ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
ダウンロード
ブラウザよりも高速アクセス!
 

二面体群

索引 二面体群

二面体群(にめんたいぐん、dihedral group)とは、正多角形の対称性を表現した数学的対象である。より正確には、正多角形を自分自身に移す合同変換全体の成す群のことである。そのような合同変換は、回転と鏡映の二種類がある。二面体群は、有限非可換群の最も単純な例であり、群論、幾何学、化学などの分野において重要な役割を果たす。類似の概念は、3次元以上の正多面体や正多胞体に対しても与えることができる。「二面体」とは、正多角形を3次元空間内で見て裏表の区別を付けたもの、といった意味合いである。.

52 関係: 単位元単位行列合同算術対称群対称性島津氏巡回群三つ葉葵幾何学交換法則二項演算互いに素徳川氏化学ユークリッド空間アーベル群アフィン群オイラーのφ関数クラインの四元群グラフ理論コクセター群シローの定理円 (数学)写像の合成元 (数学)回転回転群回転行列素数約数関数線型写像織田氏群 (数学)群の中心群論直交群直交行列菊花紋章鏡映行列豊臣秀吉足利氏部分群閉路榊原氏正多面体正多角形正多胞体正規部分群朝倉書店...木瓜紋旭日章 (警察章) インデックスを展開 (2 もっと) »

単位元

数学、とくに抽象代数学において、単位元(たんいげん, )あるいは中立元(ちゅうりつげん, )は、二項演算を備えた集合の特別な元で、ほかのどの元もその二項演算による単位元との結合の影響を受けない。.

新しい!!: 二面体群と単位元 · 続きを見る »

単位行列

数学、特に線型代数学において、単位行列(たんいぎょうれつ、identity matrix)とは、単位的環上で定義される同じ型の正方行列同士の、積演算における単位元のことである。.

新しい!!: 二面体群と単位行列 · 続きを見る »

合同算術

数学、特に初等代数的整数論における合同算術(ごうどうさんじゅつ、modular arithmetic; モジュラ計算)は、(剰余を持つ除法の意味で))自然数あるいは整数をある特定の自然数で割ったときの剰余に注目して、自然数あるいは整数に関する問題を解決する一連の方法の総称である。合同算術の起源は、一般にはガウスが著作『Disquisitiones Arithmeticae』を出版する1801年にまで遡れるものとされる。ガウスによる合同を用いたこの新しい手法は、有名な平方剰余の相互法則を明らかにし、より抽象的な観点からウィルソンの定理などの定理の記述の簡素化に一役を買った。ガウスの研究は自然数を扱う整数論のみならず、代数学や幾何学といった数学のほかの主要な分野にまで影響を与えるものであった。 かんたんな時刻の計算は「時間」については 12 あるいは 24 を法とする、「分・秒」については 60 を法とする合同算術になっている。合同算術はあたかも法 ''n'' を「周期」として循環あるいは回転しているかのようである。 この手法の基本は、「数それ自体」ではなくそれを別な数で割った(商がいくらになるかということは無視して)「剰余だけ」を考えるということにある。こういった考え方は何か特殊で高尚なものというようなものではなく、実際に日常生活においても時刻や角度といったものの計算や単位の換算などで、ちょっとした合同算術が特別な知識無くあるいは無意識に行われているのである。 20世紀には、合同算術にまつわる状況は大きく様変わりをしている。計算機やウェブの普及に伴って情報セキュリティの観点からの暗号化アルゴリズムの開発や取り扱いといったような場面で古典的な合同算術に関する理論の工業的・商業的応用が頻繁に見られるようになった。.

新しい!!: 二面体群と合同算術 · 続きを見る »

対称群

対称群(たいしょうぐん、)とは、「ものを並べ替える」という操作を元とする群である。この場合の「ものを並べ替える」操作のことを置換(ちかん、)という。数学の議論の様々な場面で「番号づけられて並んでいるものを入れ替える」「入れ替えの可能性すべてを調べる」ことが問題となり、対称群はそのような議論を定式化するために用いられる。置換のうちで特別なものだけを集めて得られる群は置換群(ちかんぐん、)と呼ばれる。置換群が空間 の変換群として与えられているとき、 の元 の置換は で与えられる の部分群の分だけ潰れているが、これは のなかに と「同じ」元が複数含まれている場合に対応しており、 の中でこれらを区別することができれば の元の置換から対称群 が回復される。.

新しい!!: 二面体群と対称群 · 続きを見る »

対称性

対称性(たいしょうせい、ラテン語・ギリシャ語: συμμετρία symmetria, 独:Symmetrie, 英:symmetry)とは、ある変換に関して不変である性質である。 英語を音訳したシンメトリーと呼ぶこともあるが、2つのmは同時に発音されるため、英語の発音は「シメトリー」に近い。.

新しい!!: 二面体群と対称性 · 続きを見る »

島津氏

島津氏(しまづし)は、日本の氏族。鎌倉時代から江戸時代まで続いた、薩摩を根拠地とする大名家のほかに、多数の分家がある。通字に「忠」「久」(初名も含めると基本的な通字は全時代を通じて「忠」の字が多く、江戸時代初期までは執権や将軍の偏諱を受けた場合に『「偏諱」+「久」』が多い。明治以降現在は嫡男に「忠」、次男に「久」)を用いる。また、公式文章の面では「嶋津氏」の表記を用いられてきた。本項は主に、薩摩の島津氏を主軸とした記述である。その他の島津氏についてはそれぞれ越前島津氏、信濃島津氏、若狭島津氏、江州島津氏などの項目または島津氏族の段を参照の事。.

新しい!!: 二面体群と島津氏 · 続きを見る »

巡回群

群論における巡回群(じゅんかいぐん、cyclic group、monogenous group)とは、ただ一つの元で生成される群(単項生成群)のことである。ここで群が「ただ一つの元で生成される」というのは、その群の適当な元 g をとれば、その群のどの元も(群が乗法的に書かれている場合は)g の整数冪として(群が加法的に書かれている場合は g の整数倍として)表されるということであり、このような元 g はこの群の生成元 (generator) あるいは原始元 (primitive) と呼ばれる。.

新しい!!: 二面体群と巡回群 · 続きを見る »

三つ葉葵

三つ葉葵・三つ葵(みつばあおい・みつあおい)は日本の家紋「葵紋」の一種で、葵の葉を3つ描いた図案の家紋のことである。通常「三つ葉葵」といえば徳川家の用いた「丸に三つ葉葵」のたぐいの紋を指すことが多い。.

新しい!!: 二面体群と三つ葉葵 · 続きを見る »

幾何学

最先端の物理学でも用いられるカラビ-ヤウ多様体の一種。現代幾何学では図も書けないような抽象的な分野も存在する。 幾何学(きかがく、)は、図形や空間の性質について研究する数学の分野である広辞苑第六版「幾何学」より。イエズス会マテオ・リッチによる geometria の中国語訳である。以前は geometria の冒頭の geo- を音訳したものであるという説が広く流布していたが、近年の研究により否定されている。 もともと測量の必要上からエジプトで生まれたものだが、人間に認識できる図形に関する様々な性質を研究する数学の分野としてとくに古代ギリシャにて独自に発達しブリタニカ国際大百科事典2013小項目版「幾何学」より。、これらのおもな成果は紀元前300年ごろユークリッドによってユークリッド原論にまとめられた。その後中世以降のヨーロッパにてユークリッド幾何学を発端とする様々な幾何学が登場することとなる。 幾何学というとユークリッド幾何学のような具体的な平面や空間の図形を扱う幾何学が一般には馴染みが深いであろうが、対象や方法、公理系などが異なる多くの種類の幾何学が存在し、現代においては微分幾何学や代数幾何学、位相幾何学などの高度に抽象的な理論に発達・分化している。 現代の日本の教育では、体系的な初等幾何学はほぼ根絶されかけたが、近年、中・高の数学教育で線型幾何/代数幾何を用いない立体を含む、本格的な綜合幾何は見直されつつある。.

新しい!!: 二面体群と幾何学 · 続きを見る »

交換法則

交換法則(こうかんほうそく、Commutative property) は数学における法則の一つ。可換則(かかんそく)や交換律(こうかんりつ)ともいう。.

新しい!!: 二面体群と交換法則 · 続きを見る »

二項演算

数学において、二項演算(にこうえんざん、binary operation)は、数の四則演算(加減乗除)などの 「二つの数から新たな数を決定する規則」 を一般化した概念である。二項算法(にこうさんぽう)、結合などともいう。.

新しい!!: 二面体群と二項演算 · 続きを見る »

互いに素

二つの整数 が互いに素(たがいにそ、coprime, co-prime, relatively prime, mutually prime)であるとは、 を共に割り切る正の整数が のみであることをいう。このことは の最大公約数 が であることと同値である。 が互いに素であることを、記号で と表すこともある。 例えば と を共に割り切る正の整数は に限られるから、これらは互いに素である。一方で と は共に で割り切れるから、これらは互いに素でない。 互いに素であることの判定は素因数分解を用いて行うこともできるが、二つの整数のうち少なくとも一方が巨大である場合など一般には困難である。素因数分解によって公約数を調べる方法よりも、ユークリッドの互除法によって最大公約数を調べる方法のほうが遥かに高速である。 正の整数 と互いに素となる( から の間の)整数の個数は、オイラー関数 によって与えられる。 三つの整数 が互いに素であるとは、 が成り立つことをいう。また、、、 がすべて に等しいとき、 は対ごとに素(pairwise coprime)またはどの二つも互いに素であるという。一般に、互いに素であるからといって対ごとに素であるとは限らない(例:)。一般の 個の整数についても同様に定義される。.

新しい!!: 二面体群と互いに素 · 続きを見る »

徳川氏

徳川氏(とくがわし/とくがわうじ、)は、徳川家康が創始した日本の氏族。新田氏系得河氏・得川氏の末裔を称した際に嘉字を用いて徳川と称したことが始まりとなり、江戸幕府将軍家と親族の家名とした。しかし『徳川家譜』に記される家系に関しては『尊卑分脈』の該当記録に似通った流れはあるものの、当代史料による検証がならず、得川氏と家康の家系との同一性は実証できていない。.

新しい!!: 二面体群と徳川氏 · 続きを見る »

化学

化学(かがく、英語:chemistry、羅語:chemia ケーミア)とは、さまざまな物質の構造・性質および物質相互の反応を研究する、自然科学の一部門である。言い換えると、物質が、何から、どのような構造で出来ているか、どんな特徴や性質を持っているか、そして相互作用や反応によってどのように別なものに変化するか、を研究する岩波理化学辞典 (1994) 、p207、【化学】。 すべての--> 日本語では同音異義の「科学」(science)との混同を避けるため、化学を湯桶読みして「ばけがく」と呼ぶこともある。.

新しい!!: 二面体群と化学 · 続きを見る »

ユークリッド空間

数学におけるユークリッド空間(ユークリッドくうかん、Euclidean space)は、エウクレイデス(ユークリッド)が研究したような幾何学(ユークリッド幾何学)の場となる平面や空間、およびその高次元への一般化である。エウクレイデスが研究した平面や空間はそれぞれ、2次元ユークリッド空間、3次元ユークリッド空間に当たり、これらは通常、ユークリッド平面、ユークリッド空間などとも呼ばれる。「ユークリッド的」という修飾辞は、これらの空間が非ユークリッド幾何やアインシュタインの相対性理論に出てくるような曲がった空間ではないことを示唆している。 古典的なギリシャ数学では、ユークリッド平面や(三次元)ユークリッド空間は所定の公準によって定義され、そこからほかの性質が定理として演繹されるものであった。現代数学では、デカルト座標と解析幾何学の考え方にしたがってユークリッド空間を定義するほうが普通である。そうすれば、幾何学の問題に代数学や解析学の道具を持ち込んで調べることができるようになるし、三次元以上のユークリッド空間への一般化も容易になるといった利点が生まれる。 現代的な観点では、ユークリッド空間は各次元に本質的に一つだけ存在すると考えられる。たとえば一次元なら実数直線、二次元ならデカルト平面、より高次の場合は実数の組を座標にもつ実座標空間である。つまり、ユークリッド空間の「点」は実数からなる組であり、二点間の距離は二点間の距離の公式に従うものとして定まる。n-次元ユークリッド空間は、(標準的なモデルを与えるものという意味で)しばしば とかかれるが、(余分な構造を想起させない)ユークリッド空間固有の性質を備えたものということを強調する意味で と書かれることもある。ふつう、ユークリッド空間といえば有限次元であるものをいう。.

新しい!!: 二面体群とユークリッド空間 · 続きを見る »

アーベル群

数学、とくに抽象代数学におけるアーベル群(アーベルぐん、abelian group)または可換群(かかんぐん、commutative group)は、群演算が可換な群、すなわちどの二つの元の積も掛ける順番に依らず定まる群を言う。名称は、ノルウェーの数学者ニールス・アーベルに因む。 アーベル群は環や体、環上の加群やベクトル空間といった抽象代数学の概念において、その基礎となる加法に関する群(加法群)としてしばしば生じる。任意の抽象アーベル群についても、しばしば加法的な記法(例えば群演算は "+" を用いて表され、逆元は負符号を元の前に付けることで表す)が用いられ、その場合に用語の濫用で「加法群」と呼ばれることがある。また任意のアーベル群は整数全体の成す環 上の加群とみることができ、その意味でやはり用語の濫用だがアーベル群のことを「加群」と呼ぶこともある。 一般に可換群はに比べて著しく容易であり、とくに有限アーベル群の構造は具さに知られているが、それでも無限アーベル群論はいまなお活発な研究領域である。.

新しい!!: 二面体群とアーベル群 · 続きを見る »

アフィン群

数学において、アフィン群(アフィン-ぐん、affine group)あるいは一般アフィン群(いっぱん-アフィン-ぐん、general affine group)は、体 K 上のアフィン空間からそれ自身への正則アフィン変換の全体の成す群である。アフィン変換群とも。 アフィン群は K が実または複素(あるいは四元)数体であるとき、リー群を成す。.

新しい!!: 二面体群とアフィン群 · 続きを見る »

オイラーのφ関数

φ(''n'')の最初の1000個の値 オイラーのトーシェント関数(オイラーのトーシェントかんすう、Euler's totient function)は各正の整数 に対して、 から までの自然数のうち と互いに素なものの個数を として与えることによって定まる数論的関数 である。慣例的に と表記されるため、オイラーの 関数(ファイかんすう、phi function)とも呼ばれる。また、簡略的にオイラーの関数と呼ぶこともある。 例えば、 のうち と互いに素なのは の 2 個であるから、定義によれば である。また例えば のうち 以外は全て と互いに素だから、 と定まる。なおトーシェント関数の値域に含まれない自然数をノントーシェントという。 から までの値は以下の通りである。 1761年にレオンハルト・オイラーが発見したとされるが、それより数年前に日本の久留島義太が言及したとも言われる。.

新しい!!: 二面体群とオイラーのφ関数 · 続きを見る »

クラインの四元群

ラインの四元群とは、巡回群でない位数が最小の群である。また、位数2の巡回群の直積と同型である。 クラインの四群元の単位元以外の元の位数は、2である。 クラインの四元群の演算表は: また、交代群 A4 の正規部分群 と同型。.

新しい!!: 二面体群とクラインの四元群 · 続きを見る »

グラフ理論

ラフ理論(グラフりろん、graph theory)は、ノード(節点・頂点)の集合とエッジ(枝・辺)の集合で構成されるグラフに関する数学の理論である。グラフ (データ構造) などの応用がある。.

新しい!!: 二面体群とグラフ理論 · 続きを見る »

コクセター群

数学においてコクセター群(コクセターぐん、Coxeter group)とは鏡映変換で表示できる抽象群のことである。ハロルド・スコット・マクドナルド・コクセターに因んで名づけられた。有限コクセター群は何らかのユークリッド鏡映群(たとえば一般次元正多胞体の対称変換群など)になっている。もちろん、すべてのコクセター群が有限群とは限らないし、すべてのコクセター群をユークリッド的な鏡映や対称変換として記述できるわけでもない。コクセター群は鏡映群の抽象化として導入され、有限コクセター群の分類は完了している 。 コクセター群は数学のいくつもの分野に現れる。一般次元正多胞体の対称変換群や単純リー代数のワイル群は有限コクセター群の例であり、ユークリッド平面や双曲平面の正則三角形分割 (regular tessellation) に対応する三角群や無限次元カッツ-ムーディ代数のワイル群は無限コクセター群の例である。 コクセター群に関する標準的な文献としては や などがある。.

新しい!!: 二面体群とコクセター群 · 続きを見る »

シローの定理

数学、とくに有限群論において、シローの定理 (Sylow theorems) は、ノルウェーの数学者ルートヴィヒ・シロー (Ludwig Sylow) (1872) にちなんで名づけられている定理の集まりであり、与えられた有限群がもつ固定された位数の部分群の個数についての詳細な情報を与える。シローの定理は有限群論の基本的な部分をなし、有限単純群の分類における非常に重要な応用を持つ。 素数 p に対し、群 G のシロー p-部分群(あるいは p-シロー部分群)とは、G の極大 p-部分群である、つまり、''p''-群である(任意の元の位数が p の冪である)であるような G の部分群であって、G の他のどんな p-部分群の真部分群でないようなものである。与えられた素数 p に対するすべてのシロー p 部分群の集合を Sylp(G) と書くことがある。 シローの定理はラグランジュの定理の部分的な逆を主張する。ラグランジュの定理は任意の有限群 G に対して G のすべての部分群の位数(元の個数)は G の位数を割り切るというものであり、シローの定理は有限群 G の位数の任意の素因数 p に対して G のシロー p 部分群が存在するというものである。有限群 G のシロー p 部分群の位数は、n を G の位数における p の重複度として、pn であり、また位数 pn の任意の部分群は G のシロー p 部分群である。(与えられた素数 p に対して)群のシロー p-部分群は互いに共役である。与えられた素数 p に対して群のシロー p-部分群の個数は mod p で 1 と合同である。.

新しい!!: 二面体群とシローの定理 · 続きを見る »

円 (数学)

数学において、円(えん)とは、平面(2次元ユークリッド空間)上の、定点 O からの距離が等しい点の集合でできる曲線のことをいう。ここで現れる定点 O を円の中心と呼ぶ。円には、その中心が1つあり、また1つに限る。中心から円周上の 1 点を結んだ線分を輻(や)とよび、その長さを半径というが、現在では輻のことを含めて半径と呼ぶことが多い。中心が点 O である円を、円 O と呼ぶ。定幅図形の一つ。 円が囲む部分、すなわち円の内部を含めて円ということもある。この場合は、曲線のことを円周という。これに対して、内部を含めていることを強調するときには円板という。また、三角形、四角形などと呼称を統一して、円形ということもある。 数学以外の分野ではこの曲線のことを「丸(まる)」という俗称で呼称することがある。 円: 中心、半径・直径、円周.

新しい!!: 二面体群と円 (数学) · 続きを見る »

写像の合成

数学において写像あるいは函数の合成(ごうせい、composition)とは、ある写像を施した結果に再び別の写像を施すことである。 たとえば、時刻 t における飛行機の高度を h(t) とし、高度 x における酸素濃度を c(x) で表せば、この二つの函数の合成函数 (c ∘ h)(t).

新しい!!: 二面体群と写像の合成 · 続きを見る »

元 (数学)

数学において元(げん、element)とは、集合を構成する個々の数学的対象のことである。ジュゼッペ・ペアノの導入した記法に従えば、対象 が集合 の元であることを と書き表す。このとき対象 が集合 に属する(ぞくする、membership)、あるいは集合 は対象 を含むとも言う。 「属する」という二項関係は、数学的対象と集合(あるいは一般にクラス)との間に定まる非対称な関係(帰属関係)である。外延性の公理により、集合はそれに属する全ての数学的対象を指定することで特徴づけられる。 通常用いられる においては基礎の公理が述べるところによって帰属関係は整礎、すなわち任意の集合は自身を元として含むことはない(帰属関係は反対称関係である)。しかし、基礎の公理の代わりにを置くではそのような制約を受けないが存在し得る。 帰属関係は推移的でない。これは集合の包含関係がそうであることと対照的である。.

新しい!!: 二面体群と元 (数学) · 続きを見る »

回転

回転(廻転、かいてん、rotation)は、大きさを持たない点または大きさを持つ物体が、ある点を中心としてあるいは直線を軸として、あるいは別の物体の周りを回る運動。この点を回転中心、この直線を回転軸という。回転中心や回転軸が回転する物体の内部にある場合を特に自転というときもある。まさに運動している状態を指す場合も、運動の始状態から終状態への変化や移動を指す場合もある。前者の意味を強調したい場合は回転運動ということもある。 転じて、資金などの供給・サービス業の客の出入りなどをこう称する場合がある。.

新しい!!: 二面体群と回転 · 続きを見る »

回転群

(n 次の)回転群(かいてんぐん、rotation group)あるいは特殊直交群(とくしゅちょっこうぐん、special orthogonal group)とは、n行n列の直交行列であって、行列式が1のもの全体が行列の乗法に関してなす群をいう。SO(n) と書く。 SO(n) はコンパクトリー群であり、n.

新しい!!: 二面体群と回転群 · 続きを見る »

回転行列

線型代数において、回転行列(かいてんぎょうれつ、rotation matrix)とは、ユークリッド空間内における原点中心の回転変換の表現行列のことである。 二次元や三次元では、幾何学、物理学、コンピュータグラフィックスの分野での計算に非常によく使われている。大半の応用で扱うのは2次元や3次元の回転だが、一般の次元でも回転行列を定義することができる。 n 次元空間における回転行列は、実数を成分とする正方行列であって、行列式が 1 の n 次直交行列として特徴づけられる: n 次元の回転行列の全体は特殊直交群(あるいは回転群)と呼ばれる群をなす。.

新しい!!: 二面体群と回転行列 · 続きを見る »

素数

素数(そすう、prime number)とは、 より大きい自然数で、正の約数が と自分自身のみであるもののことである。正の約数の個数が である自然数と言い換えることもできる。 より大きい自然数で素数でないものは合成数と呼ばれる。 一般には、素数は代数体の整数環の素元として定義される(そこでは反数などの同伴なものも素数に含まれる)。このため、有理整数環 \mathbb Z での素数は有理素数(ゆうりそすう、rational prime)と呼ばれることもある。 最小の素数は である。素数は無数に存在する。したがって、素数からなる無限数列が得られる。 素数が無数に存在することは、紀元前3世紀頃のユークリッドの著書『原論』で既に証明されていた。 自然数あるいは実数の中での素数の分布の様子は高度に非自明で、リーマン予想などの現代数学の重要な問題との興味深い結び付きが発見されている。 分散コンピューティング・プロジェクト GIMPS により、史上最大の素数の探求が行われている。2018年1月現在で知られている最大の素数は、2017年12月に発見された、それまでに分かっている中で50番目のメルセンヌ素数 であり、十進法で表記したときの桁数は2324万9425桁に及ぶ。.

新しい!!: 二面体群と素数 · 続きを見る »

約数関数

約数関数(やくすうかんすう、divisor function)は、自然数 n を変数とする関数で、n の全ての約数を整数乗した数の総和を値にとるものである。.

新しい!!: 二面体群と約数関数 · 続きを見る »

線型写像

数学の特に線型代数学における線型変換(せんけいへんかん、linear transformation、一次変換)あるいは線型写像(せんけいしゃぞう、linear mapping)は、ベクトルの加法とスカラー乗法を保つ特別の写像である。特に任意の(零写像でない)線型写像は「直線を直線に移す」。 抽象代数学の言葉を用いれば、線型写像とは(体上の加群としての)ベクトル空間の構造を保つ準同型のことであり、また一つの固定された体上のベクトル空間の全体は線型写像を射とする圏を成す。 「線型変換」は線型写像とまったく同義と扱われる場合もあるが、始域と終域を同じくする線型写像(自己準同型)の意味で用いていることも少なくない。また函数解析学の分野では、(特に無限次元空間上の)線型写像のことを「線型作用素」(せんけいさようそ、linear operator)と呼ぶことも多い。スカラー値の線型写像はしばしば「線型汎函数」もしくは「一次形式」(いちじけいしき、linear form, one-form; 線型形式; 1-形式)とも呼ばれる一次の微分形式(一次微分形式もしくは微分一次形式; differential one-form)を単に「一次形式」または「1-形式」(one-form) と呼ぶこともある。これとの対照のため、本項に云う意味での一次形式を「代数一次形式」(albegraic one-form) と呼ぶ場合がある。。 線形等の用字・表記の揺れについては線型性を参照。.

新しい!!: 二面体群と線型写像 · 続きを見る »

織田氏

家紋あげはちょう'''揚羽蝶''' 織田氏(おだし)は、日本の氏族・武家。斯波氏の家臣の家柄。家紋は揚羽蝶、織田木瓜など。通し字は嫡流・伊勢守家の「広」、大和守家の「定」、後に近世大名となる弾正忠家の「信」など。.

新しい!!: 二面体群と織田氏 · 続きを見る »

群 (数学)

数学における群(ぐん、group)とは最も基本的と見なされる代数的構造の一つである。群はそれ自体興味深い考察対象であり、群論における主要な研究対象となっているが、数学や物理学全般にわたってさまざまな構成に対する基礎的な枠組みを与えている。.

新しい!!: 二面体群と群 (数学) · 続きを見る »

群の中心

代数学における群 の核心または中心(ちゅうしん、center)この記法の Z はドイツ語で中心という意味の Zentrum に由来する。英語の center から のような記法が使われることも在るが、中心化群などと紛らわしい。 は の全ての元と可換となるような元全体の成す集合 である。 の中心は の部分群であり、定義からアーベル群(可換群)である。部分群としては、常に正規であり、特性的であるが必ずしも完全特性的 (fully characteristic) ではない。剰余群 は の内部自己同型群に同型である。 群 がアーベル群となることと となることとは同値である。これと正反対に、 が自明(つまり単位元のみからなる)ならば群 は中心を持たない (centerless) という。 中心に属する元はしばしば中心的 (central) であるといわれる。.

新しい!!: 二面体群と群の中心 · 続きを見る »

群論

群論(ぐんろん、group theory)とは、群を研究する学問。 群の概念は抽象代数学における中心的な概念。 環・体・ベクトル空間などは、演算や公理が付与された群と看做すことができる。 群論の方法は代数学の大部分に強い影響を与えている。 線形代数群とリー群の理論は群論の一分野。 特に発展を遂げており、独自の適用範囲を持っている。 結晶や、水素原子などの構造の多くは、対称性の群(symmetry group)で表現できる。このように、群論は、物理学や化学の中に多くの実例・応用例がある。 1960年代~80年代に発表された総計1万ページを超える論文によって、完全な有限単純群の分類が達成された。これは多くの数学者の共同作業の賜物であり、20世紀の数学の最も重要な業績の一つ。.

新しい!!: 二面体群と群論 · 続きを見る »

直交群

数学において、 次元の直交群(ちょっこうぐん、orthogonal group)とは、 次元ユークリッド空間上のある固定された点を保つような距離を保つ変換全体からなる群であり、群の演算は変換の合成によって与える。 と表記する。同値な別の定義をすれば、直交群とは、元が の実直交行列であり、群の積が行列の積によって与えられるものをいう。直交行列とは、逆行列がもとの行列の転置と等しくなるような行列のことである。 直交行列の行列式は か である。 の重要な部分群である特殊直交群 は行列式が である直交行列からなる。この群は回転群ともよばれ、例えば次元 2 や 3 では、群の元が表す変換は(2次元における)点や(3次元における)直線のまわりの通常の回転である。低次元ではこれらの群の性質は幅広く研究されている。 用語「直交群」は上の定義を一般化して、体上のベクトル空間における非退化な対称双線型形式や二次形式基礎体の標数が でなければ、対称双線型形式と二次形式のどちらを使っても同値である。を保つような、可逆な線形作用素全体からなる群を表すことがある。特に、体 上の 次元ベクトル空間 上の双線型形式がドット積で与えられ、二次形式が二乗の和で与えられるとき、これに対応する直交群 は、群の元が 成分 直交行列で群の積を行列の積で定めるものである。これは一般線形群 の部分群であって、以下の形で与えられる。 ここで は の転置であり、 は単位行列である。.

新しい!!: 二面体群と直交群 · 続きを見る »

直交行列

交行列(ちょっこうぎょうれつ, )とは、転置行列と逆行列が等しくなる正方行列のこと。つまりn × n の行列 M の転置行列を MT と表すときに、MTM.

新しい!!: 二面体群と直交行列 · 続きを見る »

菊花紋章

菊花紋章(きくかもんしょう、きっかもんしょう)は、キク科キク属のキク(菊)を図案化した菊紋のうち、特に花の部分を中心に図案化した家紋のことである。菊花紋(きくかもん、きっかもん)、菊の御紋ともいう。単に菊紋(きくもん)と言う場合は葉、茎、花を組み合わせるか、いずれかを図案化したものも含める。.

新しい!!: 二面体群と菊花紋章 · 続きを見る »

鏡映

数学における鏡映(きょうえい、reflection)あるいは鏡映変換とはユークリッド空間の超平面を固定点集合にもつ等長変換である。その名の通り、3次元空間内では、ある図形に鏡映変換を施したものは、平面鏡に映ったその図形の位置及び見え方と一致する。(この場合、鏡の位置が固定点集合となる) 例えば2次元ユークリッド空間では鏡映の固定点集合は直線であり、固定点集合を鏡映の軸という。逆に、与えられた直線を軸とする鏡映が定まり、直線による折り返しなどとも呼ばれる。同様に、3次元空間では与えられた平面による鏡映が定まる。 鏡映によって変わらない図形を鏡映対称(2次元図形の場合、特に線対称とも呼ぶ)である、あるいは鏡映対称性を持つなどという。特に軸が垂直な場合は左右対称とも言われる。例えばアルファベットの A や H などは垂直な軸に関して鏡映対称である。3次元の物体や現象(特に分子)が鏡映対称であって、合同ではないことを掌性と呼ぶ。 長さや角度は鏡映によって変わらないが、向きが変わる。また、同じ鏡映を2回続けて行うと恒等変換になるので鏡映は対合の一種である。.

新しい!!: 二面体群と鏡映 · 続きを見る »

行列

数学の線型代数学周辺分野における行列(ぎょうれつ、matrix)は、数や記号や式などを行と列に沿って矩形状に配列したものである。行の数と列の数が同じ行列はが成分ごとの計算によって与えられる。行列の積の計算はもっと複雑で、2 つの行列がかけ合わせられるためには、積の左因子の列の数と右因子の行の数が一致していなければならない。 行列の応用として顕著なものは一次変換の表現である。一次変換は のような一次関数の一般化で、例えば三次元空間におけるベクトルの回転などは一次変換であり、 が回転行列で が空間の点の位置を表す列ベクトル(1 列しかない行列)のとき、積 は回転後の点の位置を表す列ベクトルになる。また 2 つの行列の積は、2 つの一次変換の合成を表現するものとなる。行列の別な応用としては、連立一次方程式の解法におけるものである。行列が正方行列であるならば、そのいくつかの性質は、行列式を計算することによって演繹することができる。例えば、正方行列が正則であるための必要十分条件は、その行列式の値が非零となることである。固有値や固有ベクトルは一次変換の幾何学に対する洞察を与える。行列の応用は科学的な分野の大半に及び、特に物理学において行列は、電気回路、光学、量子力学などの研究に利用される。コンピュータ・グラフィックスでは三次元画像の二次元スクリーンへの投影や realistic-seeming motion を作るのに行列が用いられる。は、古典的な解析学における微分や指数関数の概念を高次元へ一般化するものである。 主要な数値解析の分野は、行列計算の効果的なアルゴリズムの開発を扱っており、主題は何百年にもわたって今日では研究領域も広がっている。行列の分解は、理論的にも実用的にも計算を単純化するもので、アルゴリズムは正方行列や対角行列などといった行列の特定の構造に合わせて仕立てられており、有限要素法やそのほかの計が効率的に処理される。惑星運動論や原子論では無限次行列が現れる。関数のテイラー級数に対して作用する微分の表現行列は、無限次行列の簡単な例である。.

新しい!!: 二面体群と行列 · 続きを見る »

豊臣秀吉

豊臣 秀吉(とよとみ ひでよし / とよとみ の ひでよし、)、または羽柴 秀吉(はしば ひでよし)は、戦国時代から安土桃山時代にかけての武将、大名。天下人、(初代)武家関白、太閤。三英傑の一人。 初め木下氏を名字とし、羽柴氏に改める。本姓としては、初め平氏を自称するが、近衛家の猶子となり藤原氏に改姓した後、正親町天皇から豊臣氏を賜姓された。 尾張国愛知郡中村郷の下層民の家に生まれたとされる(出自参照)。当初、今川家に仕えるも出奔した後に織田信長に仕官し、次第に頭角を現した。信長が本能寺の変で明智光秀に討たれると「中国大返し」により京へと戻り山崎の戦いで光秀を破った後、信長の孫・三法師を擁して織田家内部の勢力争いに勝ち、信長の後継の地位を得た。大坂城を築き、関白・太政大臣に就任し、朝廷から豊臣の姓を賜り、日本全国の大名を臣従させて天下統一を果たした。天下統一後は太閤検地や刀狩令、惣無事令、石高制などの全国に及ぶ多くの政策で国内の統合を進めた。理由は諸説あるが明の征服を決意して朝鮮に出兵した文禄・慶長の役の最中に、嗣子の秀頼を徳川家康ら五大老に託して病没した。秀吉の死後に台頭した徳川家康が関ヶ原の戦いで勝利して天下を掌握し、豊臣家は凋落。慶長19年(1614年)から同20年(1615年)の大坂の陣で豊臣家は江戸幕府に滅ぼされた。 墨俣の一夜城、金ヶ崎の退き口、高松城の水攻め、中国大返し、石垣山一夜城などが機知に富んだ功名立志伝として広く親しまれ、農民から天下人へと至った生涯は「戦国一の出世頭」と評される。.

新しい!!: 二面体群と豊臣秀吉 · 続きを見る »

足利氏

足利氏(あしかがし)は、日本の武家のひとつの軍事貴族。本姓は源氏。家系は清和天皇清和源氏の一族の河内源氏の流れを汲み、鎌倉幕府においては御家人であると同時に将軍家一門たる御門葉の地位にあった。室町時代には嫡流が足利将軍家として天下人となった。藤原秀郷の子孫の藤原姓足利氏(藤姓足利氏)に対して源姓足利氏という場合がある。 通字は、「義」(よし、足利将軍家ほか)または「氏」(うじ、鎌倉時代の歴代当主および鎌倉公方・古河公方家など)。.

新しい!!: 二面体群と足利氏 · 続きを見る »

部分群

二項演算 * に関して群 G が与えられたとする。 G の部分集合である H が G の部分群であるということは、 H が演算 * に関して群になるということである。より正確に表現すると、 H が G の部分群であるということは、群の演算 * を H×H (Hの直積)に制限したときに、 H における群の演算になっているということである。この関係は通常、 H ≤ G という記号で表現し、「 H は G の部分群である」と読む。 G の真部分群とは、部分群 H が G の真部分集合である(つまり H≠G である)ことである。任意の群 G に対し、G 自身と単位元のみからなる集合 は常に G の部分群である。 H が G の部分群であるとき、 G は H の拡大群であると表現する場合がある。 G が任意の半群であるときも、G の部分群の定義はそのまま通用するが、本項では群の部分群についてのみを扱うにとどめる。群 G は順序対 (G, &lowast) として記述されることもあるが、このように書くのは普通、G を台となる集合としてその上に演算 "∗" が代数的構造(あるいはもっとほかの構造)を定めるということを強調するためである。 以下では、通常の慣習に倣って ∗ を省略し、積 a ∗ b を単に ab と表記する。また、群の演算を単に「積」と表記する場合もある。.

新しい!!: 二面体群と部分群 · 続きを見る »

閉路

有向閉路の例。青い頂点を2度通るので単純閉路ではない。 閉路(へいろ、cycle, circuit, closed walk)あるいは閉道(へいどう、closed path)とは、始点と終点が同じ路のこと。すなわち、出発点に戻るような辿り方のことである。グラフ理論や位相幾何学において用いられる。 単純閉路(たんじゅんへいろ、simple cycle)とは、自分自身と交差していない閉路のこと。グラフの単純閉路であればいかなる頂点も一度しか現れない。 閉路ならば同じところを行ったり来たりして辿ってもよく、同じところを繰り返し通らない閉路のことを閉道という。 n個の相異なる頂点vi(i.

新しい!!: 二面体群と閉路 · 続きを見る »

榊原氏

榊原氏(さかきばらし)は、日本の氏族のひとつ。.

新しい!!: 二面体群と榊原氏 · 続きを見る »

正多面体

正多面体(せいためんたい、regular polyhedron)、またはプラトンの立体(プラトンのりったい、Platonic solid)とは、すべての面が同一の正多角形で構成されてあり、かつすべての頂点において接する面の数が等しい凸多面体のこと。正多面体には正四面体、正六面体、正八面体、正十二面体、正二十面体の五種類がある。 三次元空間の中に一つの頂点を取り、その周りに取ることが可能な正多角形に関する制限から、正多面体が先に示した五種類のみであることが証明できる。このことは、オイラーの多面体公式からも証明できる。しかし、条件を緩めることによって、正多面体の拡張を考えることができる(参照:星型正多面体、ねじれ正多面体、正平面充填形)。正多面体の構成面を正 p 角形、頂点に集まる面の数を q として のように表すことができる。これをシュレーフリ記号という。シュレーフリ記号は半正多面体(別名:アルキメデスの立体)にも拡張することができる。.

新しい!!: 二面体群と正多面体 · 続きを見る »

正多角形

正多角形(せいたかっけい、せいたかくけい、regular polygon)とは、全ての辺の長さが等しく、全ての内角の大きさが等しい多角形である。 正多角形は線対称の図形であり、正n角形に対称軸はn本ある。また、正偶数角形は点対称の図形でもある。 辺の数が同じ正多角形どうしは全て互いに相似である。.

新しい!!: 二面体群と正多角形 · 続きを見る »

正多胞体

正多胞体 (regular polytope) とは、正多角形、正多面体などを一般次元へ拡張した、対称性の高い多胞体である。 ある正多胞体の各低次元の要素は合同であり、またそれ自体も正多胞体である。たとえば、ある正多面体の面は合同な正多角形である。ただし、デルタ多面体でわかるように、これは必要十分条件ではない。 正多胞体の必要十分な定義はさまざまだが、よく使われるのは「ファセット(facet、n - 1 次元面)が合同であり、頂点形状が合同である」というものである。.

新しい!!: 二面体群と正多胞体 · 続きを見る »

正規部分群

数学、とくに抽象代数学における正規部分群(せいきぶぶんぐん、normal subgroup)は、群の任意の元による内部自己同型のもとで不変な部分群である。正規部分群は、与えられた群から剰余群を構成するのに用いることができる。 正規部分群の重要性は、エヴァリスト・ガロアによって最初に明らかにされた。.

新しい!!: 二面体群と正規部分群 · 続きを見る »

朝倉書店

朝倉書店(あさくらしょてん)は、日本の出版社。 1929年(昭和4年)創業の賢文館が前身で、1944年(昭和19年)に株式会社朝倉書店設立。創業者は同文館出身の朝倉鑛造。 理学・工学・医学・農学・人文科学・家政学などの学術専門書および理工系の大学教科書を出版。.

新しい!!: 二面体群と朝倉書店 · 続きを見る »

木瓜紋

木瓜紋(もっこうもん)は、日本の家紋や模様のひとつ。藤紋、片喰紋、鷹の羽紋、桐紋と合わせて五大紋と呼ばれる。.

新しい!!: 二面体群と木瓜紋 · 続きを見る »

旭日章 (警察章)

旭日章(日本の警察の紋章) 旭日章(きょくじつしょう)は、昇る朝日と陽射しをかたどった紋章。日本の警察のほか、多くの日本の国家機関のシンボルマークとして用いられる。日章(にっしょう)、旭影(きょくえい)、朝日影(あさひかげ)、桜の代紋ともいう。家紋とする場合には旭光(きょっこう)とも呼ばれている。.

新しい!!: 二面体群と旭日章 (警察章) · 続きを見る »

ここにリダイレクトされます:

正二面体群

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »