ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
ダウンロード
ブラウザよりも高速アクセス!
 

交代群

索引 交代群

交代群(こうたいぐん、alternating group, Alternierende Gruppe)とは、有限集合の偶置換全体がなす群である。集合 上の交代群は n 次の交代群、もしくは n 文字の交代群 (the alternating group on n letters) と呼ばれ、An もしくは Alt(n), \mathfrak_n という記号で表す。これは n 変数の交代式を不変とするような変数の置換がなす群と思ってもよい。 例として、4つの元からなる集合 の交代群 A4 は以下のようになる。A4.

28 関係: 単純群可解群対称群射影線型群巡回群交換子部分群ラグランジュの定理ドーバーホモロジー (数学)アーベル群エヴァリスト・ガロアオックスフォード大学出版局ガロア理論クラインの四元群クレレ誌内部自己同型四次方程式置換 (数学)置換の符号群 (数学)群のコホモロジー群の表示自己同型自明群核 (代数学)正規部分群有限集合

単純群

数学において、単純群 (simple group)とは、自明でない正規部分群 (それ自身と自明群 (単位群) 以外の正規部分群) を持たず、またそれ自身も自明群ではない群である。単純群は自明でない正規部分群を持たないので当然直既約群であるが、直既約群は必ずしも単純群ではない (下の例参照)。 群に主組成列が存在すれば、有限個の直既約群の直積に一意的に分解される (クルル・レマク・シュミットの定理)。しかし、上記の理由により、必ずしも有限個の単純群の直積に分解されるとは限らない。もし、群が有限個の単純群の直積に分解可能であれば、その群は完全可約群または半単純群であるという。また、その場合に限って、主組成列の長さと直積の成分である単純群の個数は一致する浅野啓三・永尾汎 『群論』、岩波書店〈岩波全書〉、1965年、pp102-104。。.

新しい!!: 交代群と単純群 · 続きを見る »

可解群

数学、特に群論の分野において、可解群(かかいぐん、solvable group, soluble group、Auflösbare Gruppe)は、アーベル群から群の拡大を用いて構成できる群のことである。つまり、可解群は導来列が自明な群で終わるような群のことである。 歴史的には、「可解」という語はガロア理論による5次以上の一般の方程式は代数的に解けないこと(アーベル–ルフィニの定理)の証明から来ている。特に、標数0の体上の代数方程式が根号を用いて解けるのは対応するガロア群が可解群であるとき、およびそのときに限る。.

新しい!!: 交代群と可解群 · 続きを見る »

対称群

対称群(たいしょうぐん、)とは、「ものを並べ替える」という操作を元とする群である。この場合の「ものを並べ替える」操作のことを置換(ちかん、)という。数学の議論の様々な場面で「番号づけられて並んでいるものを入れ替える」「入れ替えの可能性すべてを調べる」ことが問題となり、対称群はそのような議論を定式化するために用いられる。置換のうちで特別なものだけを集めて得られる群は置換群(ちかんぐん、)と呼ばれる。置換群が空間 の変換群として与えられているとき、 の元 の置換は で与えられる の部分群の分だけ潰れているが、これは のなかに と「同じ」元が複数含まれている場合に対応しており、 の中でこれらを区別することができれば の元の置換から対称群 が回復される。.

新しい!!: 交代群と対称群 · 続きを見る »

射影線型群

数学における射影線型群(しゃえいせんけいぐん、projective linear group)あるいは射影一般線型群(しゃえいいっぱんせんけいぐん、projective general linear group)とは一般線型群の中心による剰余群のことである。 同様に、射影特殊線型群(しゃえいとくしゅせんけいぐん、projective special linear group)とは特殊線型群の中心による剰余群のことである。 有限体上の射影特殊線型群はほとんどの場合に非可換有限単純群となる。 これらの群は射影空間に忠実に作用する。.

新しい!!: 交代群と射影線型群 · 続きを見る »

巡回群

群論における巡回群(じゅんかいぐん、cyclic group、monogenous group)とは、ただ一つの元で生成される群(単項生成群)のことである。ここで群が「ただ一つの元で生成される」というのは、その群の適当な元 g をとれば、その群のどの元も(群が乗法的に書かれている場合は)g の整数冪として(群が加法的に書かれている場合は g の整数倍として)表されるということであり、このような元 g はこの群の生成元 (generator) あるいは原始元 (primitive) と呼ばれる。.

新しい!!: 交代群と巡回群 · 続きを見る »

交換子部分群

数学、特に抽象代数学における群の交換子部分群(こうかんしぶぶんぐん、commutator subgroup)あるいは導来部分群(どうらいぶぶんぐん、derived subgroup)は、その群の交換子全体で生成される部分群である。 交換子部分群は、それによる商がアーベル群となるような正規部分群のうちで最小のものであるという点で重要である。すなわち、 がアーベル群となる必要十分条件は正規部分群 が交換子部分群を含むことである。ゆえにある意味で交換子部分群は、群がアーベル群からどれくらい離れているかを測るものということができる。つまり、交換子部分群が大きいほど、その群はアーベル群から遠くなる。.

新しい!!: 交代群と交換子部分群 · 続きを見る »

ラグランジュの定理

ラグランジュの定理(ラグランジュのていり).

新しい!!: 交代群とラグランジュの定理 · 続きを見る »

ドーバー

ドーバー、ドーヴァー(Dover).

新しい!!: 交代群とドーバー · 続きを見る »

ホモロジー (数学)

数学、とくに代数的位相幾何学や抽象代数学において、ホモロジー (homology) (「同一である」ことを意味するギリシャ語のホモス (ὁμός) に由来)は与えられた数学的対象、例えば位相空間や群に、アーベル群や加群の列を対応させる一つの一般的な手続きをいう。より詳しい背景については ホモロジー論 を見られたい。また、ホモロジーの手法の位相空間に対する具体的な適用については特異ホモロジーを、群についてのそれは群コホモロジーを、それぞれ参照されたい。 位相空間に対しては、ホモロジー群は一般にホモトピー群よりもずっと計算しやすく、したがって、空間を分類する道具としてはより手軽に扱えるものといえるだろう。.

新しい!!: 交代群とホモロジー (数学) · 続きを見る »

アーベル群

数学、とくに抽象代数学におけるアーベル群(アーベルぐん、abelian group)または可換群(かかんぐん、commutative group)は、群演算が可換な群、すなわちどの二つの元の積も掛ける順番に依らず定まる群を言う。名称は、ノルウェーの数学者ニールス・アーベルに因む。 アーベル群は環や体、環上の加群やベクトル空間といった抽象代数学の概念において、その基礎となる加法に関する群(加法群)としてしばしば生じる。任意の抽象アーベル群についても、しばしば加法的な記法(例えば群演算は "+" を用いて表され、逆元は負符号を元の前に付けることで表す)が用いられ、その場合に用語の濫用で「加法群」と呼ばれることがある。また任意のアーベル群は整数全体の成す環 上の加群とみることができ、その意味でやはり用語の濫用だがアーベル群のことを「加群」と呼ぶこともある。 一般に可換群はに比べて著しく容易であり、とくに有限アーベル群の構造は具さに知られているが、それでも無限アーベル群論はいまなお活発な研究領域である。.

新しい!!: 交代群とアーベル群 · 続きを見る »

エヴァリスト・ガロア

ヴァリスト・ガロア(Évariste Galois, 1811年10月25日 - 1832年5月31日)は、フランスの数学者および革命家である。フランス語の原音()に忠実に「ガロワ」と表記されることもある。.

新しい!!: 交代群とエヴァリスト・ガロア · 続きを見る »

オックスフォード大学出版局

Walton Streetのオックスフォード大学出版局 オックスフォード大学出版局(オックスフォードだいがくしゅっぱんきょく、英語:Oxford University Press、略称OUP)は、イングランドのオックスフォード大学の出版局を兼ねる出版社である。OUPは世界最大の大学出版局であり、アメリカの全ての大学出版局とケンブリッジ大学出版局の合計以上の規模を誇る。OUPはケンブリッジ大学出版局とともに、イギリスの特権出版社(en:privileged presses イギリスで祈祷書・欽定訳聖書の出版権を持つ出版社)の一つである。インド・パキスタン・カナダ・オーストラリア・ニュージーランド・マレーシア・シンガポール・ナイジェリア・南アフリカ共和国など、世界中に支部を持っている。OUP USAは1896年ごろに設立され、1987年に法人化された非公開有限(en:private limited company)の子会社で、OUP初の国際ベンチャーである。1905年設立のカナダ支部は2番目。OUP全体は選挙によって選ばれた、出版局代表団(Delegates of the Press)と呼ばれる代表者たちによって運営される。出版局代表団はすべてオックスフォード大学のメンバーである。現在、OUPが用いる出版社名は二つある。第一に参考書・教育書・学術書などの大部分はOxford University Press(オックスフォード大学出版局)名義、「名声のある(prestige)」学術書はClarendon Press(クラレンドンプレス)名義である。主要な支部のほとんどは、OUP本部の書籍の発行・販売だけでなく、その地域の出版社として機能している。 OUPは1972年にアメリカの法人税を控除され、1978年にイギリスでも控除された。OUPは、慈善事業団体としてほとんどの国で所得税・法人税を控除されているが、出版物に対し、売上税その他の商取引に関する税金を払う場合もある。OUPは現在、黒字の30%(毎年最低12万ポンドの確約つき)をオックスフォード大学に送っている。OUPは出版数として世界最大の大学出版局で、毎年4500冊以上の新刊を出版し、従業員数は約4000人。OUPはオックスフォード英語辞典、、Oxford World's Classics、Oxford Dictionary of National Biographyなどの参考書・専門書・学術書を出版している。これらの重要書籍の多くが、Oxford Reference Onlineというパッケージとして電子公開されており、イギリスの公立図書館の利用者カードの所有者には無料で提供されている。 哲学者のアンドリュー・マルコムが、著書Making Namesに関する1985年の出版契約不履行について提訴した裁判で、1990年OUPはイギリス控訴院にて敗訴した。1998年、OUPは人気の高かったOxford Poetsシリーズを打ち切った。2001年、OUPはイギリスの法律系出版社Blackstoneを取得した。2003年、OUPはMacmillan PublishersからGrove Dictionary of Music and Musicians(グローヴ音楽事典)・Grove Dictionary of Art(グローヴ芸術事典)を取得した。2006年、OUPはイギリスの出版社Richmond Law & Taxを取得した。 OUPで出版された本のISBNは0-19で始まる。つまりOUPは数少ないISBN識別番号2桁の出版社のひとつなのである。(ISBN番号は13桁と決まっており、桁が少ないほど多くの図書を登録できるようになっている。).

新しい!!: 交代群とオックスフォード大学出版局 · 続きを見る »

ガロア理論

ア理論(ガロアりろん、Galois theory)は、代数方程式や体の構造を "ガロア群" と呼ばれる群を用いて記述する理論。1830年代のエヴァリスト・ガロアによる代数方程式の冪根による可解性などの研究が由来。ガロアは当時、まだ確立されていなかった群や体の考えを方程式の研究に用いていた。 ガロア理論によれば、“ガロア拡大”と呼ばれる体の代数拡大について、拡大の自己同型群の閉部分群と、拡大の中間体との対応関係を記述することができる。.

新しい!!: 交代群とガロア理論 · 続きを見る »

クラインの四元群

ラインの四元群とは、巡回群でない位数が最小の群である。また、位数2の巡回群の直積と同型である。 クラインの四群元の単位元以外の元の位数は、2である。 クラインの四元群の演算表は: また、交代群 A4 の正規部分群 と同型。.

新しい!!: 交代群とクラインの四元群 · 続きを見る »

クレレ誌

レレ誌もしくは、単にクレレとは数学誌Journal für die reine und angewandte Mathematik (純粋・応用数学雑誌の意)の通称。.

新しい!!: 交代群とクレレ誌 · 続きを見る »

内部自己同型

抽象代数学において、内部自己同型写像 (inner automorphism) は、ある操作をして、次に別の操作をして、次に最初の操作の逆をするような写像である。記号では、f^ \circ g \circ f (X) のように書ける。最初の行動と後に続くその逆の行動は、全体として得る結果を変えることもあれば(「傘をさして、雨の中を歩いて、傘をとじる」というのは単に「雨の中を歩く」のとは異なる結果になる)、変えないこともある(「左手の手袋を外し、右手の手袋を外し、左手の手袋をつける」のは「右手の手袋のみを外す」のと同じ結果になる)。 より正確には、群 の内部自己同型写像 は、 の任意の元 に対し によって定義される写像である。ここで a は G の与えられた固定された元であり、群の元の作用は右に起こると考える(なのでこれを読むとすれば「a かける x かける a−1」ということになる)。 元 を一つ固定して考えるとき、元 を の による共軛 (conjugate) (あるいは は によって と共軛である)と言い、 から を得る操作 を の による共役変換 (conjugation) または相似変換 (similarity transformation) と呼ぶ(共役類も参照)。また適当な によって の形に書けるような元を総称して の共軛元 (conjugate element) と呼ぶ。 1 つの元による共役が別の 1 つの元を変えない場合(上の「手袋」の場合)と共役によって新しい元が得られる場合(「傘」の場合)を区別することはしばしば興味の対象となる。 事実、 と言うことと と言うことは同値である。したがって、恒等写像でない内部自己同型の存在と個数は、群における交換法則の成り立たなさを測るようなものである。.

新しい!!: 交代群と内部自己同型 · 続きを見る »

四次方程式

四次方程式(よじほうていしき、quartic equation)とは、次数が 4 であるような代数方程式の事である。この項目では主に一変数の四次方程式を扱う。.

新しい!!: 交代群と四次方程式 · 続きを見る »

置換 (数学)

数学における置換(ちかん、permutation)の概念は、いくつか僅かに異なった意味で用いられるが、いずれも対象や値を「並べ替える」ことに関するものである。有り体に言えば、対象からなる集合の置換というのは、それらの対象に適当な順番を与えて並べることを言う。例えば、集合 の置換は、 の全部で六種類ある順序組である。単語のアナグラムは、単語を構成する文字列に対する置換として定められる。そういった意味での置換の研究は、一般には組合せ論に属する話題である。 相異なる n 個の対象の置換の総数は 通りであり、これは "n!" と書いて n の階乗と呼ばれる。 置換の概念は、多かれ少なかれ(あるいは陰に陽に)、数学のほとんどすべての領域に現れる。たとえばある有限集合上に異なる順序付けが考えられる場合に、単にそれらの順番を無視したいとか、無視した時にどれほどの配置が同一視されるかを知る必要があるなどの理由で、置換が行われることも多い。同様の理由で、置換は計算機科学におけるソートアルゴリズムの研究において生じる。 代数学、特に群論において、集合 S 上の置換は S から自身への全単射(つまり写像 で S の各元が像としてちょうど一つずつ現れるもの)として定義される。これは各元 s を対応する f(s) と入れ替えるという意味での S の並び替え (rearrangement) と関連する。このような置換の全体は対称群と呼ばれる群を成す。重要なことは、置換の合成が定義できること、つまり二つの並び替えを続けて行うと、それは全体として別の並べ替えになっているということである。S 上の置換は、S の元(あるいはそれを特定の記号によって置き換えたもの)を対象として、それらに対象の並び替えとして作用する。 初等組合せ論において、「」はともに n 元集合から k 個の元を取り出す方法として可能なものを数え上げる問題に関するもので、取り出す順番を勘案するのが k-順列、順番を無視するのが k-組合せである。k.

新しい!!: 交代群と置換 (数学) · 続きを見る »

置換の符号

数学において、少なくとも二元を含む有限集合 の置換( から への全単射)は大きく二つのクラス(偶置換と奇置換)に分けられる。 の任意の全順序を固定して、 の置換 の偶奇性(パリティ; 対性)は の転倒数、すなわち の元の対 で なるものの数、の偶奇性によって定義することができる。 置換 の符号 (sign) あるいは符号数 (signature) は、 が偶置換ならば, 奇置換ならば を割り当てる。置換の符号函数 は対称群 の交代指標と呼ばれる群指標を定義する。置換の符号に対する別の記法として、より一般のレヴィ–チヴィタ記号によって与えられる がある。これは から への全単射とは限らない任意の写像に対して定義され、全単射でない写像に対しては を割り当てる。 置換の符号は を の転倒数とすれば と明示的に書くことができる。 あるいは、置換の符号を置換の互換の積への分解によって定義することもできる。すなわち、置換 の互換の積への分解に現れる互換の数を とするとき、 とおくのである。置換のこのような互換の積への分解は一意ではないけれども、分解に現れる互換の総数の偶奇は置換ごとに一定しているので、この方法で置換の符号は矛盾なく定まるJacobson (2009), p. 50.

新しい!!: 交代群と置換の符号 · 続きを見る »

群 (数学)

数学における群(ぐん、group)とは最も基本的と見なされる代数的構造の一つである。群はそれ自体興味深い考察対象であり、群論における主要な研究対象となっているが、数学や物理学全般にわたってさまざまな構成に対する基礎的な枠組みを与えている。.

新しい!!: 交代群と群 (数学) · 続きを見る »

群のコホモロジー

数学、とくにホモロジー代数学において、群のコホモロジー(group cohomology)とは代数的トポロジーに由来する技法であるコホモロジー論を使って群を研究するために使われる数学的な道具立てである。群の表現のように、群のコホモロジーは群 の G 加群への作用をみることで、その群の性質を明らかにする。 加群を の元が n 単体を表す位相空間のように扱うことで、コホモロジー群 などの位相的な性質が計算できる。コホモロジー群は群 や 加群 の構造に関する洞察を与える。群のコホモロジーは加群や空間への群作用の固定点や群作用に関する商加群や商空間を研究において一定の役割を果たす。群のコホモロジーは群論そのものへの応用はもちろん、抽象代数・ホモロジー代数・代数的トポロジー・代数的整数論などの分野でも用いられている。代数的トポロジーには、群のホモロジーと呼ばれる双対理論がある。 これらの代数的な概念は位相的な概念と密接に関連している。離散群 の群のコホモロジーは を基本群とする適当な空間——つまり対応する——の特異コホモロジーである。したがって のコホモロジーは円 の特異コホモロジーと思うことができ、同様に のコホモロジーは の特異コホモロジーと思うことができる。 群のコホモロジーについては非常に多くのこと——低次コホモロジーの解釈・関手性・群の変更——が知られている。群のコホモロジーに関する主題は1920年代に始まり、1940年代後半に発達し、現在でも活発に研究が続いている。.

新しい!!: 交代群と群のコホモロジー · 続きを見る »

群の表示

数学のとくに群論における、生成元と基本関係による群の表示(ぐんのひょうじ、presentation of group)とは、群をその生成元と生成元の間に成り立つ関係によって特定することを言う。一般に群はある自由群の全射準同型像なので必ず表示を持つが、それは一意的ではない。.

新しい!!: 交代群と群の表示 · 続きを見る »

自己同型

数学において自己同型(automorphism)とは、数学的対象から自分自身への同型射のことを言う。ある解釈においては、構造を保ちながら対象をそれ自身へと写像する方法のことで、その対象の対称性を表わしていると言える。対象の全ての自己同型の集合は群を成し、自己同型群(automorphism group)と呼ばれる。大まかにいえば、自己同型は、対象の対称群である。.

新しい!!: 交代群と自己同型 · 続きを見る »

自明群

数学において、自明群、自明な群 (trivial group)、単位群 はただ1つの元からなる群である。すべてのそのような群は同型であるので、英語などではしばしば定冠詞をつけて the trivial group などと呼ばれる。自明群のただ1つの元は単位元であるので普通 0, 1, e のように文脈に応じて表記される。群の演算が ∗ であれば によって定義される。 同様に定義される自明モノイド (trivial monoid) もまた群である。その唯一の元がそれ自身の逆元でありしたがって自明群と同じであるからである。 自明群を空集合と混同してはならない。(これは元を全くもたず、単位元を欠くため、群にはなりえない。) 任意の群 G が与えられると、単位元のみからなる部分集合は、それ自身が自明群である G の部分群であり、G の自明な部分群 (trivial subgroup) と呼ばれる。また、G 自身も明らかに G の部分群であるので、G も自明な部分群と呼ばれることがあるが、これは著者によって異なるので注意が必要である。群によってはこれら以外にも自明に部分群になるものがあるが、それらは自明な部分群とは呼ばれない。 "G は非自明な真の部分群をもたない" (G has no nontrivial proper subgroups) という言い回しが意味するのは、G のすべての部分群は自明群 および群 G 自身であるということである。.

新しい!!: 交代群と自明群 · 続きを見る »

命題「p⇒q」に対して、「q⇒p」を、元の命題の逆(ぎゃく、)と言う。 ある命題とその逆の真偽は、必ずとも一致しない(逆は必ずしも真ならず)。この表現は日常生活や数学の中でことわざのように使用されることがある。 一致するような命題については「逆もまた真である」などと表現する。これは本来の用法とは異なる。「p⇒q」が真であり、「q⇒p」も真であるときに、 p と q は同値(必要十分条件)であるという。 命題「p⇒q」に対して、逆「q⇒p」の対偶「¬p⇒¬q」を、元の命題の裏と言う。命題「p⇒q」に対して、対偶「¬q⇒¬p」の逆「¬p⇒¬q」は裏に等しくなる。全ての命題に対して、逆と裏の真偽は一致する。 日常生活では、逆も必ず真であるような誤謬をすることもある。(後件肯定).

新しい!!: 交代群と逆 · 続きを見る »

核 (代数学)

数学において、準同型の核(かく、kernel)とは、その準同型の単射からのずれの度合いを測る道具である。代数系における準同型の核が "自明" (trivial) であることとその準同型が単射であることとが同値となる。.

新しい!!: 交代群と核 (代数学) · 続きを見る »

正規部分群

数学、とくに抽象代数学における正規部分群(せいきぶぶんぐん、normal subgroup)は、群の任意の元による内部自己同型のもとで不変な部分群である。正規部分群は、与えられた群から剰余群を構成するのに用いることができる。 正規部分群の重要性は、エヴァリスト・ガロアによって最初に明らかにされた。.

新しい!!: 交代群と正規部分群 · 続きを見る »

有限集合

数学において、集合が有限(ゆうげん、finite)であるとは、自然数 n を用いて という形にあらわされる集合との間に全単射が存在することをいう(ただしここでは、n.

新しい!!: 交代群と有限集合 · 続きを見る »

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »