ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

不変量 (物理学)

索引 不変量 (物理学)

論物理学において、不変量 (invariant) はある変換の下で変化しない系の性質である。.

25 関係: 基準系天球変換対称性 (物理学)不変量一般相対性理論保存則北極星ネーターの定理ポラリス (恒星)ローレンツ変換テンソルベクトルの共変性と反変性エネルギー保存の法則ガリレイ変換光速球対称理論物理学物理定数特殊相対性理論相対性原理運動量保存の法則電磁気学日周運動時間

基準系

基準系(きじゅんけい)、基準座標系(きじゅんざひょうけい)、または参照系(さんしょうけい、frame of reference, reference frame )は、物理学において、系の内部の対象の位置、方位、およびその他の性質の測定を行う基準となる座標系または座標軸の集合、またはの運動の状態に結びつけられた観測基準系 を言う。.

新しい!!: 不変量 (物理学)と基準系 · 続きを見る »

天球

天球(てんきゅう、celestial sphere)とは、惑星や恒星がその上に張り付き運動すると考えられた、地球を中心として取り巻く球体のこと。また、位置天文学において地球から見える天体の方向を表すために無限遠の距離にある仮想の球面上の点も天球と呼ぶ。.

新しい!!: 不変量 (物理学)と天球 · 続きを見る »

変換

変換(へんかん).

新しい!!: 不変量 (物理学)と変換 · 続きを見る »

対称性 (物理学)

対称性ラベルを示す面心立方格子構造の第一ブリュアンゾーン 物理学における対称性(たいしょうせい、symmetry)とは、物理系の持つ対称性 — すなわち、ある特定の変換の下での、系の様相の「不変性」である。.

新しい!!: 不変量 (物理学)と対称性 (物理学) · 続きを見る »

不変量

不変量(ふへんりょう、invariant)とは、数学的対象を特徴付ける別種の数学的対象のことである。一般に、不変量は数や多項式など、不変量同士の同型性判定がもとの対象の同型性判定より簡単であるものをとる。良い不変量とは、簡単に計算でき、かつなるべく強い同型性判別能力をもつものである。.

新しい!!: 不変量 (物理学)と不変量 · 続きを見る »

一般相対性理論

一般相対性理論(いっぱんそうたいせいりろん、allgemeine Relativitätstheorie, general theory of relativity)は、アルベルト・アインシュタインが1905年の特殊相対性理論に続いて1915年から1916年にかけて発表した物理学の理論である。一般相対論(いっぱんそうたいろん、general relativity)とも。.

新しい!!: 不変量 (物理学)と一般相対性理論 · 続きを見る »

保存則

保存則(ほぞんそく、conservation law)とは、物理的変化あるいは化学的変化の前後で物理量(あるいは物理量の結合)の値が変わらない、という法則出典:『ブリタニカ国際大百科事典』「保存則」。言い方を変えると、。保存則が成り立つ系のことを保存系と呼ぶ。 最も基本的な保存則としては、運動量保存則、角運動量保存則、エネルギー保存則、質量保存則、電荷保存則などがある。 ネーターの定理により、系が持つある一つの保存則は系の持つ一つの対称性に対応することが示されている。 なお、保存則の破れ(例外)が発見されることで、新しい物理理論が構築されるきっかけとなることがある。.

新しい!!: 不変量 (物理学)と保存則 · 続きを見る »

北極星

'''こぐま座とポラリス''' 中央上端にポラリス(図中ではPolarisと表記)が位置する 地球からは、北極星はほとんど動かないように見える 北極星(ほっきょくせい、pole star)とは、天の北極に最も近い輝星を意味する。 21世紀時点の地球の北極星は、こぐま座α星のポラリスである。.

新しい!!: 不変量 (物理学)と北極星 · 続きを見る »

ネーターの定理

物理学において、ネーターの定理(ネーターのていり、Noether's theorem)は、系に連続的な対称性がある場合はそれに対応する保存則が存在する、と述べる定理である。 ドイツの数学者エミー・ネーターによって1915年に証明され、1918年に公表された。.

新しい!!: 不変量 (物理学)とネーターの定理 · 続きを見る »

ポラリス (恒星)

ポラリス (Polaris) は、こぐま座α星、こぐま座で最も明るい恒星で2等星。現在の北極星である。.

新しい!!: 不変量 (物理学)とポラリス (恒星) · 続きを見る »

ローレンツ変換

ーレンツ変換(ローレンツへんかん、Lorentz transformation)は、2 つの慣性系の間の座標(時間座標と空間座標)を結びつける線形変換で、電磁気学と古典力学間の矛盾を回避するために、アイルランドのジョセフ・ラーモア(1897年)とオランダのヘンドリック・ローレンツ(1899年、1904年)により提案された。 アルベルト・アインシュタインが特殊相対性理論(1905年)を構築したときには、慣性系間に許される変換公式として、理論の基礎を形成した。特殊相対性理論では全ての慣性系は同等なので、物理法則はローレンツ変換に対して不変な形、すなわち同じ変換性をもつ量の間のテンソル方程式として与えられなければならない。このことをローレンツ不変性(共変性)をもつという。 幾何学的には、ミンコフスキー空間における 2 点間の世界間隔を不変に保つような、原点を中心にした回転変換を表す(ミンコフスキー空間でみたローレンツ変換節参照)。.

新しい!!: 不変量 (物理学)とローレンツ変換 · 続きを見る »

テンソル

テンソル(tensor, Tensor)とは、線形的な量または線形的な幾何概念を一般化したもので、基底を選べば、多次元の配列として表現できるようなものである。しかし、テンソル自身は、特定の座標系によらないで定まる対象である。個々のテンソルについて、対応する量を記述するのに必要な配列の添字の組の数は、そのテンソルの階数とよばれる。 例えば、質量や温度などのスカラー量は階数0のテンソルだと理解される。同様にして力や運動量などのベクトル的な量は階数1のテンソルであり、力や加速度ベクトルの間の異方的な関係などをあらわす線型変換は階数2のテンソルで表される。 物理学や工学においてしばしば「テンソル」と呼ばれているものは、実際には位置や時刻を引数としテンソル量を返す関数である「テンソル場」であることに注意しなければならない。いずれにせよテンソル場の理解のためにはテンソルそのものの概念の理解が不可欠である。.

新しい!!: 不変量 (物理学)とテンソル · 続きを見る »

ベクトルの共変性と反変性

多重線型代数やテンソル解析における共変性(covariance)と反変性(contravariance)とは、ある幾何学的または物理的な対象に基底変換を施した際に、それがどのように変化をするかを表す。物理学では、基底は基準とする座標系の軸としばしば同一視される。 座標系のスケール変換は単位系の変更に関連する。たとえば、メートル m からセンチメートル cm にスケールを変更すると(つまり長さのスケールを 100 で割ると)、速度ベクトルの成分は 倍される。このように、座標系のスケール変換をしたとき、それとは逆 にベクトルのスケールが変換される振る舞いを示すことを反変性という。結果として、ベクトルは長さや長さと他の次元の積の次元を持つ。対照的にその双対ベクトル(余ベクトルと呼ばれる)の次元は一般に、長さの逆かそれに別の次元を掛けたものになる。 双対ベクトルの例としては勾配が挙げられる。勾配は空間微分によって定義され、長さの逆の次元を持つ。双対ベクトルの成分は座標系のスケールと同様に 変換される。このような振る舞いを共変性という。ベクトルおよび余ベクトルの成分は、一般の基底の変換に対しても同じような規則で変換される。.

新しい!!: 不変量 (物理学)とベクトルの共変性と反変性 · 続きを見る »

エネルギー保存の法則

ネルギー保存の法則(エネルギーほぞんのほうそく、law of the conservation of energy)とは、「孤立系のエネルギーの総量は変化しない」という物理学における保存則の一つである。しばしばエネルギー保存則とも呼ばれる。 任意の異なる二つの状態について、それらのエネルギー総量の差がゼロであることをいう。たとえば、取り得る状態がすべて分かっているとして、全部で つの状態があったとき、それらの状態のエネルギーを と表す。エネルギー保存の法則が成り立つことは、それらの差について、 が成り立っていることをいう。 時間が導入されている場合には、任意の時刻でエネルギー総量の時間変化量がゼロであることをいい、時間微分を用いて表現される。 エネルギー保存の法則は、物理学の様々な分野で扱われる。特に、熱力学におけるエネルギー保存の法則は熱力学第一法則 と呼ばれ、熱力学の基本的な法則となっている。 熱力学第一法則は、熱力学において基本的な要請として認められるものであり、あるいは熱力学理論を構築する上で成立すべき定理の一つである。第一法則の成立を前提とする根拠は、一連の実験や観測事実のみに基づいており、この意味で第一法則はいわゆる経験則であるといえる。一方でニュートン力学や量子力学など一般の力学において、エネルギー保存の法則は必ずしも前提とされない。.

新しい!!: 不変量 (物理学)とエネルギー保存の法則 · 続きを見る »

ガリレイ変換

リレイ変換(ガリレイへんかん、)とはある慣性系における物理現象の記述を別の慣性系での記述に変換するための座標変換の方法の一つである。ニュートンの運動方程式を不変に保つため、ガリレイ変換の前後でニュートン力学の法則は不変に保たれる。対して相対論的運動方程式やマクスウェルの方程式は不変に保たないため、光速に近い速度の関わる物理現象に適用すると現実の物理法則と乖離する。なお相対論的効果も考慮した変換はローレンツ変換を参照。.

新しい!!: 不変量 (物理学)とガリレイ変換 · 続きを見る »

光速

光速(こうそく、speed of light)、あるいは光速度(こうそくど)とは、光が伝播する速さのことであるニュートン (2011-12)、pp. 24–25.。真空中における光速の値は (≒30万キロメートル毎秒)と定義されている。つまり、太陽から地球まで約8分20秒(8分19秒とする場合もある)、月から地球は、2秒もかからない。俗に「1秒間に地球を7回半回ることができる速さ」とも表現される。 光速は宇宙における最大速度であり、物理学において時間と空間の基準となる特別な意味を持つ値でもある。 現代の国際単位系では長さの単位メートルは光速と秒により定義されている。光速度は電磁波の伝播速度でもあり、マクスウェルの方程式で媒質を真空にすると光速が一定となるということが相対性理論の根本原理になっている。 重力作用も光速で伝播することが相対性理論で予言され、2002年に観測により確認された。.

新しい!!: 不変量 (物理学)と光速 · 続きを見る »

球対称

初等幾何学における幾何学的対象が球対称(きゅうたいしょう、radial symmetric; 放射対称)あるいは回転不変(かいてんふへん、rotational invariant)であるとは、その対象が「任意の」回転変換(すなわち、対象の中心を通る任意の軸に対する任意角度の回転)に対して不変となることをいう。従って、球対称な対象を記述するための基準系は(方向成分は関係してこないため)原点の取り方のみが重要である。三次元空間内の回転に関する場合のみを「球対称」(spherical symmetry) と呼ぶ場合もある。三次元空間内の立体で球対称なものは球体に限る(中身が詰まっていないものも許すならば、同心球面の合併も入る)。 数学において適当な内積空間上で定義された函数が回転不変あるいは球対称(radial; 動径的)であるとは、その値が引数に対する任意の回転に関して不変となることを言う。例えば、函数 は原点周りの平面回転の下で不変である。より一般に、空間 上の変換あるいはそのような写像の成す写像空間上に作用する作用素に対しても、 における回転と両立する作用に関する意味で球対称性は定義できる。例えば二次元のラプラス作用素 は、任意の回転変換 に対して となる任意の写像 に対して を満たす(つまり写像に対する回転は単にそのラプラシアンに対する回転になる)という意味において球対称である。 物理学における場が球対称であるとき、放射状場 (radial field) などと呼ばれる。また物理的な系がその空間における向きに依らず同じ値を示すとき、そのラグランジアンは球対称になる。ネーターの定理によれば、物理的な系の(ラグランジアンに対する時間に関する積分の)作用は回転不変であり、従って角運動量は保存される。.

新しい!!: 不変量 (物理学)と球対称 · 続きを見る »

理論物理学

論物理学(りろんぶつりがく、)は、物理学において、理論的な模型や理論的仮定(主に数学的な仮定)を基に理論を構築し、既知の実験事実(観測や観察の結果)や、自然現象などを説明し、かつ未知の現象に対しても予想する物理理論を扱う分野のこと。実験物理学と対比して使われる言葉。 手段として、伝統的な紙と鉛筆によるもの以外に、現在ではコンピュータによる数値的なシミュレーション、数値解析、物理シミュレーションなどにおいて使用される計算機も重要なものの一つとなっている。このシミュレーションなどによる計算物理学分野も、通常は理論物理学に含める。ただ計算物理学を、理論、実験以外の第三の分野と捉える考え方もある。 物理学が理論物理学と実験物理学に分化したのは、19世紀後半から20世紀初頭にかけての物理学の急速な発展に原因がある。それまでの物理学の知識の集積は、一人の物理学者が実験と理論の両方を十分カバーできる程度のものであった。しかし急速な発展の結果、物理学の領域はあまりにも巨大化・複雑化しすぎて、全体を把握することが困難となった。理論的な考察を行なうために習得しなければならない数学的手法や既存の物理理論も膨大な量になって、習得に何年もかかるようになった。このため、それぞれ担当分野に分かれて研究を進める他なくなったのである。ロシア(旧ソ連)のレフ・ダヴィドヴィッチ・ランダウが自国の物理学者志望の学生に課した「理論ミニマム」教程(最低限の知識)にもそれが現れている。.

新しい!!: 不変量 (物理学)と理論物理学 · 続きを見る »

物理定数

物理定数(ぶつりていすう、ぶつりじょうすう、physical constant)とは、値が変化しない物理量のことである。プランク定数や万有引力定数、アボガドロ定数などは非常に有名なものである。例えば、光速はこの世で最も速いスカラー量としてのスピードで、ボーア半径は水素の電子の(第一)軌道半径である。また、大半の物理定数は固有の単位を持つが、光子と電子の相互作用を具体化する微細構造定数の様に単位を持たない無次元量も存在する。 以下に示す数値で特記のないものは科学技術データ委員会が推奨する値でありNIST、論文として複数の学術雑誌に投稿された後、2015年6月25日に""として発表されたものであるConstants bibliography。 以下の表の「値」の列における括弧内の数値は標準不確かさを示す。例えば は、 という意味である(不確かさを参照)。.

新しい!!: 不変量 (物理学)と物理定数 · 続きを見る »

特殊相対性理論

特殊相対性理論(とくしゅそうたいせいりろん、Spezielle Relativitätstheorie、Special relativity)とは、慣性運動する観測者が電磁気学的現象および力学的現象をどのように観測するかを記述する、物理学上の理論である。アルベルト・アインシュタインが1905年に発表した論文に端を発する。特殊相対論と呼ばれる事もある。.

新しい!!: 不変量 (物理学)と特殊相対性理論 · 続きを見る »

相対性原理

対性原理(そうたいせいげんり, Principle of relativity)は、互いに運動する物体の座標系の間では、物理学の法則が不変な形を保つという原理。次の三つがある。.

新しい!!: 不変量 (物理学)と相対性原理 · 続きを見る »

運動量保存の法則

運動量保存の法則(うんどうりょうほぞんのほうそく)とは、ある系に外部からの力が加わらないかぎり、その系の運動量の総和は不変であるという物理法則。運動量保存則ともいう。最初、デカルトが『哲学原理』の中で、質量と速さの積の総和を神から与えられた不変量として記述したが、ベクトルを用いて現在の形の運動量とその保存則を導いたのはホイヘンスである。 外部からの力が働かない問題の例としては、物体の衝突問題がある。二体の衝突問題は、エネルギー保存の法則と運動量保存の法則を考えることで解くことができる。完全弾性衝突のときのみ物体の運動エネルギーは保存される。.

新しい!!: 不変量 (物理学)と運動量保存の法則 · 続きを見る »

電磁気学

電磁気学(でんじきがく、)は、物理学の分野の1つであり、電気と磁気に関する現象を扱う学問である。工学分野では、電気磁気学と呼ばれることもある。.

新しい!!: 不変量 (物理学)と電磁気学 · 続きを見る »

日周運動

北極星の周りの星の日周運動 日周運動(にっしゅううんどう、diurnal motion)とは、地球の自転によって、天球上の恒星やその他の天体が毎日地球の周りを回るように見える見かけの運動のことである。天体の日周運動は、天の北極と天の南極を結ぶ軸の周りを回るように見える。 地球が地軸の周りを1回自転するのには23時間56分4.09秒(1恒星日)かかるため、日周運動の周期はこの自転周期と等しい。.

新しい!!: 不変量 (物理学)と日周運動 · 続きを見る »

時間

人類にとって、もともとは太陽や月の動きが時間そのものであった。 アイ・ハヌム(紀元前4世紀~紀元前1世紀の古代都市)で使われていた日時計。人々は日時計の時間で生きていた。 砂時計で砂の流れを利用して時間を計ることも行われるようになった。また砂時計は、現在というものが未来と過去の間にあることを象徴している。くびれた部分(現在)を見つめる。すると時間というのは上(未来)から流れてきて下(過去)へと流れてゆく流れ、と感じられることになる。 時間(じかん)は、出来事や変化を認識するための基礎的な概念である。芸術、哲学、自然科学、心理学などの重要なテーマとなっている。それぞれの分野で異なった定義がなされる。.

新しい!!: 不変量 (物理学)と時間 · 続きを見る »

ここにリダイレクトされます:

不変性 (物理学)物理学における不変性物理学における不変量物理学のおける不変量

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »