ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

代数的整数

索引 代数的整数

数論において代数的整数(だいすうてきせいすう、algebraic integer)とは、整数係数モニック多項式の根となるような複素数のことを言う。代数的整数の全体 A は加法と乗法について閉じており、ゆえに複素数環 C の部分環をなす。この環 A は有理整数環 Z の C における整閉包となっている。 代数体 K の整数環 O は K ∩ A に等しく、また体 K の極大整環(order)となっている。全ての代数的整数はそれぞれ何らかの代数体の整数環に属している。x が代数的整数であることは、環 Z がアーベル群として有限生成(即ち有限生成 '''Z'''-加群)であることと同値である。.

32 関係: 原始元定理平方因子をもたない整数平方数二次体互いに素五次方程式代数体代数的数モニック多項式ベズー整域アーベル–ルフィニの定理アーベル群アイゼンシュタイン整数ガウス整数シュプリンガー・サイエンス・アンド・ビジネス・メディアシルベスター行列円分体終結式複素数部分環関数の零点自由アーベル群有理数有限生成有限拡大最小多項式 (体論)既約多項式数論整閉整域整数整拡大1の冪根

原始元定理

体論において、原始元定理 (primitive element theorem) あるいは原始元に関するアルティンの定理 (Artin's theorem on primitive elements) は原始元 (primitive element) をもつ有限次体拡大すなわち単拡大を特徴づける結果である。定理は有限次拡大が単拡大であることと中間体が有限個しかないことが同値であるというものである。とくに、有限次分離拡大は単拡大である。.

新しい!!: 代数的整数と原始元定理 · 続きを見る »

平方因子をもたない整数

数学において、無平方数(むへいほうすう、square-free integer)または平方因子を持たない整数 (integer without square factors) とは、平方因子を持たない数、すなわち より大きい完全平方で割り切れないような整数(通例として正の整数)をいう。与えられた整数が無平方数であるとき、その整数は無平方 (square-free) であるともいう。例えば、10 は無平方だが、18 は 9.

新しい!!: 代数的整数と平方因子をもたない整数 · 続きを見る »

平方数

平方数(へいほうすう、)とは、自然数の自乗(二乗)で表される整数のことである。正方形の形に点を並べたときにそこに並ぶ点の総数に等しいので、四角数(しかくすう)ともいい、多角数の一種である。最小の平方数として、定義に を加えることができる。平方数は無数にあり、その列は次のようになる。 平方数の列の隣接二項間についての漸化式を考えると、 から連続する正の奇数の総和は平方数に等しい:\sum_^n (2k-1).

新しい!!: 代数的整数と平方数 · 続きを見る »

二次体

二次体 (にじたい、quadratic field) は、有理数体上、2次の代数体のことである。任意の二次体は、平方因子を含まない 0, 1 以外の整数 d を用いて、\scriptstyle\mathbb(\sqrt) と表現される。もし、d > 0 である場合、実二次体 (real quadratic field)、d \mathbb(\sqrt) は、d.

新しい!!: 代数的整数と二次体 · 続きを見る »

互いに素

二つの整数 が互いに素(たがいにそ、coprime, co-prime, relatively prime, mutually prime)であるとは、 を共に割り切る正の整数が のみであることをいう。このことは の最大公約数 が であることと同値である。 が互いに素であることを、記号で と表すこともある。 例えば と を共に割り切る正の整数は に限られるから、これらは互いに素である。一方で と は共に で割り切れるから、これらは互いに素でない。 互いに素であることの判定は素因数分解を用いて行うこともできるが、二つの整数のうち少なくとも一方が巨大である場合など一般には困難である。素因数分解によって公約数を調べる方法よりも、ユークリッドの互除法によって最大公約数を調べる方法のほうが遥かに高速である。 正の整数 と互いに素となる( から の間の)整数の個数は、オイラー関数 によって与えられる。 三つの整数 が互いに素であるとは、 が成り立つことをいう。また、、、 がすべて に等しいとき、 は対ごとに素(pairwise coprime)またはどの二つも互いに素であるという。一般に、互いに素であるからといって対ごとに素であるとは限らない(例:)。一般の 個の整数についても同様に定義される。.

新しい!!: 代数的整数と互いに素 · 続きを見る »

五次方程式

五次方程式(ごじほうていしき、英語:quintic equation)とは、次数が5であるような代数方程式のこと。.

新しい!!: 代数的整数と五次方程式 · 続きを見る »

代数体

代数体(だいすうたい、algebraic number field)とは、有理数体の有限次代数拡大体のことである。代数体 K の有理数体上の拡大次数 を、K の次数といい、次数が n である代数体を、n 次の代数体という。 特に、2次の代数体を二次体、1のベキ根を添加した体を円分体という。 K を n 次の代数体とすると、K は単拡大である。つまり、K の元 θ が存在して、K の任意の元 α は、以下の様に表される。 このとき θ は n 次の代数的数であるので、K を \mathbb 上のベクトル空間とみたとき、\ は基底となる。.

新しい!!: 代数的整数と代数体 · 続きを見る »

代数的数

代数的数(だいすうてきすう、algebraic number)とは、 複素数であって、有理数係数(あるいは同じことだが、分母を払って、 整数係数)の 0 でない一変数多項式の根 (すなわち多項式の値が 0 になるような値)となるものをいう。 すべての整数や有理数は代数的数であり、またすべての整数の冪根も代数的数である。 実数や複素数には代数的数でないものも存在し、そのような数は超越数と呼ばれる。 例えば π や e は超越数である。 ほとんどすべての複素数は超越数である(#集合論的性質)。.

新しい!!: 代数的整数と代数的数 · 続きを見る »

モニック多項式

代数学におけるモニック多項式(モニックたこうしき、monic polynomial; モノ多項式、単多項式)はが の一変数多項式を言う。変数 に関する次数 の多項式は、その一般形を c_nx^n+c_x^+\dotsb+c_2x^2+c_1x+c_0 の形に書くことができる。ただし はこの多項式の係数と呼ばれる定数で、特に係数 は最高次係数と言う。したがって -次多項式がモニックとは x^n+c_x^+\dotsb+c_2x^2+c_1x+c_0 の形に書けることである。 モニック多項式に付随する多項式方程式の性質は、係数環 に極めて依存する。.

新しい!!: 代数的整数とモニック多項式 · 続きを見る »

ベズー整域

数学において、ベズー整域 (Bézout domain) は2つの主イデアルの和が再び主イデアルになるような整域である。このことが意味するのは、元の各組に対してベズーの等式 (Bézout identity) が成り立ち、すべての有限生成イデアルは単項であるということである。任意の単項イデアル整域 (PID) はベズー整域だが、ベズー整域はネーター環とは限らないので、有限生成でないイデアルをもつかもしれない(これは明らかに PID でない)。そうであれば、一意分解整域 (UFD) ではないが、なおGCD整域である。ベズー整域の理論は PID の性質の多くを、ネーター性を要求せずに、保つ。ベズー整域はフランス人数学者 Étienne Bézout にちなんで名づけられている。.

新しい!!: 代数的整数とベズー整域 · 続きを見る »

アーベル–ルフィニの定理

アーベル–ルフィニの定理(アーベル–ルフィニのていり、Abel–Ruffini theorem)は、五次以上の代数方程式には解の公式が存在しない、と主張する定理である。より正確には、5以上の任意の整数 n に対して、一般の n 次方程式を代数的に解く方法は存在しない、という定理である。.

新しい!!: 代数的整数とアーベル–ルフィニの定理 · 続きを見る »

アーベル群

数学、とくに抽象代数学におけるアーベル群(アーベルぐん、abelian group)または可換群(かかんぐん、commutative group)は、群演算が可換な群、すなわちどの二つの元の積も掛ける順番に依らず定まる群を言う。名称は、ノルウェーの数学者ニールス・アーベルに因む。 アーベル群は環や体、環上の加群やベクトル空間といった抽象代数学の概念において、その基礎となる加法に関する群(加法群)としてしばしば生じる。任意の抽象アーベル群についても、しばしば加法的な記法(例えば群演算は "+" を用いて表され、逆元は負符号を元の前に付けることで表す)が用いられ、その場合に用語の濫用で「加法群」と呼ばれることがある。また任意のアーベル群は整数全体の成す環 上の加群とみることができ、その意味でやはり用語の濫用だがアーベル群のことを「加群」と呼ぶこともある。 一般に可換群はに比べて著しく容易であり、とくに有限アーベル群の構造は具さに知られているが、それでも無限アーベル群論はいまなお活発な研究領域である。.

新しい!!: 代数的整数とアーベル群 · 続きを見る »

アイゼンシュタイン整数

ウス平面内の、正三角形を成す格子における格子点は、アイゼンシュタイン整数を表す。 アイゼンシュタイン整数(アイゼンシュタインせいすう、Eisenstein integer)とは、フェルディナント・ゴットホルト・マックス・アイゼンシュタインにちなんで名付けられた複素数の一種である。正確には、整数 a, b と1の原始3乗根 に対して a + b ω の形の複素数のことである。b.

新しい!!: 代数的整数とアイゼンシュタイン整数 · 続きを見る »

ガウス整数

ウス整数とは、ガウス平面では格子点に当たる。 ガウス整数(ガウスせいすう、Gaussian integer)とは、実部と虚部が共に整数である複素数のことである。すなわち、(, は整数)の形の数のことである。ここで は虚数単位を表す。ガウス整数という名称は、カール・フリードリヒ・ガウスが導入したことに因む。ガウス自身はガウス整数のことを複素整数(Komplexe Ganze Zahl)と呼んだが、今日ではこの呼称は一般的ではない。 通常の整数は、 の場合なので、ガウス整数の一種である。区別のために、通常の整数は有理整数と呼ばれることもある。 数学的には一つ一つのガウス整数を考えるよりも、集合として全体の構造を考える方が自然である。ガウス整数全体の集合を と表し、これをガウス整数環と呼ぶ。すなわち、 である( は有理整数環、すなわち有理整数全体の集合を表す)。その名が示すように、ガウス整数環は加法と乗法について閉じており、環としての構造を持つ。複素数体 C の部分環であるから、整域でもある。 を有理数体、すなわち有理数全体の集合とするとき、 をガウス数体という。ガウス整数環はガウス数体の整数環である。ガウス数体は、典型的な代数体であるところの円分体や二次体の一種であるので、ガウス整数環は代数的整数論における最も基本的な対象の一つである。.

新しい!!: 代数的整数とガウス整数 · 続きを見る »

シュプリンガー・サイエンス・アンド・ビジネス・メディア

ュプリンガー・サイエンス・アンド・ビジネス・メディア(Springer Science+Business Media, Springer)は、科学(Science)、技術(Technology、工学など)、医学(Medicine)、すなわちSTM関連の書籍、電子書籍、査読済みジャーナルを出版するグローバル企業である。シュプリンガーはまた、"SpringerLink"(「シュプリンガー・リンク」) 、"SpringerProtocols"(「」) 、"SpringerImages"(「シュプリンガー・イメージ」) 、"SpringerMaterials"(「シュプリンガー・マテリアル」) などいくつかの科学データベース・サービスのホスティングも行っている。 出版物には、参考図書(Reference works、レ(リ)ファレンス・ワークス)、教科書、モノグラフ(Monograph)、(Proceedings)、叢書など多数が含まれる。また、シュプリンガー・リンクには45,000以上のタイトルが自然科学など13の主題・テーマで集められており、それらは電子書籍として利用可能である。シュプリンガーはSTM分野の書籍に関しては世界最大の出版規模を持ち、ジャーナルでは世界第2位である(第1位はエルゼビア)。 多数のインプリントや、20ヶ国に約55の発行所(パブリッシング・ハウス)、5,000人以上の従業員を抱え、毎年約2,000のジャーナル、7,000以上の新書(これにはSTM分野だけではなく、B2B分野のものも含まれる)を発刊している。シュプリンガーはベルリン、ハイデルベルク、ドルトレヒト、ニューヨークに主要オフィスを構える。近年成長著しいアジア市場のために、アジア地域本部を香港に置いており、2005年8月からは北京に代表部を設置している 。 2015年5月、シュプリンガー・サイエンス+ビジネスメディアとマクミラン・サイエンス・アンド・エデュケーションの大半の事業の合併が、欧州連合や米国司法省などの主要な公正競争監視機関により承認された。新会社の名称は「シュプリンガー・ネイチャー(Springer Nature)」。.

新しい!!: 代数的整数とシュプリンガー・サイエンス・アンド・ビジネス・メディア · 続きを見る »

シルベスター行列

ルベスター行列(シルベスターぎょうれつ、Sylvester matrix)とは、2つの多項式が共通根を持つか否かを判定する行列である。.

新しい!!: 代数的整数とシルベスター行列 · 続きを見る »

円分体

円分体 (えんぶんたい、cyclotomic field) は、有理数体に、1 の m(>2) 乗根 \scriptstyle\zeta(\ne\pm 1) を添加した代数体である。円分体およびその部分体のことを円体ともいう。 以下において、特に断らない限り、\zeta_n.

新しい!!: 代数的整数と円分体 · 続きを見る »

終結式

数学において、2つの多項式の終結式(しゅうけつしき、resultant)はそれらの係数を不定元とする整係数多項式であり、これが 0 になることと多項式が(係数体の適当な拡大体において)共通根を持つことが同値である、あるいは同じことだが、(多項式の係数体上)共通因子を持つことと同値である。古い文献では eliminant(消去式)と呼ばれることもある。 終結式は数論において、直接あるいは判別式を通して、広く用いられる。判別式は本質的に多項式とその微分の終結式である。有理係数あるいは多項式係数の2つの多項式の終結式はコンピュータで効率的に計算できる。それは の基本的なツールであり、たいていの数式処理システムの組み込み関数である。それはとりわけ、 (CAD), 有理関数の逆微分、二変数多項式方程式によって定義された曲線の描画、に対して使われる。.

新しい!!: 代数的整数と終結式 · 続きを見る »

複素数

数学における複素数(ふくそすう、complex number)は、実数の対 と と線型独立な(実数ではない)要素 の線型結合 の形に表される数(二元数: 実数体上の二次拡大環の元)で、基底元 はその平方が になるという特別な性質を持ち虚数単位と呼ばれる。 複素数全体の成す集合を太字の あるいは黒板太字で と表す。 は、実数全体の成す集合 と同様に、可換体の構造を持ち、とくに を含む代数閉体を成す。複素数体はケイリー–ディクソン代数(四元数、八元数、十六元数など)の基点となる体系であり、またさまざまな超複素数系の中で最もよく知られた例である。 複素数の概念は、一次元の実数直線を二次元の複素数平面に拡張する。複素数は自然に二次元平面上に存在すると考えることができるから、複素数全体の成す集合上に自然な大小関係(つまり全順序)をいれることはできない。すなわち は順序体でない。 ある数学的な主題や概念あるいは構成において、それが複素数体を基本の体構造として考えられているとき、そのことはしばしばそれら概念等の名称に(おおくは接頭辞「複素-」を付けることで)反映される。例えば、複素解析、複素行列、複素(係数)多項式、複素リー代数など。.

新しい!!: 代数的整数と複素数 · 続きを見る »

部分環

数学における部分環(ぶぶんかん、subring)は、環 R の部分集合 S で、R の加法と乗法をそこに制限するときそれ自身が環となり、かつ R の単位元を含むものを言う。単位元を持つことを仮定しない場合には、R の演算の制限で S が環を成すことのみを以って部分環を定義する(この場合も自動的に S は R の加法単位元を含む)。後者は前者よりも弱い条件であり、例えば任意のイデアルは(たとえ乗法的単位元を持つ環においても)後者の意味の部分環になる(この部分環が、もとの環とは異なる乗法単位元を持つ場合もあり得る)。(本項で扱う)単位元の存在を定義に含める場合には、R の部分環となるようなイデアルは R 自身に限る。.

新しい!!: 代数的整数と部分環 · 続きを見る »

関数の零点

関数 f の 零点(れいてん、zero, 根(こん、)と呼ばれることもある)とは、f の定義域の元 x であって、 を満たすようなもののことである。別の言い方をすれば、関数 f の零点 (zero) とは、x を f で写した結果が 0 (zero) となるような値 x のことである。f(x) が x で消えている (vanish) と表現することもできる。実関数、複素関数、あるいは一般に、環に値を持つ関数やに対して用いられる。 多項式の根 (root) とは、それを多項式関数として考えたときの零点のことである。代数学の基本定理によると、0 でない任意の多項式は根を高々その個だけもち、根の個数と次数は、複素数の根(あるいはより一般に代数的に閉じている拡大における根)を重複度を込めて考えると等しい。例えば、多項式 で定義される2次多項式 f は2つの根 2 と 3 をもつ。なぜなら、 となるからである。 関数が実数を実数に写すならば、その零点はグラフが ''x'' 軸と交わる点の x 座標である。この意味でそのような点 (x, 0) を x 切片 (x-intercept) とも呼ぶ。 複素数の概念は(判別式が負の値となる)二次方程式や三次方程式の根(負の数の平方根等が含まれる)を扱うために発展したものである。 最も重要な未解決問題の1つであるリーマン予想は、リーマンゼータ関数の複素根の位置に関するものである。.

新しい!!: 代数的整数と関数の零点 · 続きを見る »

自由アーベル群

抽象代数学において、自由アーベル群 (free abelian group) あるいは自由 Z-加群 (free Z-module) とは基底をもったアーベル群のことを言う。.

新しい!!: 代数的整数と自由アーベル群 · 続きを見る »

有理数

有理数(ゆうりすう、rational number) とは、二つの整数 a, b (ただし b は 0 でない)をもちいて a/b という分数で表せる数のことをいう。b.

新しい!!: 代数的整数と有理数 · 続きを見る »

有限生成

数学において有限生成は様々な数学的対象に対して用いられる。例えば.

新しい!!: 代数的整数と有限生成 · 続きを見る »

有限拡大

数学、より正確にはガロワ理論に際して代数学において、有限拡大 (extension finie) は次数有限の体の拡大である、すなわち、体 K の拡大可換体であって、K-ベクトル空間として次元が有限のものである。そのような拡大はつねに代数的である。.

新しい!!: 代数的整数と有限拡大 · 続きを見る »

最小多項式 (体論)

数学の分野である体論において、最小多項式(さいしょうたこうしき、minimal polynomial)は体の拡大 E/F と拡大体 E の元に対して定義される。元の最小多項式は、存在すれば、x を変数とする F 上の多項式環 F の元である。E の元 α が与えられたとき、Jα を f(α).

新しい!!: 代数的整数と最小多項式 (体論) · 続きを見る »

既約多項式

代数学において既約多項式(きやくたこうしき、irreducible polynomial)とは、多項式環の既約元のことである。より冗長には次のようになる。 を単位元をもつ可換環とし、その単数全体を 、一変数多項式環を とおく。多項式 が2条件.

新しい!!: 代数的整数と既約多項式 · 続きを見る »

数論

数論(すうろん、number theory)とは数、特に整数およびそれから派生する数の体系(代数体、局所体など)の性質について研究する数学の一分野である。整数論とも言う。ふつうは代数学の一分野とみなされることが多い。おおむね次の四つに分けられる。;初等整数論;代数的整数論;解析的整数論;数論幾何学 フェルマーの最終定理のように、数論のいくつかの問題については、他の数学の分野に比して問題そのものを理解するのは簡単である。しかし、使われる手法は多岐に渡り、また非常に高度であることが多い。 ガウスは次のような言葉を残している。.

新しい!!: 代数的整数と数論 · 続きを見る »

整閉整域

可換環論において、整閉整域(せいへいせいいき、Integrally closed domain)とは、商体の中で整閉な整域のことである。すなわち、整域 A の商体 K の元 x がモニックな多項式関係 x^n+a_x^+\cdots+a_0.

新しい!!: 代数的整数と整閉整域 · 続きを見る »

整数

数学における整数(せいすう、integer, whole number, Ganze Zahl, nombre entier, número entero)は、0 とそれに 1 ずつ加えていって得られる自然数 (1, 2, 3, 4, …) および 1 ずつ引いていって得られる数 (−1, −2, −3, −4, …) の総称である。 整数は数直線上の格子点として視覚化される 整数の全体からなる集合は普通、太字の Z または黒板太字の \mathbb Z で表す。これはドイツ語 Zahlen(「数」の意・複数形)に由来する。 抽象代数学、特に代数的整数論では、しばしば「代数体の整数環」の元という意味で代数的整数あるいは「整数」という言葉を用いる。有理数全体の成す体はそれ自身が代数体の最も簡単な例であり、有理数体の代数体としての整数環すなわち、「有理数の中で整なもの」の全体の成す環は、本項でいう意味での整数全体の成す環である。一般の「整数」との区別のためにここでいう意味の整数を有理整数 (rational integer) と呼ぶことがある接頭辞「有理(的)」(rational) はそもそも「整数比」であるという意味なので、この呼称は自己循環的にもみえる。しかし、有理整数と呼ぶ場合の「有理」は「有理数の中で」という程度の意味の単なる符牒であって、「整数比」という本来の意味合いに拘るのは徒労である。。.

新しい!!: 代数的整数と整数 · 続きを見る »

整拡大

可換環論において、可換環 B とその部分環 A について、B の元 b が A 係数のモニック多項式の根であるとき、b は A 上整である(integral over A)という。B のすべての元が A 上整であるとき、B は A 上整である、または、B は A の整拡大(integral extension)であるという。 本記事において、環とは単位元をもつ可換環のこととする。.

新しい!!: 代数的整数と整拡大 · 続きを見る »

1の冪根

1の冪根(いちのべきこん、root of unity)、または1の累乗根(いちのるいじょうこん)は、数学において、冪乗して 1 になる(冪単である)ような数のことである。すなわち、ある自然数 n が存在して となる z のことである。通常は複素数の範囲で考えるが、場合によっては ''p'' 進数のような他の数の体系内で考える場合もある。以下では主として複素数の場合について述べる。 自然数 n に対し、m (\zeta_n.

新しい!!: 代数的整数と1の冪根 · 続きを見る »

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »