位相的場の理論とヴォーン・ジョーンズ · 続きを見る »

ヒルベルト空間

数学におけるヒルベルト空間(ヒルベルトくうかん、Hilbert space)は、ダフィット・ヒルベルトにその名を因む、ユークリッド空間の概念を一般化したものである。これにより、二次元のユークリッド平面や三次元のユークリッド空間における線型代数学や微分積分学の方法論を、任意の有限または無限次元の空間へ拡張して持ち込むことができる。ヒルベルト空間は、内積の構造を備えた抽象ベクトル空間(内積空間)になっており、そこでは角度や長さを測るということが可能である。ヒルベルト空間は、さらに完備距離空間の構造を備えている(極限が十分に存在することが保証されている)ので、その中で微分積分学がきちんと展開できる。 ヒルベルト空間は、典型的には無限次元の関数空間として、数学、物理学、工学などの各所に自然に現れる。そういった意味でのヒルベルト空間の研究は、20世紀冒頭10年の間にヒルベルト、シュミット、リースらによって始められた。ヒルベルト空間の概念は、偏微分方程式論、量子力学、フーリエ解析(信号処理や熱伝導などへの応用も含む)、熱力学の研究の数学的基礎を成すエルゴード理論などの理論において欠くべからざる道具になっている。これら種々の応用の多くの根底にある抽象概念を「ヒルベルト空間」と名付けたのは、フォン・ノイマンである。ヒルベルト空間を用いる方法の成功は、関数解析学の実りある時代のさきがけとなった。古典的なユークリッド空間はさておき、ヒルベルト空間の例としては、自乗可積分関数の空間 、自乗総和可能数列の空間 、超関数からなるソボレフ空間 、正則関数の成すハーディ空間 などが挙げられる。 ヒルベルト空間論の多くの場面で、幾何学的直観は重要である。例えば、三平方の定理や中線定理(の厳密な類似対応物)は、ヒルベルト空間においても成り立つ。より深いところでは、部分空間への直交射影(例えば、三角形に対してその「高さを潰す」操作の類似対応物)は、ヒルベルト空間論における最適化問題やその周辺で重要である。ヒルベルト空間の各元は、平面上の点がそのデカルト座標(直交座標)によって特定できるのと同様に、座標軸の集合(正規直交基底)に関する座標によって一意的に特定することができる。このことは、座標軸の集合が可算無限であるときには、ヒルベルト空間を自乗総和可能な無限列の集合と看做すことも有用であることを意味する。ヒルベルト空間上の線型作用素は、ほぼ具体的な対象として扱うことができる。条件がよければ、空間を互いに直交するいくつかの異なる要素に分解してやると、線型作用素はそれぞれの要素の上では単に拡大縮小するだけの変換になる(これはまさに線型作用素のスペクトルを調べるということである)。.

新しい!!: 位相的場の理論とヒルベルト空間 · 続きを見る »

フレアーホモロジー

数学において、フレアーホモロジー(Floer homology)は、シンプレクティック幾何学や低次元トポロジーの研究に使用される有用なツールである。フレアーホモロジーは、有限次元のモース理論の無限次元の類似として発生した高級な不変量である。アンドレアス・フレアー(Andreas Floer)は、現在はハミルトニアンフレアーホモロジーと呼ばれているフレアーホモロジーの最初のバージョンを導入し、シンプレクティック幾何学のアーノルド予想の証明に使った。フレアーは、これと密接に関連するシンプレクティック多様体のラグランジアン部分多様体の理論を開発した。フレアーは、また、シンプレクティック多様体のラグランジアン部分多様体に密接に関連する理論も開発した。フレアーが第三番目に構成したことは、ヤン・ミルズ汎函数を使い、ホモロジー群を閉 3次元多様体へ関連付けた。これらの理論とそれの適用は、3次元や 4次元トポロジーと同様に、シンプレクティック多様体や接触多様体の現在の研究で、基本的な役割を果たしている。 フレアーホモロジーは、無限次元多様体とその上の実数値函数をある興味深い対象へ結び付けることにより定義される。例えば、シンプレクティック幾何学のバージョンでは、フレアーホモロジーは、シンプレクティック作用汎函数をシンプレクティック多様体の自由ループ空間へ結び付ける。、3次元多様体の((instanton))バージョンでは、3次元多様体上のSU(2)-接続の空間へ結び付ける。おまかに言うと、フレアーホモロジーは、無限次元多様体の上の自然な函数から計算されるモースホモロジーである。この自然な函数は、シンプレクティックな場合は、シンプレクティック作用を持つシンプレクティック多様体の自由ループ空間であり、3次元多様体の場合は、チャーン-サイモンズ汎函数を持つ 3次元多様体上の SU(2)-接続の空間である。大まかには、フレアーホモロジーは、無限次元多様体上の函数のモースホモロジーである。フレアーチェーン複体は、函数の臨界点(critical point)(もしくは、臨界点のある集まりでもよい)で張られるアーベル群から構成される。チェーン複体の微分は、臨界点と臨界点と(従って、臨界点の集まり)を結ぶ函数の勾配の力線の数を数えることにより定義される。このベクトル空間の線型な自己準同型は、2つの臨界点を結ぶ函数の勾配の力線を数えることで定義される。フレアーホモロジーは、このチェーン複体のホモロジーである。 フレアーのアイデアをうまく適用できる状況では、勾配の力線の方程式が、幾何学的解析的に扱いやすい典型的な方程式である。シンプレクティックフレアーホモロジーに対し、ループ空間の中の経路の勾配の力線の方程式は、注目しているシンプレクティック多様体への円筒形(cylinder)(ループの経路の全空間)からの写像のコーシー・リーマンの方程式(の摂動バージョン)であり、解は(pseudoholomorphic curves)として知られている。従って、(Gromov compactness theorem)は、微分が well-defined で、二乗が 0 となるので、フレアーホモロジーを定義することができることを示した。インスタントンフレアーホモロジーに対し、勾配の力線の方程式はまさに、実直線と交差する 3次元多様体上のヤン・ミルズ方程式である。.

新しい!!: 位相的場の理論とフレアーホモロジー · 続きを見る »

フロベニウス多元環

フロベニウス多元環(フロベニウスたげんかん、Frobenius algebra)、あるいはフロベニウス代数とは、数学の表現論や加群論において有限次元な単位的結合多元環のうち、良い双対理論を与える特別な双線型形式を持つものをいう。 フロベニウス多元環は1930年代に Brauer と Nesbitt によって有限群のモジュラー表現の一般化として研究され始め、Frobenius にちなんで名づけられた。中山は および特に において豊かな双対理論を初めて発見した。デュドネはこれを用いて においてフロベニウス多元環を特徴づけ、フロベニウス多元環のこの性質を perfect duality と呼んだ。フロベニウス多元環は準フロベニウス環(右正則表現が移入的なネーター環)へと一般化された。最近では、フロベニウス多元環への関心は、位相的場の理論との関連からも高まっている。 体上の有限次元多元環に対しては以下のようなクラスの階層がある。.

新しい!!: 位相的場の理論とフロベニウス多元環 · 続きを見る »

フィールズ賞

フィールズ賞(フィールズしょう)は、若い数学者のすぐれた業績を顕彰し、その後の研究を励ますことを目的に、カナダ人数学者ジョン・チャールズ・フィールズ (John Charles Fields, 1863–1932) の提唱によって1936年に作られた賞のことである。.

新しい!!: 位相的場の理論とフィールズ賞 · 続きを見る »

ドナルドソン不変量

ドナルドソン理論 (Donaldson theory) は、を用いた滑らかな4次元多様体の研究である。この理論は、コンパクト単連結4次元多様体の2次コホモロジー群上の可能な二次形式を制限してドナルドソンの定理を証明したサイモン・ドナルドソン (1983) により始められた。 ドナルドソン理論の結果の多くは微分構造を持つ多様体に依存し、4次元位相多様体に対しては正しくない。 ドナルドソン理論の定理の多くは今ではを用いると容易に証明できる。.

新しい!!: 位相的場の理論とドナルドソン不変量 · 続きを見る »

ホモトピー

数学におけるホモトピー (homotopy)とは、点や線や面などの幾何学的対象、あるいはそれらの間の連続写像が連続的に移りあうということを定式化した位相幾何学における概念のひとつである。位相幾何学では、2 つの対象 A と X との関係のうち、連続的な変形によって保たれるものを問題とすることが多い。これらの関係はふつう連続写像 A → X を通して定義され、ホモトピーの概念は連続的に変形する連続写像の族によって定式化される。ホモトピー的な種々の不変量は位相幾何学の研究における基本的な道具となる。 考察している幾何学的対象に「穴」が開いていれば、端を固定された曲線はそれを越えて連続的に変形することができない。したがって、ホモトピーによって「穴」の有無や、単純な構成要素に分解したときのそれらの組み合わせ的なつながり具合といった構造を調べることができる。ホモトピーが威力を発揮するのは、空間や写像といった幾何学的な対象に対し群や準同型などという代数的な対象を対応づけることであり、またそのような代数的な対象がしばしばもとの幾何学的な対象よりも単純化されているということにある。 このように、代数的な道具によって空間と写像の位相的性質を調べるという方法をとる幾何学は、代数的位相幾何学と呼ばれる。.

新しい!!: 位相的場の理論とホモトピー · 続きを見る »

ベクトル空間

数学、特に線型代数学におけるベクトル空間(ベクトルくうかん、vector space)、または、線型空間(せんけいくうかん、linear space)は、ベクトルと呼ばれる元からなる集まりの成す数学的構造である。ベクトルには和が定義され、またスカラーと呼ばれる数による積(「スケール変換」)を行える。スカラーは実数とすることも多いが、複素数や有理数あるいは一般の体の元によるスカラー乗法を持つベクトル空間もある。ベクトルの和とスカラー倍の演算は、「ベクトル空間の公理」と呼ばれる特定の条件(後述)を満足するものでなければならない。ベクトル空間の一つの例は、力のような物理量を表現するのに用いられる幾何ベクトルの全体である(同じ種類の任意の二つの力は、加え合わせて力の合成と呼ばれる第三の力のベクトルを与える。また、力のベクトルを実数倍したものはまた別の力のベクトルを表す)。同じ調子で、ただしより幾何学的な意味において、平面や空間での変位を表すベクトルの全体もやはりベクトル空間を成す。 ベクトル空間は線型代数学における主題であり、ベクトル空間はその次元(大雑把にいえばその空間の独立な方向の数を決めるもの)によって特徴づけられるから、その観点からはよく知られている。ベクトル空間は、さらにノルムや内積などの追加の構造を持つこともあり、そのようなベクトル空間は解析学において主に函数をベクトルとする無限次元の函数空間の形で自然に生じてくる。解析学的な問題では、ベクトルの列が与えられたベクトルに収束するか否かを決定することもできなければならないが、これはベクトル空間に追加の構造を考えることで実現される。そのような空間のほとんどは適当な位相を備えており、それによって近さや連続性といったことを考えることができる。こういた位相線型空間、特にバナッハ空間やヒルベルト空間については、豊かな理論が存在する。 歴史的な視点では、ベクトル空間の概念の萌芽は17世紀の解析幾何学、行列論、連立一次方程式の理論、幾何ベクトルの概念などにまで遡れる。現代的な、より抽象的な取扱いが初めて定式化されるのは、19世紀後半、ペアノによるもので、それはユークリッド空間よりも一般の対象が範疇に含まれるものであったが、理論の大半は(直線や平面あるいはそれらの高次元での対応物といったような)古典的な幾何学的概念を拡張することに割かれていた。 今日では、ベクトル空間は数学のみならず科学や工学においても広く応用される。ベクトル空間は線型方程式系を扱うための適当な線型代数学的概念であり、例えば画像圧縮ルーチンで使われるフーリエ展開のための枠組みを提示したり、あるいは偏微分方程式の解法に用いることのできる環境を提供する。さらには、テンソルのような幾何学的および物理学的な対象を、抽象的に座標に依らない で扱う方法を与えてくれるので、そこからさらに線型化の手法を用いて、多様体の局所的性質を説明することもできるようになる。 ベクトル空間の概念は様々な方法で一般化され、幾何学や抽象代数学のより進んだ概念が導かれる。.

新しい!!: 位相的場の理論とベクトル空間 · 続きを見る »

分配函数 (場の量子論)

場の量子論では、分配函数(partition function) Z は、相関函数の母函数である。通常、分配函数は、次のの形で表現される。 ここに S は作用汎函数とする。 場の量子論における分配函数は、数学的な分配函数の特別の場合であり、統計力学の分配函数と関係している。二番目の差異は、より単純な分配函数の定義に見られるの可算個の集まりが、非可算な集合に取って替わられ、従って、場 \phi を渡るを使うことが必須となる。 Z.

新しい!!: 位相的場の理論と分配函数 (場の量子論) · 続きを見る »

分配関数

統計力学において、分配関数(ぶんぱいかんすう、Partition function)または状態和(じょうたいわ、state sum, sum over states)は、ある系の物理量の統計集団的平均を計算する際に用いられる規格化定数を指す。単に分配関数と呼ぶときはカノニカル分布における分配関数を指し、ドイツ語で状態和を表す語Zustandssummeに由来する記号Zで表すW.

新しい!!: 位相的場の理論と分配関数 · 続きを見る »

エネルギー・運動量テンソル

ネルギー・運動量テンソル(エネルギー・うんどうりょうテンソル、、、)とは、質量密度、エネルギー密度、エネルギー流、運動量密度、応力を相対性理論に基づいた形式で記述した物理量である。 一般相対性理論において、アインシュタイン方程式の物質分布を示す項として登場し、重力を生じさせる源()としての意味を持つ。 エネルギー・運動量テンソルは二階のテンソルであり、記号は T^ で表されることが多い。アインシュタイン方程式で、真空の状況を考える時は、T^.

新しい!!: 位相的場の理論とエネルギー・運動量テンソル · 続きを見る »

エルミート作用素

ルミート作用素(エルミートさようそ、Hermitian operator, Hermitian)または自己共役作用素(じこきょうやくさようそ、self adjoint operator)は、複素ヒルベルト空間上の線形作用素で、その共役作用素が自分自身に一致するようなもののことである。物理学ではエルミート演算子とも呼ばれる。エルミートという名称は、フランス人数学者シャルル・エルミートに因む。.

新しい!!: 位相的場の理論とエルミート作用素 · 続きを見る »

エドワード・ウィッテン

ドワード・ウィッテン(Edward Witten, 1951年8月26日 - )は超弦理論においてM理論を提唱した理論物理学者。現在はプリンストン高等研究所教授。 メリーランド州ボルチモア生まれ。父親は一般相対性理論の研究者で元シンシナティ大学教授のルイス・ウィッテン。当初はジャーナリストを志望し、ブランダイス大学時代は歴史学や言語学を専攻。米国雑誌『The Nation』や『THE NEW REPUBLIC』に寄稿する他、1972年の大統領選で大敗したジョージ・マクガヴァンの選挙運動に携わった。 ウィスコンシン大学マディソン校大学院で経済学を専攻するが中退し、1973年にプリンストン大学大学院で応用数学を専攻。後に物理学に移り、デビッド・グロスの下で1976年に博士号を取得した。 その後ハーヴァード大学のフェローなどを経て、1980年から1987年までプリンストン大学物理学科の教授を務めた。1995年に南カリフォルニア大学で開かれたスーパーストリング理論国際会議で、仮説M理論を発表し学会に衝撃を与える。1990年、数学に関する最高権威を有するフィールズ賞を受賞。 ネーサン・サイバーグとは友人で共同研究者。米制作ドキュメンタリー「美しき大宇宙」(原題:The Elegant Universe)に出演している。.

新しい!!: 位相的場の理論とエドワード・ウィッテン · 続きを見る »

オブザーバブル

ブザーバブル(英語:Observable)とは量子力学で、観測と呼ばれる物理的操作により決定できるような系の状態の性質をいう。可観測量、観測可能量と訳すこともある。具体的には、位置、運動量、角運動量、エネルギーなどといった物理量に相当するものである。 古典力学では実験的に観測可能な量はすべて、系のとる状態により一義的に決まる関数とみることができる。しかし量子力学では、状態と量との関係は一義的ではなく、状態からオブザーバブルを用いて確率的に求められるのみである。現実の測定値はこの確率に従って出現する。.

新しい!!: 位相的場の理論とオブザーバブル · 続きを見る »

ガウス・ボネの定理

微分幾何学において、ガウス・ボネの定理(Gauss–Bonnet theorem)、あるいはガウス・ボネの公式(Gauss–Bonnet formula)は、(曲率の意味で)曲面の幾何学と(オイラー標数の意味での)曲面のトポロジーと結びつける重要な定理である。命名はこの定理に最初に気づいたが出版しなかったカール・フリードリッヒ・ガウス(Carl Friedrich Gauss)と、1848年に特殊な場合について出版した(Pierre Ossian Bonnet)にちなんでいる。.

新しい!!: 位相的場の理論とガウス・ボネの定理 · 続きを見る »

キャッソン不変量

数学の一分野である幾何学的トポロジーの(3-dimensional topology)では、キャッソン不変量(Casson invariant)は、(Andrew Casson)により導入された向き付け可能な整数(homology 3-sphere)の整数値不変量である。 ケルビン・ウォーカー(Kevin Walker)は、1992年に、キャッソン・ウォーカー不変量(Casson-Walker invariant)と呼ばれる(rational homology 3-sphere)の拡張を発見し、クリスティーヌ・レスコップは、1995年にすべての閉じたな向きつけられた(3-manifold)へ拡張した。.

新しい!!: 位相的場の理論とキャッソン不変量 · 続きを見る »

グロモフ・ウィッテン不変量

数学、特にシンプレクティックトポロジーや代数幾何学では、グロモフ・ウィッテン(GW)不変量(Gromov–Witten (GW) invariant)は、ある状況下では、与えられたシンプレクティック多様体の中で決められた条件にあう(pseudoholomorphic curve)を数える有理数である。GW不変量は、ホモロジーやコホモロジー類として適切な空間の中に実現され、あるいは量子コホモロジーの変形されたカップ積として実現される。これらの不変量は、以前は識別できなかったシンプレクティック多様体を識別することに使われる。GW不変量はまた、閉じたタイプ IIA弦理論で重要な役目を果たす。GW不変量は、ミハイル・グロモフ(Mikhail Leonidovich Gromov)とエドワード・ウィッテン(Edward Witten)の名前にちなんでいる。 数学的に厳密なグロモフ・ウィッテン不変量の定義は、長く難しいので、安定写像という記事と分けて扱う。本記事では、何が不変を意味するか、どのようにして計算するか、なぜグロモフ・ウィッテン不変量が重要なのかのより直感的な説明を試みる。.

新しい!!: 位相的場の理論とグロモフ・ウィッテン不変量 · 続きを見る »

ケーラー多様体

数学、特に微分幾何学において、ケーラー多様体(Kähler manifold)とは、複素構造、リーマン構造、シンプレクティック構造という3つが互いに整合性を持つ多様体である。ケーラー多様体 X 上には、ケーラーポテンシャルが存在し、X の計量に対応するレヴィ・チヴィタ接続が、標準直線束上の接続を引き起こす。 滑らかな射影代数多様体はケーラー多様体の重要な例である。小平埋め込み定理により、正の直線束を持つケーラー多様体は、常に射影空間の中へ双正則に埋め込むことができる。 ケーラー多様体の名前はドイツ人数学者エーリッヒ・ケーラー (Erich Kähler) にちなんでいる。.

新しい!!: 位相的場の理論とケーラー多様体 · 続きを見る »

シンプレクティック幾何学

ンプレクティック幾何学(シンプレクティックきかがく、symplectic geometry)とは、シンプレクティック多様体上で展開される幾何学をいう。シンプレクティック幾何学は解析力学を起源とするが、現在では大域解析学の一分野でもあり、可積分系・非可換幾何学・代数幾何学などとも深い繋がりを持つ。また、弦理論や超対称性との関わりも盛んに研究がなされている。.

新しい!!: 位相的場の理論とシンプレクティック幾何学 · 続きを見る »

シグマモデル

物理学では、シグマモデル(sigma model)は次の形のラグラジアン密度を記述する物理系である。 gij の中のスカラーに依存して、この系が線型シグマモデルか、もしくは、非線型シグマモデルかという区分けを持つ。一般に、場 φi は、と呼ばれる基礎となる多様体から、内部対称性により互いに関係つけられたスカラーの対象(リーマン)多様体への写像をもたらす。(しかし、弦理論では、実際の時空であると解釈されていることがよくある。) シグマモデルは、 により導入された。名前の σ-model は、シュウィンガー(Schwinger)により早期に導入されていたスカラーが、σ(sigma) と呼ばれるスピンを持たないメソンにを表す場のモデルであることに由来している。モデルは、O(4) から O(3) への自発的対称性の破れを重要な典型例である。対称性のやぶれた 3つの軸性生成子は、最も単純な(chiral symmetry breaking)の記述となっている。このときに、復活した対称性のやぶれていない O(3) はアイソスピンを表す。 基本的な例は、一次元の場の量子論である量子力学によりもたらされる。このシグマモデルは、基礎となる多様体は時間(区間、または円など)を実数の線型パラメータを持ち、対象空間は実数の直線である。 トーション(torsion)項を持つ場合の議論は、さらに興味深いWZWモデルを提供する。.

新しい!!: 位相的場の理論とシグマモデル · 続きを見る »

ジョーンズ多項式

数学の結び目理論の分野において、ジョーンズ多項式 (Jones polynomial)は ヴォーン・ジョーンズが1983年に発見した多項式不変量である。明確に言うと、ジョーンズ多項式は向き付けられた結び目 または 絡み目の結び目不変量で、整数を係数とする t^ の ローラン多項式 で与えられる。 ジョーンズの発見以来、後述のように数学・物理学のさまざまな話題との関係が発見され議論されている。.

新しい!!: 位相的場の理論とジョーンズ多項式 · 続きを見る »

サイモン・ドナルドソン

イモン・ドナルドソン(Simon Kirwan Donaldson, 1957年8月20日 - )は、イギリスの数学者。専門は代数幾何学、微分幾何学、大域解析学。 ケンブリッジ生まれ。ケンブリッジ大学とオックスフォード大学で数学を学ぶ。プリンストン高等研究所、オックスフォード大学を経て、現在インペリアル・カレッジ・ロンドン教授。マイケル・アティヤとナイジェル・ヒッチンの弟子。 1982年に四次元ユークリッド空間において異種微分構造が存在することを、Yang-Millsゲージ理論を用いて示し、当時の数学界に衝撃を与えた。この業績により1986年にフィールズ賞を受賞した。1986年王立協会選出。.

新しい!!: 位相的場の理論とサイモン・ドナルドソン · 続きを見る »

円分体

円分体 (えんぶんたい、cyclotomic field) は、有理数体に、1 の m(>2) 乗根 \scriptstyle\zeta(\ne\pm 1) を添加した代数体である。円分体およびその部分体のことを円体ともいう。 以下において、特に断らない限り、\zeta_n.

新しい!!: 位相的場の理論と円分体 · 続きを見る »

共形場理論

共形場理論(きょうけいばりろん、Conformal Field Theory, CFT)とは、共形変換に対して作用が不変な場の理論である。特に、1+1次元系では複素平面をはじめとするリーマン面上での理論として記述される。 共形変換に対する不変性はWard-Takahashi恒等式を要請し、これをもとにエネルギー-運動量テンソル(あるいはストレステンソル)に関する保存量が導出される。また1+1次元系においては、エネルギー-運動量テンソルを展開したものは、Virasoro代数と呼ばれる無限次元リー代数をなし、理論の中心的役割を果たす。 共形変換群は、時空間の対称性であるポアンカレ群の自然な拡張になっており、空間d-1次元+時間1次元のd次元時空間ではリー群SO(d,2)で記述される。この変換群の生成子は(d+2)(d+1)/2個あり、その内訳は以下のとおり。.

新しい!!: 位相的場の理論と共形場理論 · 続きを見る »

BFモデル

BFモデル(BF model)は、位相的場の理論であり、量子化したとき、位相的量子場の理論となる。BFモデルは背景場(background field)を基礎としている。B と F は、以下でみるように、理論のラグランジアンに現れる変数でもあり、記号的な使い方も有用である。 M は 4-次元微分可能多様体、G はゲージ群であり「力学的」場である 2-形式 B として G のリー群の随伴表現に値を持ち、A は G の接続形式である。 作用は、 により与えられる。ここに K は \mathfrak 上の不変非退化双線型形式(G が半単純であればキリング形式はこれを満たす)であり、Fは曲率形式 である。 この作用は、微分同相不変であり、ゲージ不変である。作用のオイラー=ラグランジュ方程式は、 と である。 実際、任意の局所自由度をゲージ化することは常に可能であり、このことが位相的場の理論と呼ばれる理由である。 しかしながら、M が位相的に非自明であれば、A と B が大域的に非自明な解を持つことも可能である。 S.

新しい!!: 位相的場の理論とBFモデル · 続きを見る »

真空期待値

真空期待値(しんくうきたいち、)とは、場の量子論において、あるボース粒子の場 \, \phiの期待値\, \langle \phi \rangleが、真空においてもゼロでない値を持つこと、またはその値を言う。 単純積のときはワイトマン関数になり、左から右へ時間の大きさの順に場の演算子を並べると因果グリーン関数になる。また場の演算子の多重交換関係に時間の順序を表す階段関数の積をかけて真空期待値をとると、遅延グリーン関数になる。 エネルギー運動量テンソルの真空期待値が宇宙定数である。.

新しい!!: 位相的場の理論と真空期待値 · 続きを見る »

結び目理論

結び目理論(むすびめりろん、knot theory)とは、紐の結び目を数学的に表現し研究する学問で、低次元位相幾何学の1種である。組合せ的位相幾何学や代数的位相幾何学とも関連が深い。.

新しい!!: 位相的場の理論と結び目理論 · 続きを見る »

統計力学

統計力学(とうけいりきがく、statistical mechanics)は、系の微視的な物理法則を基に、巨視的な性質を導き出すための学問である。統計物理学 (statistical physics)、統計熱力学 (statistical thermodynamics) とも呼ぶ。歴史的には系の熱力学的な性質を気体分子運動論の立場から演繹することを目的としてルートヴィッヒ・ボルツマン、ジェームズ・クラーク・マクスウェル、ウィラード・ギブズらによって始められた。理想気体の温度と気圧ばかりでなく、実在気体についても扱う。.

新しい!!: 位相的場の理論と統計力学 · 続きを見る »

経路積分

経路積分(けいろせきぶん)あるいは径路積分は、リチャード・P・ファインマンが考案した量子力学の理論手法である。ファインマンの経路積分とも呼ばれる。.

新しい!!: 位相的場の理論と経路積分 · 続きを見る »

物性物理学

物性物理学(ぶっせいぶつりがく)は、物質のさまざまな巨視的性質を微視的な観点から研究する物理学の分野。量子力学や統計力学を理論的基盤とし、その理論部門を物性論(ぶっせいろん)と呼ぶことも多い。これらは日本の物理学界独特の名称であるが、しばしば凝縮系物理学に比定される。狭義には固体物理学を指し、広義には固体物理学(結晶・アモルファス・合金)およびソフトマター物理学・表面物理学・物理化学、プラズマ・流体力学などの周辺分野を含む。.

新しい!!: 位相的場の理論と物性物理学 · 続きを見る »

直線束

数学における直線束(ちょくせんそく、line bundle; 線束)は、空間の点から点へ動いていく直線の概念を表すものである。例えば、平面上の曲線は各点において接線を持つが、これらを構造化する方法によって接束が得られる。より厳密に、代数幾何学および微分位相幾何学における直線束は階数 のベクトル束として定義される。 一次元の実直線束(冒頭に述べたようなもの)と一次元の複素直線束は異なる。 正則実行列全体の成す空間の位相は、(正および負の実数をそれぞれ一点に縮めた)にホモトピー同値だが、 正則複素行列の空間のホモトピー型は円周である。 従って、実直線束はホモトピー論的には、二点繊維を持つファイバー束としての二重被覆も同然である。これは可微分多様体上のになる(実際これは、直線束が行列式束(接束の最高次外冪)の特別の場合であることからわかる)。メビウスの帯は円周の二重被覆(偏角を θ ↦ 2θ にする写像)に対応し、これを二点繊維を持つものとして見ることもできるが、このとき単位区間でも実数直線でもデータとしては同値である。 複素直線束の場合には、実はこれはでもあることが分かる。よく知られたものとして、例えば球面から球面へのがある。.

新しい!!: 位相的場の理論と直線束 · 続きを見る »

相関関数

物理学において相関関数(そうかんかんすう、correlation function)は、2つの物理量の間の相関を表す量である。様々な分野に登場する極めて広い概念であり、問題設定に応じて定義も僅かに異なる。.

新しい!!: 位相的場の理論と相関関数 · 続きを見る »

表現論

表現論(ひょうげんろん、representation theory)とは、ベクトル空間の線型変換として代数構造を表現することにより研究し、代数構造上の加群を研究する数学の一分野である。本質的には、表現は抽象的な代数的構造を、その元と演算を行列と行列の和や行列の積で記述することで、より具体的にする。この記述で扱われる代数的対象は、群や結合代数やリー代数がある。これらの中で最も優れているものは、歴史的にも最初に現れた群の表現論であり、群の演算が群の要素が行列の積により正則行列で表現されている。 Classic texts on representation theory include and.

新しい!!: 位相的場の理論と表現論 · 続きを見る »

複素多様体

微分幾何学で複素多様体(ふくそたようたい、complex manifold)とは、多様体上の各点の開近傍が、Cn の中の単位開円板への正則な座標変換を持つ多様体のことを言う。座標変換が正則である場合には、Cn の中で、コーシー・リーマンの方程式の制約を受ける。 複素多様体という言葉は、上の意味で可積分複素多様体として特徴づけることができる。 One must use the open unit disk in Cn as the model space instead of Cn because these are not isomorphic, unlike for real manifolds.

新しい!!: 位相的場の理論と複素多様体 · 続きを見る »

距離函数

距離函数(きょりかんすう、distance function)、距離計量(きょりけいりょう)あるいは単に距離(きょり、distance)、計量(けいりょう、metric)は、集合の二点間の距離を定義する函数である。距離が定義されている集合を距離空間(きょりくうかん、metric space)と呼ぶ。距離はその集合上の位相(距離位相)を誘導するが、必ずしもすべての位相空間が距離位相によって生成されるわけではない。ある位相空間の位相を距離によって記述することができるとき、その位相空間は距離化可能 (metrizable) であるという。.

新しい!!: 位相的場の理論と距離函数 · 続きを見る »

背景独立性

論物理学の条件である背景独立性 は、時空の形状や時空内の様々な場の値とは独立に、理論を定義する方程式を与えることである。特に、背景独立性は特定の座標系に依存しないことを意味する。加えて、異なる時空(もしくは背景)の構成は、理論を定義する方程式の別の解として得られる必要がある。.

新しい!!: 位相的場の理論と背景独立性 · 続きを見る »

関手

圏論における関手(かんしゅ、functor)は、圏から圏への構造と両立する対応付けである。関手によって一つの数学体系から別の体系への組織的な対応が定式化される。関手は「圏の圏」における射と考えることもできる。 関手の概念の萌芽はエヴァリスト・ガロアによる群を用いた代数方程式の研究に見ることができる。20世紀はじめのエミー・ネーターらによる加群の研究において拡大加群などさまざまな関手的構成が蓄積された。20世紀半ばの代数的位相幾何学において実際に関手が定義され、図形から様々な「自然な」代数的構造を取り出す操作を定式化するために利用された。ここでは(基本群のような)代数的対象が位相空間から導かれ、位相空間の間の連続写像は基本群の間の代数的準同型を導いている。その後アレクサンドル・グロタンディークらによる代数幾何学の変革の中でさまざまな数学的対象の関手による定式化が徹底的に追求された。.

新しい!!: 位相的場の理論と関手 · 続きを見る »

連結空間

位相幾何学や関連する数学の分野において、連結空間(れんけつくうかん、connected space)とは、2つ以上の互いに素な空でない開部分集合の和集合として表すことのできない位相空間のことである。空間の連結性は主要なの1つであり、位相空間の区別をつけることに利用できる。より強い意味での連結性として、弧状連結 (path-connected) という概念があり、これは任意の2点が道によって結べることをいう。 位相空間 X の部分集合が連結であるとは、X の相対位相によってそれ自身を位相空間と見たときに連結であることをいう。 連結でない空間の例は、平面から直線を取り除いたものがある。非連結空間(すなわち連結でない空間)の他の例には、平面からアニュラスを取り除いたものや、2つの交わりを持たない閉円板の和集合がある。ただし、これら3つの例はいずれも、2次元ユークリッド空間から誘導される相対位相を考えている。.

新しい!!: 位相的場の理論と連結空間 · 続きを見る »

JHEP

JHEP.

新しい!!: 位相的場の理論とJHEP · 続きを見る »

Publications Mathématiques de l'IHÉS

Publications Mathématiques de l'IHÉS はである.Institut des Hautes Études Scientifiques によって,フランス国立科学研究センター (CNRS) の援助のもと,出版されている. Publications Mathématiques は1959年に創立され,年に1巻から5巻までの不規則な間隔で出版されている.現在では年2巻である.2017年現在, は であり,彼女は の である..

新しい!!: 位相的場の理論とPublications Mathématiques de l'IHÉS · 続きを見る »

正則

正則(せいそく).

新しい!!: 位相的場の理論と正則 · 続きを見る »

正則関数

複素解析において、正則関数(せいそくかんすう、regular analytic function)あるいは整型函数(せいけいかんすう、holomorphic function)とは、ガウス平面あるいはリーマン面上のある領域の全ての点で微分可能であるような複素変数のことである。.

新しい!!: 位相的場の理論と正則関数 · 続きを見る »

汎函数微分

数学および理論物理学における汎函数微分(はんかんすうびぶん、functional derivative)は方向微分の一般化である。方向微分が有限次元のベクトルに関する微分法であるのに対して、汎函数微分は(無限次元ベクトルとしての)連続函数に対する微分法を与えるが、単純な一変数微分積分学における一次元の微分を一般化したものと見做せる点では両者は共通している。汎函数微分の数学的に厳密な取扱いは函数解析学に属する。.

新しい!!: 位相的場の理論と汎函数微分 · 続きを見る »

数論トポロジー

数論トポロジー (arithmetic topology) とは、代数的整数論と位相幾何学を組み合わせた数学の分野である。数論トポロジーは数体と向き付け可能な の間の類似を確立する。.

新しい!!: 位相的場の理論と数論トポロジー · 続きを見る »

時間発展

時間発展(じかんはってん)とは、時間が進むことで物理系が変化することである。.

新しい!!: 位相的場の理論と時間発展 · 続きを見る »

4次元多様体

数学において、4次元多様体 (4-manifold) は 4次元の位相多様体である。滑らかな4次元多様体 (smooth 4-manifold) は、をもつ 4次元多様体である。4次元では、低次元では注目すべき対比があり、位相多様体と滑らかな多様体の間で大きな差異がある。滑らかな構造を持たない 4次元多様体が存在し、たとえ、滑らかな構造が存在したとしても、一意であるとは限らない(すなわち、同相であるが微分同相ではない滑らかな多様体が存在する。.

新しい!!: 位相的場の理論と4次元多様体 · 続きを見る »

ここにリダイレクトされます:

TQFT位相場理論位相的場の量子論

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »