ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

二次形式

索引 二次形式

数学における二次形式(にじけいしき、quadratic form) は、いくつかの変数に関する次数が 2 の斉次多項式である。たとえば は変数 x, y に関する二次形式である。 二次形式は数学のいろいろな分野(数論、線型代数学、群論(直交群)、微分幾何学(リーマン計量)、微分位相幾何学(四次元多様体の交叉形式)、リー理論(キリング形式)など)で中心的な位置を占める概念である。.

75 関係: 半整数可換体可換環多項式の次数定符号二次形式実数対称双線型形式対称行列対角行列射影幾何学射影空間局所大域原理不変量交叉形式 (4次元多様体)交叉理論二個の平方数の和二次体二次関数二次曲面 (射影幾何学)代数的位相幾何学代数群位相空間論微分幾何学微分位相幾何学係数ペル方程式ミンコフスキー空間ノルムハッセ・ミンコフスキーの定理モジュラー形式モジュラー群ユークリッド空間リー群レオンハルト・オイラーブラーマ・スプタ・シッダーンタブラフマグプタピン群ピタゴラスの定理ベクトル空間判別式ウィリアム・ブラウンカーカール・フリードリヒ・ガウスカール・グスタフ・ヤコブ・ヤコビキリング形式クリフォード代数コンパクト空間シュリニヴァーサ・ラマヌジャンシュプリンガー・サイエンス・アンド・ビジネス・メディアシルヴェスターの慣性法則ジョゼフ=ルイ・ラグランジュ...円錐曲線四平方定理等方二次形式線型代数学群論環の局所化直交直交群直交行列Disquisitiones Arithmeticae行列複素数解析幾何学計量テンソル連分数退化形式核 (代数学)格子 (数学)標数有理数斉次多項式数学数論整数時空 インデックスを展開 (25 もっと) »

半整数

半整数(はんせいすう、half-integer)とは有理数で、 を整数としたとき の形で表される数のことである。十進法の小数で表すと、小数点以下一桁の有限小数で小数第一位が 5 である。 例としては 3.5、-\frac、4\frac などがある。 ごくまれに半奇整数 と呼ばれることもある。.

新しい!!: 二次形式と半整数 · 続きを見る »

可換体

抽象代数学において、可換体(かかんたい、corps commutatif)あるいは単に体(たい、field)本記事において単に体と言った場合「可換」体を意味するものとする。とは、零でない可換可除環、あるいは同じことだが、非零元全体が乗法の下で可換群をなすような環のことである。そのようなものとして体は、適当なアーベル群の公理と分配則を満たすような加法、減法、乗法、除法の概念を備えた代数的構造である。最もよく使われる体は、実数体、複素数体、有理数体であるが、他にも有限体、関数の体、代数体、''p'' 進数体、などがある。 任意の体は、線型代数の標準的かつ一般的な対象であるベクトル空間のスカラーとして使うことができる。(ガロワ理論を含む)体拡大の理論は、ある体に係数を持つ多項式の根に関係する。他の結果として、この理論により、古典的な問題である定規とコンパスを用いたや円積問題が不可能であることの証明や五次方程式が代数的に解けないというアーベル・ルフィニの定理の証明が得られる。現代数学において、体論は数論や代数幾何において必要不可欠な役割を果たしている。 代数的構造として、すべての体は環であるが、すべての環が体であるわけではない。最も重要な違いは、体は(ゼロ除算を除いて)除算ができるが、環は乗法逆元がなくてもよいということである。例えば、整数の全体は環をなすが、2x.

新しい!!: 二次形式と可換体 · 続きを見る »

可換環

数学、特に抽象代数学の一分野である環論における可換環(かかんかん、commutative ring)は、その乗法が可換であるような環をいう。可換環の研究は可換環論あるいは可換代数学と呼ばれる。 いくつか特定の種類の可換環は以下のようなクラスの包含関係にある。.

新しい!!: 二次形式と可換環 · 続きを見る »

多項式の次数

数学、初等代数学における多項式の次数(じすう、degree)は、多項式を不定元の冪積の線型結合からなるに表すとき、そこに現れる項のうち最も高い項の次数を言う。ここに、項の次数とは、それに現れる不定元の冪指数の総和である。次数の同義語として「位数」「階数」(order) が用いられることもあるが、今日的にはに取られるのが普通だろう。 例えば、多項式 は三つの項からなる。多項式の記法に関する通常の規約により、この多項式は厳密には を意味することに注意する。最初の項の次数は (冪指数 と の和)であり、二番目の項の次数は, 最後の項の次数は であるから、この中で最高次の項の次数である がこの多項式の次数ということになる。 上のような標準形になっていない多項式の次数の決定に際しては、たとえば のような場合、積は分配法則に従って展開し、同類項をまとめて、まずは標準形に直さなければならない。いまの例では だから次数は である(二つの二次式の和をとったにもかかわらず、である)。しかし、多項式が標準形の多項式の「積」に書かれている時には、積の次数は各因子の次数の総和として計算できるから、必ずしも展開・整理は要しない。 多項式の次数の日本語名称は、一貫して次数の値に接尾辞「-次」をつける。英語名称は、いくつかの例外はあるが基本的にラテン語の序数詞に形容詞を作る接尾辞の -ic を付けて表す。次数と不定元の数はきちんと区別されるべきであって、こちらには接尾辞「-元」あるいは「-変数」を付ける(英語名称ではラテン語に接尾辞 -ary が付く)。例えば のような二つの不定元に関する次数 の多項式は「二元二次」("binary quadratic") であると言い、二元 (binary) が不定元の数が であることを、二次 (quadratic) 次数が であることを言い表している。もう一つ、項の数も明示するなら「-項式」(英語名称では ラテン配分数詞に接尾辞 -nomial)を付ける。単項式 (monomial), 二項式 (binomial) あるいは三項式 (trinomial) など。つまり、例えば は「二元二次二項式」("binary quadratic binomial") である。 以下しばらくは一元多項式に関して述べる。.

新しい!!: 二次形式と多項式の次数 · 続きを見る »

定符号二次形式

数学において実ベクトル空間 V 上で定義された二次形式 Q が定符号(ていふごう、definite)であるとは、V の任意の非零ベクトルに対して Q が同じ符号をもつことを言う。定符号二次形式は、至る所正となるか、または至る所負となるかに従ってさらに、正の定符号(positive definite; 正値、正定値)または負の定符号(negative definite; 負値、負定値)に分けられる。 半定符号 (semidefinite) 二次形式も、至る所「正」および「負」としていたところを、至る所「負でない」および「正でない」に置き換えて同様に定義される。正の値も負の値も取るような二次形式は不定符号 (indefinite) であると言う。 より一般に、二次形式の定符号性を順序体上のベクトル空間において考えることもできる。.

新しい!!: 二次形式と定符号二次形式 · 続きを見る »

実数

数学における実数(じっすう、 nombre réel, reelle Zahl, real number)は、様々な量の連続的な変化を表す数の体系である。実数全体の空間は、途切れのなさにあたる完備性とよばれる位相的な性質を持ち、代数的には加減乗除ができるという体の構造を持っている。幾何学や解析学ではこれらのよい性質を利用して様々な対象が定義され、研究されている。一方でその構成方法に自明でない手続きが含まれるため、実数の空間は数学基礎論の観点からも興味深い性質を持っている。また、自然科学における連続的なものの計測値を表すのに十分な数の体系だとも考えられている。 実数の概念は、その形式的な定義が19世紀に達成される前から数の体系として使われていた。「実数」という名前は複素数の概念が導入された後に「普通の数」を表現する言葉として導入されたものである。.

新しい!!: 二次形式と実数 · 続きを見る »

対称双線型形式

線型代数学における対称双線型形式(たいしょうそうせんけいけいしき、symmetric bilinear form, symmetric bilinear functional)は、ベクトル空間上の対称な双線型形式を言う。平たく言えば、実ベクトル空間上の標準内積を一般化した概念である。対称双線型形式は、直交極性や二次曲面の研究に非常に重要である。 文脈上、双線型形式について述べていると明らかな場合は、単に短く対称形式と呼ぶこともある。対称双線型形式は二次形式と近しい関係にあり、この両者の差異に関する詳細はの項目を参照。.

新しい!!: 二次形式と対称双線型形式 · 続きを見る »

対称行列

線型代数学における対称行列(たいしょうぎょうれつ、symmetric matrix)は、自身の転置行列と一致するような正方行列を言う。記号で書けば、行列 A は を満たすとき対称であるという。相等しい行列の型(次元、サイズ)は相等しいから、この式を満たすのは正方行列に限られる。 定義により、対称行列の成分は主対角線に関して対称である。即ち、成分に関して行列 は任意の添字 に関して を満たす。例えば、次の 行列 1 & 7 & 3\\ 7 & 4 & -5\\ 3 & -5 & 6 \end は対称である。任意の正方対角行列は、その非対角成分が であるから、対称である。同様に、歪対称行列( なる行列)の各対角成分は、自身と符号を変えたものと等しいから、すべて でなければならない。 線型代数学において、実対称行列は実内積空間上の自己随伴作用素を表す。これと、複素内積空間の場合に対応する概念は、複素数を成分に持つエルミート行列(自身の共役転置行列と一致するような複素行列)である。故に、複素数体上の線型代数学においては、対称行列という言葉は行列が実数に成分をとる場合に限って使うことがしばしばある。対称行列は様々な応用の場面に現れ、典型的な数値線型代数ソフトウェアではこれらに特別な便宜をさいている。.

新しい!!: 二次形式と対称行列 · 続きを見る »

対角行列

数学、特に線型代数学において、対角行列(たいかくぎょうれつ、diagonal matrix)とは、正方行列であって、その対角成分(-要素)以外が零であるような行列のことである。 \end この対角行列は、クロネッカーのデルタを用いて (ci δij) と表現できる。また、しばしば のようにも書かれる。 単位行列やスカラー行列は対角行列の特殊例である。.

新しい!!: 二次形式と対角行列 · 続きを見る »

射影幾何学

数学における射影幾何学(しゃえいきかがく、projective geometry)は射影変換の下で不変な幾何学的性質を研究する学問である(エルランゲン・プログラムも参照)。射影幾何は、初等的なユークリッド幾何とは設定を異にしており、射影空間といくつか基本的な幾何学的概念をもとに記述される。 初等的な直観としては、射影空間はそれと同じ次元のユークリッド空間と比べて「余分な」点(「無限遠点」と呼ばれる)を持ち、射影幾何学的な変換においてその余分な点と通常の点を行き来することが許されると考えることができる。射影幾何学における種々の有用な性質は、このような変換(射影変換)に関連して与えられる。最初に問題となるのは、この射影幾何学的な状況を適切に記述することのできる幾何学的な言語はどのようなものであるかということである。例えば、射影幾何において(ユークリッド幾何で扱うようには)角の概念を考えることはできない。実際、角が射影変換の下で不変でないような幾何学的概念の一つであることは透視図などを見れば明らかであり、このような透視図法に関する理論が、事実射影幾何学の源流の一つともなっている。初等的な幾何学とのもう一つの違いとして「平行線は無限遠点において交わる」と考えることが挙げられる。これにより、初等幾何学の概念を射影幾何学へ持ち込むことができる。これもやはり、透視図において鉄道の線路が地平線において交わるといったような直観を基礎に持つ概念である。二次元における射影幾何の基本的な内容に関しては射影平面の項へ譲る。 こういった考え方は古くからあったものだが、射影幾何学として発展するのは主に19世紀のことである。多くの研究が取りまとめられ、射影幾何学は当時の幾何学の最も代表的な分野となった。ここでいう射影幾何学は、座標系(斉次座標系)の各成分が複素数となる複素射影空間についての理論である。そしていくつかのより抽象的な数学の系譜(例えば不変式論、代数幾何学イタリア学派、あるいは古典群の研究へつながるフェリックス・クラインのエルランゲン・プログラムなど)が射影幾何学を礎として打ち立てられていった。これらの主題に関わった多くの研究者は、肩書きとしては総合幾何学 (synthetic geometry) に属する研究者である。他にも、射影幾何学の公理的研究から生まれた研究分野として有限幾何学がある。 射影幾何学自体も現在では多くの研究分野へ細分化が進んでおり、主なものとしては、射影代数幾何学(射影代数多様体の研究)と射影微分幾何学(射影変換に関する微分不変量の研究)の二つを挙げることができるだろう。.

新しい!!: 二次形式と射影幾何学 · 続きを見る »

射影空間

射影空間(しゃえいくうかん、projective space) とは、その次元が n であるとき、(n + 1)個の「数」の比全体からなる空間の事をさす。比を構成する「数」をどんな体(あるいは環)にとるかによって様々な空間が得られる。非ユークリッド幾何学のひとつである射影幾何学がその概念の端緒であるが、射影空間は位相幾何学、微分幾何学、代数幾何学など幾何学のあらゆる分野にわたって非常に重要な概念である。.

新しい!!: 二次形式と射影空間 · 続きを見る »

局所大域原理

局所大域原理 (きょくしょたいいきげんり、local-global principle) とは、不定方程式が解を持つかどうかを考察する際に用いられる数学の用語である。より詳しくは、ある不定方程式が有理数の範囲で解を持つことと、実数および全ての素数 p に対する ''p''-進数の範囲で解を持つことが同値である、という命題もしくはそのような現象を指す。ヘルムート・ハッセにちなみ、ハッセの原理 (Hasse principle) ともいう。 同様のことは、有理数体のみならず、一般の代数体上で考えることもできる。この場合、素数の代わりに素イデアルを考えることになる。本稿では、主として有理数体の場合について記述する。.

新しい!!: 二次形式と局所大域原理 · 続きを見る »

不変量

不変量(ふへんりょう、invariant)とは、数学的対象を特徴付ける別種の数学的対象のことである。一般に、不変量は数や多項式など、不変量同士の同型性判定がもとの対象の同型性判定より簡単であるものをとる。良い不変量とは、簡単に計算でき、かつなるべく強い同型性判別能力をもつものである。.

新しい!!: 二次形式と不変量 · 続きを見る »

交叉形式 (4次元多様体)

数学において、向き付けられたコンパクト4次元多様体上の交叉形式(こうさけいしき、intersection form)は、4次元多様体の第2コホモロジー群上の特別な対称双線型形式である。この形式は、の存在に関する情報を含む4次元多様体のトポロジーの多くを反映している。.

新しい!!: 二次形式と交叉形式 (4次元多様体) · 続きを見る »

交叉理論

数学では、交叉理論(intersection theory)(もしくは、交点理論)は、代数幾何学では代数多様体の上ので部分多様体の交叉についての分野で、 代数トポロジーではコホモロジー環の中の交叉の計算についての分野である。多様体の理論は古くからあり、曲線のベズーの定理や(elimination theory)に起源を持つ。他方、トポロジー理論では、交叉理論はより手短に定義形式へたどり着く。.

新しい!!: 二次形式と交叉理論 · 続きを見る »

二個の平方数の和

この記事は「平方数」、「多角数定理」などの補遺に当たる。ここに示す事実は古くから知られているものであるが呼びかたが定まっておらず、フェルマーの4n+1定理、フェルマーの二平方定理、あるいは単にフェルマーの定理(フェルマーの最終定理とは異なる)などと呼ばれる。 ---- 4を法として1に合同な素数は二個の平方数の和で表される。合成数が高々二個の平方数の和で表されるための必要十分条件は、4を法として3に合同な素因数が全て平方(冪指数が偶数)になっていることである。この定理は、フェルマーによって提起され、オイラーによって解決された。 具体的に4を法として1に合同な素数とは 5, 13, 17, 29, 37, 41, 53, 61, 73, 89, 97, 101, 109,\cdots.

新しい!!: 二次形式と二個の平方数の和 · 続きを見る »

二次体

二次体 (にじたい、quadratic field) は、有理数体上、2次の代数体のことである。任意の二次体は、平方因子を含まない 0, 1 以外の整数 d を用いて、\scriptstyle\mathbb(\sqrt) と表現される。もし、d > 0 である場合、実二次体 (real quadratic field)、d \mathbb(\sqrt) は、d.

新しい!!: 二次形式と二次体 · 続きを見る »

二次関数

二次関数はグラフでは放物線を表す。図はy.

新しい!!: 二次形式と二次関数 · 続きを見る »

二次曲面 (射影幾何学)

射影幾何学における二次曲面(にじきょくめん、quadric)とは、何らかの二次形式の斉次座標系における零点集合として与えられるような射影空間内の点集合を言う。これはまた、射影幾何学における双対性を考えれば、双対超平面上の点全体の成す集合としても定義できる。.

新しい!!: 二次形式と二次曲面 (射影幾何学) · 続きを見る »

代数的位相幾何学

代数的位相幾何学(だいすうてきいそうきかがく、英語:algebraic topology、代数的トポロジー)は代数的手法を用いる位相幾何学の分野のことをいう。 古典的な位相幾何学は、図形として取り扱い易い多面体を扱っていたが、1900年前後のポワンカレの一連の研究を契機として20世紀に発展した。 ポワンカレは 1895年に出版した "Analysis Situs" の中で、ホモトピーおよびホモロジーの概念を導入した。これらはいまや代数的位相幾何学の大きな柱であると考えられている。 多様体、基本群、ホモトピー、ホモロジー、コホモロジー、ファイバー束などの、位相空間の不変量として代数系を対応させ、位相的性質を代数的性質に移して研究する..

新しい!!: 二次形式と代数的位相幾何学 · 続きを見る »

代数群

代数幾何学において,代数群(だいすうぐん,algebraic group, あるいは群多様体,group variety)とは,代数多様体であるような群であって,積と逆元を取る演算がその多様体上の正則写像によって与えられるものである. 圏論のことばでは,代数群は代数多様体の圏におけるである..

新しい!!: 二次形式と代数群 · 続きを見る »

位相空間論

数学における位相空間論(いそうくうかんろん、general topology; 一般位相幾何学)または点集合トポロジー(てんしゅうごうトポロジー、point-set topology; 点集合論的位相幾何)は、位相空間の性質やその上に定義される構造を研究対象とする位相幾何学の一分野である。位相幾何学のほかの分野が多様体などの特定の構造や具体的な構造を前提とすることと異なり、現れる位相空間としては病的なものも含めた極めて広範かつ一般のものを扱い、その一般論を形成するのが位相空間論の主目的である。.

新しい!!: 二次形式と位相空間論 · 続きを見る »

微分幾何学

数学における微分幾何学(びぶんきかがく、ドイツ語: Differentialgeometrie、英語:differential geometry)とは微分を用いた幾何学の研究である。また、可微分多様体上の微分可能な関数を取り扱う数学の分野は微分位相幾何学(びぶんいそうきかがく、ドイツ語: Differentialtopologie、英語: differential topology)とよばれることがある。微分方程式の研究から自然に発生したこれらの分野は互いに密接に関連しており、特に一般相対性理論をはじめとして物理学に多くの応用がある。これらは可微分多様体についての幾何学を構成しているが、力学系の視点からも直接に研究される。.

新しい!!: 二次形式と微分幾何学 · 続きを見る »

微分位相幾何学

微分位相幾何学もしくは微分トポロジー(英語:differential topology)は、多様体の微分可能構造に注目する幾何学の一分野。微分可能構造という位相のみでは 決まらないものを扱うため純粋な位相幾何学として扱うのは難しい部分もあるが,位相が与えられている多様体の微分可能構造つまり微積分ができる ような構造を調べるということで位相多様体を調べるもので,微分可能構造まで込めた多様体に距離や曲率を定めて 研究を行う微分幾何学に比べ自由度は高いことから位相幾何学であるとされている。解析学や微分幾何学と位相幾何学の学際研究が非常に有益なことは初期から知られており、局所的な性質を扱う微分幾何学と大域的な性質を扱う位相幾何学の対照的な2分野による多様体の研究は双方の発展を促した。古くはフェリックス・クラインやアンリ・ポアンカレまで遡れ、現在微分位相幾何学と呼ばれているものはルネ・トムやジョン・ミルナーといった数学者によって創り出された。.

新しい!!: 二次形式と微分位相幾何学 · 続きを見る »

係数

係数(けいすう、coefficient)は、多項式の各項(単項式)を構成する因子において、変数(不定元)を除いた、定数等の因子である。例えば、4α+3β+2における、4と3と2である。この例では2がそれであるが、それ自体で項全体となっている項(あるいは、形式的には 1に掛かっている係数)を、特に定数項と呼ぶ。.

新しい!!: 二次形式と係数 · 続きを見る »

ペル方程式

ペル方程式(ペルほうていしき、Pell's equation)とは、 を平方数ではない自然数として、未知整数, について の形のディオファントス方程式である。 ペル方程式の一般的な解法は、1150年にインドのバースカラ2世が見つけている。彼はブラーマグプタのを改良した解法を使い、同じ技法を応用して不定二次方程式や二次ディオファントス方程式の一般解も見つけた。西洋におけるペル方程式の一般的な解法は、ウィリアム・ブランカーが発見した。しかし、オイラーはこの方程式を研究したのはジョン・ペルであると誤解し「ペル方程式」と命名したため、その名前が広く使われるようになった。.

新しい!!: 二次形式とペル方程式 · 続きを見る »

ミンコフスキー空間

ミンコフスキー空間(ミンコフスキーくうかん、Minkowski space)とは、非退化で対称な双線型形式を持つ実ベクトル空間である。ドイツの数学者のヘルマン・ミンコフスキーに因んで名付けられている。アルベルト・アインシュタインによる特殊相対性理論を定式化する枠組みとして用いられる。この特定の設定の下では空間に時間を組み合わせた時空を表現するため、物理学の文脈ではミンコフスキー時空とも呼ばれる。.

新しい!!: 二次形式とミンコフスキー空間 · 続きを見る »

ノルム

解析学において、ノルム (norm, Norm) は、平面あるいは空間における幾何学的ベクトルの "長さ" の概念の一般化であり、ベクトル空間に対して「距離」を与えるための数学の道具である。ノルムの定義されたベクトル空間を線型ノルム空間または単にノルム空間という。.

新しい!!: 二次形式とノルム · 続きを見る »

ハッセ・ミンコフスキーの定理

ハッセ・ミンコフスキーの定理(Hasse–Minkowski theorem)は数論における基本的な結果であり,数体上の2つの二次形式が同値であるための必要十分条件は,すべての座で局所的に同値であること,つまり体(実数体,複素数体,p 進数体など)のすべての完備化上同値であることを述べている.特別な場合として,数体上の二次空間が等方的であることとそれがいたるところ等方的であることは同値である,あるいは同じことであるが,数体上の二次形式が非自明に 0 を表すことと,これがその体のすべての完備化に対して成り立つことは同値である.定理は有理数体の場合にヘルマン・ミンコフスキーによって証明され,ヘルムート・ハッセによって数体に一般化された.同じ主張はさらに一般にすべての大域体に対しても成り立つ..

新しい!!: 二次形式とハッセ・ミンコフスキーの定理 · 続きを見る »

モジュラー形式

モジュラー形式は、モジュラー群という大きな群についての対称性をもつ上半平面上の複素解析的函数である。歴史的には数論で興味をもたれる対象であり、現代においても主要な研究対象である一方で、代数トポロジーや弦理論などの他分野にも現れる。 モジュラー函数(modular function): ここでいうモジュラー函数以外にも、「モジュラー函数」という術語はいくつか別の意味で用いられることがあるので注意が必要である。例えば、ハール測度の理論に現れる群の共軛作用から定まる函数 Δ(g) もモジュラー函数と呼ばれることがあるが、別な概念である。は重さ 0 、つまりモジュラー群の作用に関して不変であるモジュラー形式のことを言う。そしてそれゆえに、直線束の切断としてではなく、モジュラー領域上の函数として理解することができる。また、「モジュラー函数」はモジュラー群について不変なモジュラー形式であるが、無限遠点で f(z) が正則性を満たすという条件は必要ない。その代わり、モジュラー函数は無限遠点では有理型である。 モジュラー形式論は、もっと一般の場合である保型形式論の特別な場合であり、従って現在では、離散群の豊かな理論のもっとも具体的な部分であると見ることもできる。.

新しい!!: 二次形式とモジュラー形式 · 続きを見る »

モジュラー群

数学においてモジュラー群(modular group)とは、数論、幾何学、代数学や他の現代の数学の分野における基礎研究対象であり、幾何学的変換群や行列群により表されるものである。.

新しい!!: 二次形式とモジュラー群 · 続きを見る »

ユークリッド空間

数学におけるユークリッド空間(ユークリッドくうかん、Euclidean space)は、エウクレイデス(ユークリッド)が研究したような幾何学(ユークリッド幾何学)の場となる平面や空間、およびその高次元への一般化である。エウクレイデスが研究した平面や空間はそれぞれ、2次元ユークリッド空間、3次元ユークリッド空間に当たり、これらは通常、ユークリッド平面、ユークリッド空間などとも呼ばれる。「ユークリッド的」という修飾辞は、これらの空間が非ユークリッド幾何やアインシュタインの相対性理論に出てくるような曲がった空間ではないことを示唆している。 古典的なギリシャ数学では、ユークリッド平面や(三次元)ユークリッド空間は所定の公準によって定義され、そこからほかの性質が定理として演繹されるものであった。現代数学では、デカルト座標と解析幾何学の考え方にしたがってユークリッド空間を定義するほうが普通である。そうすれば、幾何学の問題に代数学や解析学の道具を持ち込んで調べることができるようになるし、三次元以上のユークリッド空間への一般化も容易になるといった利点が生まれる。 現代的な観点では、ユークリッド空間は各次元に本質的に一つだけ存在すると考えられる。たとえば一次元なら実数直線、二次元ならデカルト平面、より高次の場合は実数の組を座標にもつ実座標空間である。つまり、ユークリッド空間の「点」は実数からなる組であり、二点間の距離は二点間の距離の公式に従うものとして定まる。n-次元ユークリッド空間は、(標準的なモデルを与えるものという意味で)しばしば とかかれるが、(余分な構造を想起させない)ユークリッド空間固有の性質を備えたものということを強調する意味で と書かれることもある。ふつう、ユークリッド空間といえば有限次元であるものをいう。.

新しい!!: 二次形式とユークリッド空間 · 続きを見る »

リー群

リー群(リーぐん、Lie group)は群構造を持つ可微分多様体で、その群構造と可微分構造とが両立するもののことである。ソフス・リーの無限小変換と連続群の研究に端を発するためこの名がある。.

新しい!!: 二次形式とリー群 · 続きを見る »

レオンハルト・オイラー

レオンハルト・オイラー(Leonhard Euler, 1707年4月15日 - 1783年9月18日)は、18世紀の数学者・天文学者(天体物理学者)。 18世紀の数学の中心となり、続く19世紀の厳密化・抽象化時代の礎を築いた 日本数学会編『岩波数学辞典 第4版』、岩波書店、2007年、項目「オイラー」より。ISBN 978-4-00-080309-0 C3541 。スイスのバーゼルに生まれ、現在のロシアのサンクトペテルブルクにて死去した。.

新しい!!: 二次形式とレオンハルト・オイラー · 続きを見る »

ブラーマ・スプタ・シッダーンタ

ブラーマ・スプタ・シッダーンタ (Brahmasphutasiddhanta) は、7世紀のインドの数学者・天文学者であるブラーマグプタの628年の著作である。表題は宇宙の始まりという意味。.

新しい!!: 二次形式とブラーマ・スプタ・シッダーンタ · 続きを見る »

ブラフマグプタ

ブラフマグプタ(、598年 – 665年以降没)はインドの数学者・天文学者。ブラーマグプタとも呼ばれる。数理天文書『ブラーマ・スプタ・シッダーンタ』(628年)と『カンダ・カーディヤカ』(665年)を作った。彼の生涯についてはよく分かっていないが、現在のインド中央部に位置する、ウッジャインという町で暮らし、そこにあった天文台の天文台長であったことが知られている。彼の父親は有名な占星術師だった。その著作は、イスラーム世界やヨーロッパにインド数学や天文学を伝える役割を果たした。.

新しい!!: 二次形式とブラフマグプタ · 続きを見る »

ピン群

特殊直交群 SO(n) が二重被覆としてスピノル群 Spin(n) を持つ様に、 直交群 O(n) は 2 つの同型でない被覆群 Pin+(n) と Pin−(n) を有する。 この両者は、ピン群(ピンぐん、英:Pin group)と呼ばれる。 (この名前は、セールの「spin が SO(n) に対応するように、pin は O(n) に対応する」という「冗談」に由来する。) この様な奇妙な状況は、O(n) が(SO(n) と異なり)連結でないことによる (その 2 つの連結成分は、行列式がそれぞれ +1 と −1 の行列の集合である)。 O(n) と SO(n) では、2π の回転は恒等写像だが、 ピン群では、Spin(n) と同様、4π の回転が恒等写像になるものの、 2π の回転では恒等写像にならない。 Pin+(n) においては、折り返しを 2 度繰り返すと、恒等写像になる。 Pin−(n) においては、折り返しを 2 度繰り返すと、2π の回転になる。 p ≠ q のとき、Spin(p,q) には 8 個もの異なる二重被覆がある。 このうち 2 つのみがピン群として取り上げられるが、これはクリフォード多元環を表現とすることができることに由来する。 これらは夫々、Pin(p,q)、 Pin(q,p) と呼ばれる。.

新しい!!: 二次形式とピン群 · 続きを見る »

ピタゴラスの定理

90 度回転し、緑色の部分は裏返して橙色に重ねる。 視覚的証明 初等幾何学におけるピタゴラスの定理(ピタゴラスのていり、Pythagorean theorem)は、直角三角形の3辺の長さの関係を表す。斜辺の長さを, 他の2辺の長さを とすると、定理は が成り立つという等式の形で述べられる。三平方の定理(さんへいほうのていり)、勾股弦の定理(こうこげんのていり)とも呼ばれる。 ピタゴラスの定理によって、直角三角形をなす3辺の内、2辺の長さを知ることができれば、残りの1辺の長さを知ることができる。例えば、直交座標系において原点と任意の点を結ぶ線分の長さは、ピタゴラスの定理に従って、その点の座標成分を2乗したものの総和の平方根として表すことができる2次元の座標系を例に取ると、ある点 の 軸成分を, 軸成分を とすると、原点から までの距離は と表すことができる。ここで は平方根を表す。。このことは2次元の座標系に限らず、3次元の系やより大きな次元の系についても成り立つ。この事実から、ピタゴラスの定理を用いて任意の2点の間の距離を測ることができる。このようにして導入される距離はユークリッド距離と呼ばれる。 「ピタゴラスが直角二等辺三角形のタイルが敷き詰められた床を見ていて、この定理を思いついた」など幾つかの逸話が知られているものの、この定理はピタゴラスが発見したかどうかは分からない。バビロニア数学のプリンプトン322や古代エジプトなどでもピタゴラス数については知られていたが、彼らが定理を発見していたかどうかは定かではない。 中国古代の数学書『九章算術』や『周髀算経』でもこの定理が取り上げられている。中国ではこの定理を勾股定理、商高定理等と呼び、日本の和算でも中国での名称を用いて鉤股弦の法(こうこげんのほう)等と呼んだ。三平方の定理という名称は、敵性語が禁じられていた第二次世界大戦中に文部省の図書監修官であった塩野直道の依頼を受けて、数学者末綱恕一が命名したものである。.

新しい!!: 二次形式とピタゴラスの定理 · 続きを見る »

ベクトル空間

数学、特に線型代数学におけるベクトル空間(ベクトルくうかん、vector space)、または、線型空間(せんけいくうかん、linear space)は、ベクトルと呼ばれる元からなる集まりの成す数学的構造である。ベクトルには和が定義され、またスカラーと呼ばれる数による積(「スケール変換」)を行える。スカラーは実数とすることも多いが、複素数や有理数あるいは一般の体の元によるスカラー乗法を持つベクトル空間もある。ベクトルの和とスカラー倍の演算は、「ベクトル空間の公理」と呼ばれる特定の条件(後述)を満足するものでなければならない。ベクトル空間の一つの例は、力のような物理量を表現するのに用いられる幾何ベクトルの全体である(同じ種類の任意の二つの力は、加え合わせて力の合成と呼ばれる第三の力のベクトルを与える。また、力のベクトルを実数倍したものはまた別の力のベクトルを表す)。同じ調子で、ただしより幾何学的な意味において、平面や空間での変位を表すベクトルの全体もやはりベクトル空間を成す。 ベクトル空間は線型代数学における主題であり、ベクトル空間はその次元(大雑把にいえばその空間の独立な方向の数を決めるもの)によって特徴づけられるから、その観点からはよく知られている。ベクトル空間は、さらにノルムや内積などの追加の構造を持つこともあり、そのようなベクトル空間は解析学において主に函数をベクトルとする無限次元の函数空間の形で自然に生じてくる。解析学的な問題では、ベクトルの列が与えられたベクトルに収束するか否かを決定することもできなければならないが、これはベクトル空間に追加の構造を考えることで実現される。そのような空間のほとんどは適当な位相を備えており、それによって近さや連続性といったことを考えることができる。こういた位相線型空間、特にバナッハ空間やヒルベルト空間については、豊かな理論が存在する。 歴史的な視点では、ベクトル空間の概念の萌芽は17世紀の解析幾何学、行列論、連立一次方程式の理論、幾何ベクトルの概念などにまで遡れる。現代的な、より抽象的な取扱いが初めて定式化されるのは、19世紀後半、ペアノによるもので、それはユークリッド空間よりも一般の対象が範疇に含まれるものであったが、理論の大半は(直線や平面あるいはそれらの高次元での対応物といったような)古典的な幾何学的概念を拡張することに割かれていた。 今日では、ベクトル空間は数学のみならず科学や工学においても広く応用される。ベクトル空間は線型方程式系を扱うための適当な線型代数学的概念であり、例えば画像圧縮ルーチンで使われるフーリエ展開のための枠組みを提示したり、あるいは偏微分方程式の解法に用いることのできる環境を提供する。さらには、テンソルのような幾何学的および物理学的な対象を、抽象的に座標に依らない で扱う方法を与えてくれるので、そこからさらに線型化の手法を用いて、多様体の局所的性質を説明することもできるようになる。 ベクトル空間の概念は様々な方法で一般化され、幾何学や抽象代数学のより進んだ概念が導かれる。.

新しい!!: 二次形式とベクトル空間 · 続きを見る »

判別式

代数学において、多項式の判別式(はんべつしき、discriminant)はその係数たちの関数であり、一般には大文字の 'D' あるいは大文字のギリシャ文字デルタ (Δ) で表記される。それは根の性質についての情報を与えてくれる。例えば、二次多項式 の判別式は である。ここで、実数,, に対して、Δ > 0 であれば、多項式は 2 つの実根を持ち、Δ.

新しい!!: 二次形式と判別式 · 続きを見る »

ウィリアム・ブラウンカー

2代ブラウンカー子爵ウィリアム・ブラウンカー(Viscount Brouncker、1620年頃 - 1684年4月5日)はイングランド人数学者、医師。王立協会フェロー(FRS)。ブランカーとも。.

新しい!!: 二次形式とウィリアム・ブラウンカー · 続きを見る »

カール・フリードリヒ・ガウス

Disquisitiones Arithmeticae のタイトルページ ヨハン・カール・フリードリヒ・ガウス(; Johann Carl Friedrich Gauß, Carolus Fridericus Gauss, 1777年4月30日 - 1855年2月23日)は、ドイツの数学者、天文学者、物理学者である。彼の研究は広範囲に及んでおり、特に近代数学のほとんどの分野に影響を与えたと考えられている。数学の各分野、さらには電磁気など物理学にも、彼の名が付いた法則、手法等が数多く存在する。19世紀最大の数学者の一人である。.

新しい!!: 二次形式とカール・フリードリヒ・ガウス · 続きを見る »

カール・グスタフ・ヤコブ・ヤコビ

ール・グスタフ・ヤコプ・ヤコビ(Carl Gustav Jacob Jacobi, 1804年12月10日 - 1851年2月18日)はドイツの数学者。.

新しい!!: 二次形式とカール・グスタフ・ヤコブ・ヤコビ · 続きを見る »

キリング形式

数学において、 (Wilhelm Killing) の名に因むキリング形式 (Killing form) とは、リー群とリー環の理論において基本的な役割を果たす対称双線型形式である。.

新しい!!: 二次形式とキリング形式 · 続きを見る »

クリフォード代数

数学において、クリフォード代数 (Clifford algebra) は結合多元環の一種である。K-代数として、それらは実数、複素数、四元数、そしていくつかの他の超複素数系を一般化する。クリフォード代数の理論は二次形式と直交変換の理論と親密に関係がある。クリフォード代数は幾何学、理論物理学、デジタル画像処理を含む種々の分野において重要な応用を持つ。それらはイギリス人幾何学者にちなんで名づけられている。 最もよく知られたクリフォード代数、あるいは直交クリフォード代数 (orthogonal Clifford algebra) は、リーマンクリフォード代数 (Riemannian Clifford algebra) とも呼ばれる。.

新しい!!: 二次形式とクリフォード代数 · 続きを見る »

コンパクト空間

数学において、コンパクト(compact)は位相空間の性質である。詳細は後述するがコンパクト性の定義それ自身は直観性に乏しいものであり、証明を容易にする為のいわば操作的なものである。しかし距離空間であればより直観的な言葉でいいかえる事ができ、特に有限次元のユークリッド空間においては有界閉集合であることとコンパクト集合であることとは同値になる。したがってコンパクトの概念はユークリッド空間における有界閉集合の概念を一般の位相空間に拡張したものとしてとらえる事ができる。 なお無限次元では有界閉集合はコンパクトとは限らず、例えばヒルベルト空間内の(縁を含んだ)単位球体は有界かつ閉集合であるがコンパクトではない(距離位相を入れた場合)。 ブルバキでは、ここでいう定義を満たす位相空間を準コンパクト(quasi-compact)と呼び、さらにハウスドルフの分離公理を満たすものをコンパクトであると呼んでいる。距離空間など多くの空間ではハウスドルフの分離公理が満たされるので両者の概念は一致するが、一般には注意が必要である。.

新しい!!: 二次形式とコンパクト空間 · 続きを見る »

シュリニヴァーサ・ラマヌジャン

ュリニヴァーサ・アイヤンガー・ラマヌジャン(Srinivasa Aiyangar Ramanujan、1887年12月22日 - 1920年4月26日)はインドの数学者。極めて直感的、天才的な閃きにより「インドの魔術師」の異名を取った。.

新しい!!: 二次形式とシュリニヴァーサ・ラマヌジャン · 続きを見る »

シュプリンガー・サイエンス・アンド・ビジネス・メディア

ュプリンガー・サイエンス・アンド・ビジネス・メディア(Springer Science+Business Media, Springer)は、科学(Science)、技術(Technology、工学など)、医学(Medicine)、すなわちSTM関連の書籍、電子書籍、査読済みジャーナルを出版するグローバル企業である。シュプリンガーはまた、"SpringerLink"(「シュプリンガー・リンク」) 、"SpringerProtocols"(「」) 、"SpringerImages"(「シュプリンガー・イメージ」) 、"SpringerMaterials"(「シュプリンガー・マテリアル」) などいくつかの科学データベース・サービスのホスティングも行っている。 出版物には、参考図書(Reference works、レ(リ)ファレンス・ワークス)、教科書、モノグラフ(Monograph)、(Proceedings)、叢書など多数が含まれる。また、シュプリンガー・リンクには45,000以上のタイトルが自然科学など13の主題・テーマで集められており、それらは電子書籍として利用可能である。シュプリンガーはSTM分野の書籍に関しては世界最大の出版規模を持ち、ジャーナルでは世界第2位である(第1位はエルゼビア)。 多数のインプリントや、20ヶ国に約55の発行所(パブリッシング・ハウス)、5,000人以上の従業員を抱え、毎年約2,000のジャーナル、7,000以上の新書(これにはSTM分野だけではなく、B2B分野のものも含まれる)を発刊している。シュプリンガーはベルリン、ハイデルベルク、ドルトレヒト、ニューヨークに主要オフィスを構える。近年成長著しいアジア市場のために、アジア地域本部を香港に置いており、2005年8月からは北京に代表部を設置している 。 2015年5月、シュプリンガー・サイエンス+ビジネスメディアとマクミラン・サイエンス・アンド・エデュケーションの大半の事業の合併が、欧州連合や米国司法省などの主要な公正競争監視機関により承認された。新会社の名称は「シュプリンガー・ネイチャー(Springer Nature)」。.

新しい!!: 二次形式とシュプリンガー・サイエンス・アンド・ビジネス・メディア · 続きを見る »

シルヴェスターの慣性法則

線型代数学におけるシルヴェスターの慣性法則(シルヴェスターのかんせいほうそく、Sylvester's law of inertia)は実二次形式の係数行列の基底変換で不変なある種の性質を記述する。 具体的に二次形式を定義する対称行列 と が対角行列となるような任意の正則行列 に対して、 の主対角線に並ぶ正の成分の数および負の成分の数は に依らず同じである。 名称は、 においてこの性質を証明したジェームス・ジョセフ・シルベスターに因む。.

新しい!!: 二次形式とシルヴェスターの慣性法則 · 続きを見る »

ジョゼフ=ルイ・ラグランジュ

ョゼフ=ルイ・ラグランジュ(Joseph-Louis Lagrange, 1736年1月25日 - 1813年4月10日)は、数学者、天文学者である。オイラーと並んで18世紀最大の数学者といわれている。イタリア(当時サルデーニャ王国)のトリノで生まれ、後にプロイセン、フランスで活動した。彼の初期の業績は、微分積分学の物理学、特に力学への応用である。その後さらに力学を一般化して、最小作用の原理に基づく、解析力学(ラグランジュ力学)をつくり出した。ラグランジュの『解析力学』はラプラスの『天体力学』と共に18世紀末の古典的著作となった。.

新しい!!: 二次形式とジョゼフ=ルイ・ラグランジュ · 続きを見る »

円錐曲線

円錐曲線(えんすいきょくせん、conic curve, conic section; 円錐断面)とは、円錐面を任意の平面で切断したときの断面としてえられる曲線群の総称である。.

新しい!!: 二次形式と円錐曲線 · 続きを見る »

四平方定理

数学において、ラグランジュの四平方定理(Lagrange's four square theorem)は、全ての自然数が高々四個の平方数の和で表されることを主張する定理である。これはフェルマーの多角数定理の四角数の場合に当たり、ウェアリングの問題の二次の場合に当たる。ヤコビの四平方定理(Jacobi's -)は自然数を高々四個の平方数の和で表す方法の数を与える定理である。.

新しい!!: 二次形式と四平方定理 · 続きを見る »

等方二次形式

数学における等方二次形式(とうほうにじけいしき、isotropic quadratic form)は、ヌルベクトル(それに代入して零になるような非零ベクトル)を持つような二次形式を言う。等方的でない二次形式は非等方的 (anisotropic) と言う。.

新しい!!: 二次形式と等方二次形式 · 続きを見る »

線型代数学

線型代数学(せんけいだいすうがく、linear algebra)とは、線型空間と線型変換を中心とした理論を研究する代数学の一分野である。現代数学において基礎的な役割を果たし、幅広い分野に応用されている。また、これは特に行列・行列式・連立一次方程式に関する理論を含む。線形などの用字・表記の揺れについては線型性を参照。 日本の大学においては、多くの理系学部学科で解析学(微分積分学)とともに初学年から履修する。なお、高校教育においては平成27年度からの新課程では行列の分野が除外されている。.

新しい!!: 二次形式と線型代数学 · 続きを見る »

群論

群論(ぐんろん、group theory)とは、群を研究する学問。 群の概念は抽象代数学における中心的な概念。 環・体・ベクトル空間などは、演算や公理が付与された群と看做すことができる。 群論の方法は代数学の大部分に強い影響を与えている。 線形代数群とリー群の理論は群論の一分野。 特に発展を遂げており、独自の適用範囲を持っている。 結晶や、水素原子などの構造の多くは、対称性の群(symmetry group)で表現できる。このように、群論は、物理学や化学の中に多くの実例・応用例がある。 1960年代~80年代に発表された総計1万ページを超える論文によって、完全な有限単純群の分類が達成された。これは多くの数学者の共同作業の賜物であり、20世紀の数学の最も重要な業績の一つ。.

新しい!!: 二次形式と群論 · 続きを見る »

環の局所化

抽象代数学における環の局所化(きょくしょか、localization)あるいは分数環 (ring of fraction)、商環 (ring of quotient)ここでいう「分数環」や「商環」は、「分数体」や「商体」と同様の語法であって、剰余環の別名としての「商環」(quotient ring) とは異なる。商体や全商環は本項にいう意味での商環の特別な場合になっている(例節を参照)。 は、環に乗法逆元を機械的に添加する方法である。すなわち、環 とその部分集合 が与えられたとき、環 と から への環準同型を構成して、 の準同型像が における単元(可逆元)のみからなるようにする。さらに、 が「可能な限りで最良な」あるいは「最も一般な」ものとなるようにするということを考える(こういった状況はふつうは普遍性によって表されるべきものである)。環 の部分集合 による局所化は で表され、あるいは が素イデアル \mathfrak の補集合であるときには R_ で表される。 のことを と表すこともあるが、通常混乱の恐れはない。 局所化は完備化と重要な関係があり、環を局所化すると完備になるということがよくある。.

新しい!!: 二次形式と環の局所化 · 続きを見る »

直交

初等幾何学における直交(ちょっこう、orthogonal)は「垂直に交わる」こと、すなわちユークリッド空間内の交わる二つの直線や平面のなす角が直角であることを意味する。 このことは、直線と曲線または曲線同士、あるいは平面と曲面または曲面同士、もしくは曲線と曲面などの場合にも、交点において曲線の接線(または法線)あるいは曲面の接平面(または法線)などを考えることにより拡張できる。すなわち接線同士(または法線同士)の直交を以って二つの曲線の直交を定義するのである。注意すべきこととして、これら対象の直交性をベクトルによって定めるならば、(ベクトルは平行移動不変であるから)直交するそれらの対象は必ずしも「交わらない」。また非標準的な内積に関する直交性を考えるならば、直交するふたつのベクトルは必ずしも直角を成さない。 解析学や線型代数学に属する各分野を含め、直交性の概念は数学において広範に一般化して用いられる。.

新しい!!: 二次形式と直交 · 続きを見る »

直交群

数学において、 次元の直交群(ちょっこうぐん、orthogonal group)とは、 次元ユークリッド空間上のある固定された点を保つような距離を保つ変換全体からなる群であり、群の演算は変換の合成によって与える。 と表記する。同値な別の定義をすれば、直交群とは、元が の実直交行列であり、群の積が行列の積によって与えられるものをいう。直交行列とは、逆行列がもとの行列の転置と等しくなるような行列のことである。 直交行列の行列式は か である。 の重要な部分群である特殊直交群 は行列式が である直交行列からなる。この群は回転群ともよばれ、例えば次元 2 や 3 では、群の元が表す変換は(2次元における)点や(3次元における)直線のまわりの通常の回転である。低次元ではこれらの群の性質は幅広く研究されている。 用語「直交群」は上の定義を一般化して、体上のベクトル空間における非退化な対称双線型形式や二次形式基礎体の標数が でなければ、対称双線型形式と二次形式のどちらを使っても同値である。を保つような、可逆な線形作用素全体からなる群を表すことがある。特に、体 上の 次元ベクトル空間 上の双線型形式がドット積で与えられ、二次形式が二乗の和で与えられるとき、これに対応する直交群 は、群の元が 成分 直交行列で群の積を行列の積で定めるものである。これは一般線形群 の部分群であって、以下の形で与えられる。 ここで は の転置であり、 は単位行列である。.

新しい!!: 二次形式と直交群 · 続きを見る »

直交行列

交行列(ちょっこうぎょうれつ, )とは、転置行列と逆行列が等しくなる正方行列のこと。つまりn × n の行列 M の転置行列を MT と表すときに、MTM.

新しい!!: 二次形式と直交行列 · 続きを見る »

Disquisitiones Arithmeticae

Disquisitiones Arithmeticae(ディスクィジティオネス・アリトメティカエ、ラテン語で算術研究の意、以下 D. A. と略す)は、カール・フリードリヒ・ガウス唯一の著書にして、後年の数論の研究に多大な影響を与えた書物である。1801年、ガウス24歳のときに公刊された。その研究の端緒はガウス17歳の1795年にまでさかのぼり、1797年にはほぼ原稿は完成していた。 ラテン語の arithmetica(アリトメティカ)は通常「算術」と訳されるが、ガウスの意図したものは、今日「数論」もしくは「整数論」と呼ばれる学術的領域である高瀬 1995、pp.

新しい!!: 二次形式とDisquisitiones Arithmeticae · 続きを見る »

行列

数学の線型代数学周辺分野における行列(ぎょうれつ、matrix)は、数や記号や式などを行と列に沿って矩形状に配列したものである。行の数と列の数が同じ行列はが成分ごとの計算によって与えられる。行列の積の計算はもっと複雑で、2 つの行列がかけ合わせられるためには、積の左因子の列の数と右因子の行の数が一致していなければならない。 行列の応用として顕著なものは一次変換の表現である。一次変換は のような一次関数の一般化で、例えば三次元空間におけるベクトルの回転などは一次変換であり、 が回転行列で が空間の点の位置を表す列ベクトル(1 列しかない行列)のとき、積 は回転後の点の位置を表す列ベクトルになる。また 2 つの行列の積は、2 つの一次変換の合成を表現するものとなる。行列の別な応用としては、連立一次方程式の解法におけるものである。行列が正方行列であるならば、そのいくつかの性質は、行列式を計算することによって演繹することができる。例えば、正方行列が正則であるための必要十分条件は、その行列式の値が非零となることである。固有値や固有ベクトルは一次変換の幾何学に対する洞察を与える。行列の応用は科学的な分野の大半に及び、特に物理学において行列は、電気回路、光学、量子力学などの研究に利用される。コンピュータ・グラフィックスでは三次元画像の二次元スクリーンへの投影や realistic-seeming motion を作るのに行列が用いられる。は、古典的な解析学における微分や指数関数の概念を高次元へ一般化するものである。 主要な数値解析の分野は、行列計算の効果的なアルゴリズムの開発を扱っており、主題は何百年にもわたって今日では研究領域も広がっている。行列の分解は、理論的にも実用的にも計算を単純化するもので、アルゴリズムは正方行列や対角行列などといった行列の特定の構造に合わせて仕立てられており、有限要素法やそのほかの計が効率的に処理される。惑星運動論や原子論では無限次行列が現れる。関数のテイラー級数に対して作用する微分の表現行列は、無限次行列の簡単な例である。.

新しい!!: 二次形式と行列 · 続きを見る »

複素数

数学における複素数(ふくそすう、complex number)は、実数の対 と と線型独立な(実数ではない)要素 の線型結合 の形に表される数(二元数: 実数体上の二次拡大環の元)で、基底元 はその平方が になるという特別な性質を持ち虚数単位と呼ばれる。 複素数全体の成す集合を太字の あるいは黒板太字で と表す。 は、実数全体の成す集合 と同様に、可換体の構造を持ち、とくに を含む代数閉体を成す。複素数体はケイリー–ディクソン代数(四元数、八元数、十六元数など)の基点となる体系であり、またさまざまな超複素数系の中で最もよく知られた例である。 複素数の概念は、一次元の実数直線を二次元の複素数平面に拡張する。複素数は自然に二次元平面上に存在すると考えることができるから、複素数全体の成す集合上に自然な大小関係(つまり全順序)をいれることはできない。すなわち は順序体でない。 ある数学的な主題や概念あるいは構成において、それが複素数体を基本の体構造として考えられているとき、そのことはしばしばそれら概念等の名称に(おおくは接頭辞「複素-」を付けることで)反映される。例えば、複素解析、複素行列、複素(係数)多項式、複素リー代数など。.

新しい!!: 二次形式と複素数 · 続きを見る »

解析幾何学

初等幾何学における解析幾何学(かいせききかがく、analytic geometry)あるいは座標幾何学(ざひょうきかがく、coordinate geometry)、デカルト幾何学(デカルトきかがく、Cartesian geometry)は、座標を用いて代数的解析幾何学という名称における接頭辞「解析」は、微積分学を含む現代的な解析学という意味の「解析」ではなく、発見的な代数的手法によるものであることを示唆するものである。(解析幾何学 - コトバンク)に図形を調べる幾何学をいう。座標を用いるという点において、(より古典的な、ユークリッドの原論にもあるような)点や直線などがどのような公理に従うかということのみによって図形を調べる とは対照的である。座標を利用することにより、図形のもつ性質を座標のあいだにあらわれる関係式として特徴づけたり、数や式として図形を取り扱ったりすることができる。 ふつうは(二次元)平面上の点、直線などを扱う(平面解析幾何)か(三次元)空間内のそれらを扱う(立体解析幾何)。.

新しい!!: 二次形式と解析幾何学 · 続きを見る »

計量テンソル

計量テンソル(けいりょうテンソル、metric tensor)は、リーマン幾何学において、空間内の距離と角度を定義する、階数()が2のテンソルである。多様体が与えられたとき、多様体の接空間で、滑らかに変化する非負の2次関数を選ぶことができる場合、その多様体をリーマン多様体と呼ぶ。そのため、計量テンソルは、リーマン計量()と呼ばれることもある。 ひとたび、ある座標系 が選ばれると、計量テンソルは行列形式で定義される。通常、 として表記され、各成分は と表される。以下では、添え字の和に関してアインシュタインの縮約記法を用いる。 点 から までの曲線の長さは、 をパラメータとして、 と定義される。2つの接ベクトル()U.

新しい!!: 二次形式と計量テンソル · 続きを見る »

連分数

連分数(れんぶんすう、)とは、分母に更に分数が含まれているような分数のことを指す。分子が全て 1 である場合には特に単純連分数または正則連分数()ということがある。単に連分数といった場合、正則連分数を指す場合が多い。具体的には次のような形である。 ここで a は整数、それ以外の a は正の整数である。正則連分数は、最大公約数を求めるユークリッドの互除法から自然に生じるものであり、古来からペル方程式の解法にも利用された。 連分数を式で表す際には次のような書き方もある。 または また、極限の概念により、分数を無限に連ねたものも考えられる。 二次無理数(整数係数二次方程式の根である無理数)の正則連分数展開は必ず循環することが知られている。逆に、正則連分数展開が循環する数は二次無理数である。.

新しい!!: 二次形式と連分数 · 続きを見る »

退化形式

数学、とくに線型代数学において、ベクトル空間 V 上の退化 (degenerate) 双線型形式 f(x, y) とは、V から V*(V の双対空間)への v \mapsto (x \mapsto f(x,v)) で与えられる写像が同型でないような双線型形式である。V が有限次元のときの同値な定義はそれが非自明な核をもつということである、すなわち V の 0 でない元 x が存在して、 となる。.

新しい!!: 二次形式と退化形式 · 続きを見る »

核 (代数学)

数学において、準同型の核(かく、kernel)とは、その準同型の単射からのずれの度合いを測る道具である。代数系における準同型の核が "自明" (trivial) であることとその準同型が単射であることとが同値となる。.

新しい!!: 二次形式と核 (代数学) · 続きを見る »

格子 (数学)

数学における、特に初等幾何学および群論における、n-次元空間 Rn 内の格子(こうし、lattice)とは、実ベクトル空間 Rn を生成するような Rn の離散部分群をいう。すなわち、Rn の任意の格子は、ベクトル空間としての基底から、その整数係数線型結合の全体として得られる。ひとつの格子は、その基本領域あるいはによる正多面体空間充填 (regular tiling) と見ることもできる。 格子には多くの顕著な応用があり、純粋数学では特にリー環論、数論および群論に関係がある。応用数学でいえば、まず暗号理論において、いくつかの格子問題の計算が困難であることに起因する符号理論に関連する。また、物理科学においてもいくつかのやり方で応用があり、例えば物質科学および固体物理学では、「格子」は結晶構造の「枠組み」の同義語であり、結晶において原子や分子が隣接して占める正多面体状の三次元的な空間配列を意味する。より一般に、物理学において格子モデルが(しばしば計算物理の手法を用いて)研究される。.

新しい!!: 二次形式と格子 (数学) · 続きを見る »

標数

標数(ひょうすう、characteristic)は、環あるいは体の特徴を表す非負整数のひとつ。整域の標数は 0 または素数に限られる。.

新しい!!: 二次形式と標数 · 続きを見る »

有理数

有理数(ゆうりすう、rational number) とは、二つの整数 a, b (ただし b は 0 でない)をもちいて a/b という分数で表せる数のことをいう。b.

新しい!!: 二次形式と有理数 · 続きを見る »

斉次多項式

数学において、斉次多項式(せいじたこうしき、homogeneous polynomial)あるいは同次多項式(どうじたこうしき)、あるいは略して斉次式、同次式とは、非零項がすべて同じ次数であるような多項式のことである。例えば、x^5 + 2 x^3 y^2 + 9 x y^4 は2変数の5次の斉次多項式である。各項の指数の和は常に5だからである。多項式 x^3 + 3 x^2 y + z^7 は斉次ではない。項によって指数の和が異なるからである。多項式が斉次であることと斉次関数を定義することは同値である。(代数的)形式 ((algebraic) form) とは、斉次多項式によって定まる関数のことである。binary form とは二変数の形式である。形式はベクトル空間上定義される、任意の基底上座標の斉次関数として表せる関数でもある。 0次多項式は常に斉次である。これは単に係数の体や環の元であり、通常定数やスカラーと呼ばれる。1次の形式は線型形式である。2次の形式は二次形式である。幾何学において、ユークリッド距離は二次形式の平方根である。 斉次多項式は数学や物理学のいたるところであらわれる。斉次多項式は代数幾何学において基本的な役割を果たす。射影代数多様体は斉次多項式のある集合の共通零点全体の集合として定義されるからである。.

新しい!!: 二次形式と斉次多項式 · 続きを見る »

数学

数学(すうがく、μαθηματικά, mathematica, math)は、量(数)、構造、空間、変化について研究する学問である。数学の範囲と定義については、数学者や哲学者の間で様々な見解がある。.

新しい!!: 二次形式と数学 · 続きを見る »

数論

数論(すうろん、number theory)とは数、特に整数およびそれから派生する数の体系(代数体、局所体など)の性質について研究する数学の一分野である。整数論とも言う。ふつうは代数学の一分野とみなされることが多い。おおむね次の四つに分けられる。;初等整数論;代数的整数論;解析的整数論;数論幾何学 フェルマーの最終定理のように、数論のいくつかの問題については、他の数学の分野に比して問題そのものを理解するのは簡単である。しかし、使われる手法は多岐に渡り、また非常に高度であることが多い。 ガウスは次のような言葉を残している。.

新しい!!: 二次形式と数論 · 続きを見る »

整数

数学における整数(せいすう、integer, whole number, Ganze Zahl, nombre entier, número entero)は、0 とそれに 1 ずつ加えていって得られる自然数 (1, 2, 3, 4, …) および 1 ずつ引いていって得られる数 (−1, −2, −3, −4, …) の総称である。 整数は数直線上の格子点として視覚化される 整数の全体からなる集合は普通、太字の Z または黒板太字の \mathbb Z で表す。これはドイツ語 Zahlen(「数」の意・複数形)に由来する。 抽象代数学、特に代数的整数論では、しばしば「代数体の整数環」の元という意味で代数的整数あるいは「整数」という言葉を用いる。有理数全体の成す体はそれ自身が代数体の最も簡単な例であり、有理数体の代数体としての整数環すなわち、「有理数の中で整なもの」の全体の成す環は、本項でいう意味での整数全体の成す環である。一般の「整数」との区別のためにここでいう意味の整数を有理整数 (rational integer) と呼ぶことがある接頭辞「有理(的)」(rational) はそもそも「整数比」であるという意味なので、この呼称は自己循環的にもみえる。しかし、有理整数と呼ぶ場合の「有理」は「有理数の中で」という程度の意味の単なる符牒であって、「整数比」という本来の意味合いに拘るのは徒労である。。.

新しい!!: 二次形式と整数 · 続きを見る »

時空

時空(じくう、spacetime)は、時間と空間を合わせて表現する物理学の用語、または、時間と空間を同時に、場合によっては相互に関連したものとして扱う概念である。時空間()とも。.

新しい!!: 二次形式と時空 · 続きを見る »

ここにリダイレクトされます:

2次形式二次空間

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »