ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

三重項状態

索引 三重項状態

量子力学において、三重項(さんじゅうこう)とはスピン1の系の量子状態をいい、スピンの特定方向成分の値は, 及び のいずれかとなる。 物理学において、スピンとは物体に内在する角運動量 を言い、ある点の回りを回る重心運動に起因する軌道角運動量とは区別される。量子力学において、スピンは原子、陽子、電子などの原子スケールの系において特に重要である。 このような粒子および量子系のスピン(粒子スピン)は、非古典的な性質を持っており、スピン角運動量は幾何学的な意味での回転運動とは独立だが、抽象的な意味での「内在的」角運動量とみなせる。 日常で触れるほとんど全ての分子は一重項状態にあるが、酸素分子は例外である。室温において、 は三重項状態で存在し、化学反応が開始できるよう一重項状態へ遷移するには禁制遷移を経る必要があり、平衡論的には強力な酸化剤であるにもかかわらず速度論的には不活性となっている。酸素分子を一重項状態にして速度論的にも酸化剤とするためには、光化学的・熱的に活性化する必要がある。.

16 関係: 原子一重項状態パウリ行列クレブシュ–ゴルダン係数ジラジカルスピノールスピン角運動量物理学表現論角運動量軌道角運動量重心量子力学酸素電子陽子

原子

原子(げんし、άτομο、atom)という言葉には以下の3つの異なった意味がある。.

新しい!!: 三重項状態と原子 · 続きを見る »

一重項状態

量子力学において、一重項(いちじゅうこう、singlet)とは、総スピンが0の量子状態を指す。この状態では、スピン成分の値は0しか許されない。 スピン1/2の粒子が2つあるとき、三重項と呼ばれる総スピンが1の状態が3通りと、一重項と呼ばれる総スピンが0の状態が1通り存在しうる。理論物理学においては一重項とは、一次元表現(例えばスピン0の粒子)のことを指すことが多い。また、2つ以上の粒子が相互作用しあう系において、総角運動量がゼロの状態のことを一重項と呼ぶ場合もある。一重項やそれ以外の多重項は、粒子集団の総スピンが重要となる原子物理学や原子核物理学において頻繁に表われる。 単一の電子はスピン1/2を持ち、回転操作に対して、つまりリー群SU(2) のとして変換する。この電子状態のスピンは 作用素 \vec^2 を状態に作用させることで得られ、必ず \hbar^2 \, (1/2) \, (1/2 + 1).

新しい!!: 三重項状態と一重項状態 · 続きを見る »

パウリ行列

パウリ行列(パウリぎょうれつ, Pauli matrices)、パウリのスピン行列(パウリのスピンぎょうれつ, Pauli spin matrices)とは、下に挙げる3つの2×2複素行列の組みのことである猪木、河合(1994)、第7章J.J Sakurai and Jim Napolitano(2010), chapter 3。(シグマ)で表記されることが多い。量子力学のスピン角運動量や、部分偏極状態の記述方法に関連が深い。1927年に物理学者ヴォルフガング・パウリによって、スピン角運動量の記述のために導入された。 \sigma_1.

新しい!!: 三重項状態とパウリ行列 · 続きを見る »

クレブシュ–ゴルダン係数

量子力学においてクレブシュ–ゴルダン係数(CG係数、Clebsch–Gordan coefficients)またはウィグナー係数は、角運動量の合成で生じる係数の組である。2つの角運動量の和によって出来た角運動量の固有状態を得るために必要となる。 より数学的にはCG係数は表現論、特にコンパクトリー群において、既約表現の数とタイプが抽象的に分かっており、既約表現のテンソル積を既約表現に直和分解する場合に使われる。 不変理論で同様の問題について研究したドイツの物理学者アルフレッド・クレブシュ(1833–1872)とポール・ゴルダン(1837–1912)にちなんで命名された。 古典力学では、CG係数やSO(3)群に関連するものは球面調和関数の乗算によってもっと直接的に定義される。量子力学的なスピンの導入はこのアプローチから行える。 クレブシュ–ゴルダン係数は全角運動量固有状態を結合していないテンソル積基底で展開したときの展開係数である。この定義の意味は角運動量演算子、角運動量固有状態、角運動量固有状態のテンソル積を定義することで明らかとなる。 角運動量の形式的な定義から、クレブシュ–ゴルダン係数における漸化式がわかる。係数の具体的な数値を定めるためには、位相則を選びださなければならない。 以下の定式化ではディラックのブラケット記法を使う。また位相則としてコンドン–ショートレーの位相則を用いる。.

新しい!!: 三重項状態とクレブシュ–ゴルダン係数 · 続きを見る »

ジラジカル

有機化学におけるジラジカル(diradical)は、2つの電子が2つの縮退した分子軌道を占有している分子種である。これらは高い反応性と短い寿命を持つことで知られている。より広い定義では、ジラジカルは原子価の標準規則によって許される数よりも1つ少ない結合を持つ偶数電子分子である。2つの電子のスピンが反平行とすると、分子は一重項状態にあると言われる。電子のスピンが平行とすると、三重項状態となる。似たラジカルは1つの不対電子しかもたない。「一重項」および「三重項」という用語は電子スピン共鳴におけるジラジカルの多重度から来ている。一重項ジラジカルは1つの状態(S.

新しい!!: 三重項状態とジラジカル · 続きを見る »

スピノール

数学および物理学におけるスピノル(spinor; スピノール、スピナー)は、特に直交群の理論に於いて空間ベクトルの概念を拡張する目的で導入された複素ベクトル空間の元である。これらが必要とされるのは、与えられた次元における回転群の全体構造を見るためには余分の次元を必要とするからである。 もっと形式的に、スピノルは与えられた二次形式付きベクトル空間から、代数的なあるいは量子化の手続きを用いることで構成される幾何学的な対象として定義することもできる。与えられた二次形式は、スピノルのいくつかことなる型を記述するかも知れない。与えられた型のスピノル全体の成す集合は、それ自身回転群の作用を持つ線型空間であるが、作用の符号について曖昧さがある。それゆえに、スピノル全体の空間は回転群のを導く。符号の曖昧さは、スピノル全体の空間を、スピン群 Spin(n) のある線型表現と見なすことによって除くこともできる。この形式的な観点では、スピノルについての多くの本質的で代数的な性質が(空間幾何での話に比べて)よりはっきり見て取れるが、もとの空間幾何との繋がりはわかりにくい。他にも、複素係数の使用が最小限に押さえられる。 一般のスピノルは、1913年にエリ・カルタンによって発見された。後に、スピノルは、電子や他のフェルミ粒子の内在する角運動量、即ちスピン角運動量の性質を研究するために、量子力学に適用された。今日、スピノルは物理学の様々な分野で用いられている。古典的に、が非相対論的な電子のスピンを記述するのに用いられた。ディラック方程式では、相対論的な電子の量子状態を数学的に記述する際に、ディラック・スピノルが必須となる。場の量子論では、相対論的な多粒子系の状態は、スピノルで記述される。 数学、殊に微分幾何学およびにおいて、スピノルが発見されて以来、代数的位相幾何学・微分位相幾何学、斜交幾何学、ゲージ理論、複素代数幾何、指数定理、および特殊ホロノミー などに対して幅広い応用がなされている。.

新しい!!: 三重項状態とスピノール · 続きを見る »

スピン角運動量

ピン角運動量(スピンかくうんどうりょう、spin angular momentum)は、量子力学上の概念で、粒子が持つ固有の角運動量である。単にスピンとも呼ばれる。粒子の角運動量には、スピン以外にも粒子の回転運動に由来する角運動量である軌道角運動量が存在し、スピンと軌道角運動量の和を全角運動量と呼ぶ。ここでいう「粒子」は電子やクォークなどの素粒子であっても、ハドロンや原子核や原子など複数の素粒子から構成される複合粒子であってもよい。 「スピン」という名称はこの概念が粒子の「自転」のようなものだと捉えられたという歴史的理由によるものであるが、現在ではこのような解釈は正しいとは考えられていない。なぜなら、スピンは古典極限 において消滅する為、スピンの概念に対し、「自転」をはじめとした古典的な解釈を付け加えるのは全くの無意味だからであるランダウ=リフシッツ小教程。 量子力学の他の物理量と同様、スピン角運動量は演算子を用いて定義される。この演算子(スピン角運動量演算子)は、スピンの回転軸の方向に対応して定義され、 軸、 軸、 軸方向のスピン演算子をそれぞれ\hat_x,\hat_y,\hat_z と書き表す。これらの演算子の固有値(=これら演算子に対応するオブザーバブルを観測したときに得られる値)は整数もしくは半整数である値 を用いて、 と書き表せる。値 は、粒子のみに依存して決まり、スピン演算子の軸の方向には依存せずに決まる事が知られている。この を粒子のスピン量子数という。 スピン量子数が半整数 になる粒子をフェルミオン、整数 になる粒子をボゾンといい、両者の物理的性質は大きく異る(詳細はそれぞれの項目を参照)。2016年現在知られている範囲において、.

新しい!!: 三重項状態とスピン角運動量 · 続きを見る »

物理学

物理学(ぶつりがく, )は、自然科学の一分野である。自然界に見られる現象には、人間の恣意的な解釈に依らない普遍的な法則があると考え、自然界の現象とその性質を、物質とその間に働く相互作用によって理解すること(力学的理解)、および物質をより基本的な要素に還元して理解すること(原子論的理解)を目的とする。化学、生物学、地学などほかの自然科学に比べ数学との親和性が非常に強い。 古代ギリシアの自然学 にその源があり, という言葉も、元々は自然についての一般的な知識の追求を意味しており、天体現象から生物現象までを含む幅広い概念だった。現在の物理現象のみを追求する として自然哲学から独立した意味を持つようになったのは19世紀からである。 物理学の古典的な研究分野は、物体の運動、光と色彩、音響、電気と磁気、熱、波動、天体の諸現象(物理現象)である。.

新しい!!: 三重項状態と物理学 · 続きを見る »

表現論

表現論(ひょうげんろん、representation theory)とは、ベクトル空間の線型変換として代数構造を表現することにより研究し、代数構造上の加群を研究する数学の一分野である。本質的には、表現は抽象的な代数的構造を、その元と演算を行列と行列の和や行列の積で記述することで、より具体的にする。この記述で扱われる代数的対象は、群や結合代数やリー代数がある。これらの中で最も優れているものは、歴史的にも最初に現れた群の表現論であり、群の演算が群の要素が行列の積により正則行列で表現されている。 Classic texts on representation theory include and.

新しい!!: 三重項状態と表現論 · 続きを見る »

角運動量

角運動量(かくうんどうりょう、)とは、運動量のモーメントを表す力学の概念である。.

新しい!!: 三重項状態と角運動量 · 続きを見る »

軌道角運動量

軌道角運動量(きどうかくうんどうりょう、)とは、特に量子力学において、位置とそれに共役な運動量の積で表される角運動量のことである。 例えば原子の中で電子は、原子核が周囲に作る軌道を運動する。電子の全角運動量のうち、電子がその性質として持つスピン角運動量を除く部分が軌道角運動量である。.

新しい!!: 三重項状態と軌道角運動量 · 続きを見る »

重心

重心(じゅうしん、center of gravity)は、力学において、空間的広がりをもって質量が分布するような系において、その質量に対して他の物体から働く万有引力(重力)の合力の作用点である。重力が一様であれば、質量中心(しつりょうちゅうしん、center of mass)と同じであるためしばしば混同されており、本来は異なるのだが、当記事でも基本的には用語を混同したまま説明する(人工衛星の安定に関してなど、これらを区別して行う必要がある議論を除いて、一般にはほぼ100%混同されているためである)。 一様重力下で、質量分布も一様である(または図形の頂点に等質量が凝集している)ときの重心は幾何学的な意味での「重心」(幾何学的中心、)と一致する。より一般の状況における重心はの項を参照せよ。.

新しい!!: 三重項状態と重心 · 続きを見る »

量子力学

量子力学(りょうしりきがく、quantum mechanics)は、一般相対性理論と同じく現代物理学の根幹を成す理論として知られ、主として分子や原子、あるいはそれを構成する電子など、微視的な物理現象を記述する力学である。 量子力学自身は前述のミクロな系における力学を記述する理論だが、取り扱う系をそうしたミクロな系の集まりとして解析することによって、ニュートン力学に代表される古典論では説明が困難であった巨視的な現象についても記述することができる。たとえば量子統計力学はそのような応用例の一つである。従って、生物や宇宙のようなあらゆる自然現象もその記述の対象となり得る。 代表的な量子力学の理論として、エルヴィン・シュレーディンガーによって創始された、シュレーディンガー方程式を基礎に置く波動力学と、ヴェルナー・ハイゼンベルク、マックス・ボルン、パスクアル・ヨルダンらによって構成された、ハイゼンベルクの運動方程式を基礎に置く行列力学がある。ただしこの二つは数学的に等価である。 基礎科学として重要で、現代の様々な科学や技術に必須な分野である。 たとえば科学分野について、太陽表面の黒点が磁石になっている現象は、量子力学によって初めて解明された。 技術分野について、半導体を利用する電子機器の設計など、微細な領域に関するテクノロジーのほとんどは量子力学を基礎として成り立っている。そのため量子力学の適用範囲の広さと現代生活への影響の大きさは非常に大きなものとなっている。一例として、パソコンや携帯電話、レーザーの発振器などは量子力学の応用で開発されている。工学において、電子工学や超伝導は量子力学を基礎として展開している。.

新しい!!: 三重項状態と量子力学 · 続きを見る »

酸素

酸素(さんそ、oxygen)は原子番号8、原子量16.00の非金属元素である。元素記号は O。周期表では第16族元素(カルコゲン)および第2周期元素に属し、電気陰性度が大きいため反応性に富み、他のほとんどの元素と化合物(特に酸化物)を作る。標準状態では2個の酸素原子が二重結合した無味無臭無色透明の二原子分子である酸素分子 O として存在する。宇宙では水素、ヘリウムに次いで3番目に多くの質量を占めEmsley (2001).

新しい!!: 三重項状態と酸素 · 続きを見る »

電子

電子(でんし、)とは、宇宙を構成するレプトンに分類される素粒子である。素粒子標準模型では、第一世代の荷電レプトンに位置付けられる。電子は電荷−1、スピンのフェルミ粒子である。記号は e で表される。また、ワインバーグ=サラム理論において弱アイソスピンは−、弱超電荷は−である。.

新しい!!: 三重項状態と電子 · 続きを見る »

陽子

陽子(ようし、())とは、原子核を構成する粒子のうち、正の電荷をもつ粒子である。英語名のままプロトンと呼ばれることも多い。陽子は電荷+1、スピン1/2のフェルミ粒子である。記号 p で表される。 陽子とともに中性子によって原子核は構成され、これらは核子と総称される。水素(軽水素、H)の原子核は、1個の陽子のみから構成される。電子が離れてイオン化した水素イオン(H)は陽子そのものであるため、化学の領域では水素イオンをプロトンと呼ぶことが多い。 原子核物理学、素粒子物理学において、陽子はクォークが結びついた複合粒子であるハドロンに分類され、2個のアップクォークと1個のダウンクォークで構成されるバリオンである。ハドロンを分類するフレーバーは、バリオン数が1、ストレンジネスは0であり、アイソスピンは1/2、超電荷は1/2となる。バリオンの中では最も軽くて安定である。.

新しい!!: 三重項状態と陽子 · 続きを見る »

ここにリダイレクトされます:

三重項

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »