ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

ローレンツ群

索引 ローレンツ群

ヘンドリック・アントーン・ローレンツ (1853–1928)  物理学および数学において、ローレンツ群 (Lorentz group) は、(重力を除いた)全ての古典的な設定における物理現象を説明する基礎となる、ミンコフスキー時空上の全てのローレンツ変換が成す群である。ローレンツ群の名前はオランダ人物理学者ヘンドリック・ローレンツに因む。 ローレンツ変換の下では、次の法則および等式が不変に保たれる。.

106 関係: Annals of Mathematics基本群原点 (数学)半直積単連結空間可微分多様体可縮空間双曲面同型定理同型写像向き場の古典論大圏コース天球子午線実数対称性射影線型群巡回群不動点常微分方程式二次形式弦理論位置空間と運動量空間位相同型位相群微分同相写像微分作用素ミンコフスキー空間ノルムマクスウェルの方程式ポワンカレの上半平面モデルポアンカレ群メビウス変換モーレー・カルタンの微分形式ユークリッドの運動群ラピディティリー代数リーマン球面リー群ローレンツ変換ロジャー・ペンローズヘリシティー (素粒子)ヘンドリック・ローレンツパリティ (物理学)パウリ行列ビアンキ分類ピン群ツイスター理論ディラック方程式...ファイバー束ド・ジッター宇宙ド・ジッター空間ベクトル場分子対称性アフィン写像エルミート行列オランダ人キリングベクトル場クラインの四元群クリフォード代数コンパクト空間スピン群タキオン商群全射共役類光子光円錐回転 (数学)図形の相似固有値四元数等角写像等角航路等質空間等長写像線型写像線型性群 (数学)群作用翻訳物理学特殊ユニタリ群特殊線型群特殊相対性理論随伴作用素運動学行列式被覆空間計量テンソル部分群重力子量子力学自然法則離散群電子電磁気学連続写像連結空間T対称性核 (代数学)次元 (数学)正規部分群準同型数学 インデックスを展開 (56 もっと) »

Annals of Mathematics

Annals of Mathematics (略記は Ann. Math. または、Ann. of Math.) はプリンストン大学及び プリンストン高等研究所から隔月発行される数学誌。インパクトファクターなどの基準では、世界で最も権威ある数学誌に位置づけられる。.

新しい!!: ローレンツ群とAnnals of Mathematics · 続きを見る »

基本群

数学、特に代数トポロジーにおいて、基本群(きほんぐん、fundamental group)とは、ある固定された点を始点と終点にもつふたつのループが互いに連続変形可能かを測る点付き位相空間に付帯する群である。直観的には、それは位相空間にある穴についての情報を記述している。基本群はホモトピー群の最初で最も単純な例である。基本群は位相不変量である。つまり同相な位相空間は同じ基本群を持っている。 基本群は被覆空間の理論を用いて研究することができる。なぜなら、基本群は元の空間に付帯する普遍被覆空間の被覆変換群に一致するからである。基本群のアーベル化は、その空間の第一ホモロジー群と同一視することできる。位相空間が単体複体に同相のとき、基本群は群の生成子と関係式のことばで明示的に記述することができる。 基本群はアンリ・ポアンカレによって1895年に論文"Analysis situs"で定義された。ベルンハルト・リーマンとポアンカレとフェリックス・クラインの仕事でリーマン面の理論において基本群の概念が現れた。基本群は閉曲面の位相的な完全な分類を提供するだけでなく、複素函数のモノドロミー的性質の記述もする。.

新しい!!: ローレンツ群と基本群 · 続きを見る »

原点 (数学)

初等数学における原点(げんてん、origin)は、その周りの幾何に言及するための固定された点として用いられる、ユークリッド空間の特別な点で、ふつう で表される。.

新しい!!: ローレンツ群と原点 (数学) · 続きを見る »

半直積

群論において、群の半直積(はんちょくせき、semidirect product)とは、ふたつの群から新たな群を作り出す方法の一種。 群の直積の一般化であり、通常の直積をその特別な場合として含む。.

新しい!!: ローレンツ群と半直積 · 続きを見る »

単連結空間

連結であるが、穴のまわりを1周するループを考えればわかるように単連結ではない。穴を全てふさげば単連結となる。 位相幾何学における単連結空間(たんれんけつくうかん、simply connected space)とは、任意のループを連続的に1点に収縮できるような弧状連結空間のことである。.

新しい!!: ローレンツ群と単連結空間 · 続きを見る »

可微分多様体

数学において、可微分多様体(かびぶんたようたい、differentiable manifold)、あるいは微分可能多様体(びぶんかのうたようたい)は、局所的に十分線型空間に似ており微積分ができるような多様体である。任意の多様体は、チャート(座標近傍、局所座標)の集まり、アトラス(座標近傍系、局所座標系)、によって記述することができる。各座標近傍は微積分の通常のルールが適用する線型空間の中にあるから、各々のチャートの中で考えるときには微積分学のアイデアを適用できる。チャートが適切に両立可能であれば(すなわち1つのチャートから別のチャートへの変換が微分可能であれば)、1つのチャートでなされた計算は任意の他の微分可能なチャートにおいても有効である。 フォーマルに言えば、可微分多様体は大域的に定義されたを持つ位相多様体である。任意の位相多様体にはアトラスの同相写像と線型空間上の標準的な微分構造を用いて局所的に微分構造を与えることができる。同相写像によって誘導された局所座標系上の大域的な微分構造を誘導するためには、アトラスのチャートの共通部分上での合成が対応する線型空間上の微分可能な関数でなければならない。言い換えると、チャートの定義域が重なっているところでは、各チャートによって定義された座標はアトラスのすべてのチャートによって定義された座標に関して微分可能であることが要求される。様々なチャートによって定義された座標を互いに結びつける写像を変換関数 (transition map/遷移写像/座標変換) と呼ぶ。 微分可能性は文脈によって連続微分可能、k 回微分可能、滑らか、正則といった異なる意味を持つ。さらに、抽象的な空間にそのような可微分構造を誘導できることによって微分可能性の定義を大域的な座標系なしの空間に拡張することができる。微分構造によって大域的に微分可能な接空間、微分可能な関数、微分可能なテンソル場やベクトル場を定義することができる。可微分多様体は物理においても非常に重要である。特別な種類の可微分多様体は古典力学、一般相対論、ヤン・ミルズ理論といった物理理論の基礎をなす。可微分多様体に対して微積分を展開することが可能である。これによって exterior calculus (外微分法/外微分学)のような数学的機構が導かれる。可微分多様体上の微積分の研究は微分幾何学と呼ばれる。.

新しい!!: ローレンツ群と可微分多様体 · 続きを見る »

可縮空間

数学において、位相空間 X は次のようなとき可縮 (contractible) である。X 上の恒等写像が、すなわち、ある定値写像にホモトープである。直感的には、可縮空間は連続的に一点に縮められるような空間である。 可縮空間はちょうど点のホモトピー型の空間である。可縮空間のすべてのホモトピー群は自明であることが従う。それゆえ非自明なホモトピー群をもつ任意の空間は可縮ではありえない。同様に、特異ホモロジーはホモトピー不変であるから、可縮空間のはすべて自明である。 位相空間 X に対して以下は全て同値である(ここで Y は任意の位相空間である).

新しい!!: ローレンツ群と可縮空間 · 続きを見る »

双曲面

数学における双曲面(そうきょくめん、Hyperboloid)は、二次曲面の一種で、三次元空間内の曲面として あるいは によって記述される。楕円双曲面 (elliptical hyperboloid) とも呼ぶ。a.

新しい!!: ローレンツ群と双曲面 · 続きを見る »

同型定理

数学、特に抽象代数学において、同型定理 (isomorphism theorems) は商、準同型、部分対象の間の関係を描く3つの定理である。定理のバージョンは群、環、ベクトル空間、加群、リー環、そして様々な他の代数的構造に対して存在する。普遍代数学において、同型定理は代数と合同の文脈に一般化することができる。.

新しい!!: ローレンツ群と同型定理 · 続きを見る »

同型写像

数学において,同型写像(isomorphismfrom the Ancient Greek: ἴσος isos "equal", and μορφή morphe "form" or "shape")あるいは単に同型とは,は準同型写像あるいは射であって,逆射を持つものである逆関数ではない..2つの数学的対象が同型 (isomorphic) であるとは,それらの間に同型写像が存在することをいう.自己同型写像は始域と終域が同じ同型写像である.同型写像の興味は2つの同型な対象は写像を定義するのに使われる性質のみを使って区別できないという事実にある.したがって同型な対象はこれらの性質やその結果だけを考える限り同じものと考えてよい. 群や環を含むほとんどの代数的構造に対して,準同型写像が同型写像であることと全単射であることは同値である. 位相幾何学において,射とは連続写像のことであるが,同型写像は同相写像あるいは双連続写像とも呼ばれる.解析学において,射は可微分関数であり,同型写像は微分同相とも呼ばれる. 標準的な同型写像 (canonical isomorphism) は同型であるようなである.2つの対象が標準的に同型 (canonically isomorphic) であるとは,それらの間に標準的な同型写像が存在することをいう.例えば,有限次元ベクトル空間 から二重双対空間への標準的な写像は標準的な同型写像である.一方, は双対空間に同型であるが,一般には標準的にではない. 同型写像は圏論を用いて形式化される.ある圏の射 が同型射であるとは,両側逆射を持つことをいう,すなわち,その圏における別の射 があって, かつ となる,ただし と はそれぞれ と の恒等射である..

新しい!!: ローレンツ群と同型写像 · 続きを見る »

向き

数学における実ベクトル空間の向き(むき、orientation) または向き付けとは、基底の順序付き組に対し「正」の向きまたは「負」の向きを指定する規約のことである。3次元ユークリッド空間における2種類の向きはそれぞれ右手系や左手系(あるいは右キラル・左キラル)と呼ばれる。しばしば右手系が正の向きにとられるものの、右手系を負の向きとするような向き付けももちろんありうる。 実ベクトル空間における向きの概念を基礎として、実多様体などの様々な幾何学的対象にも向きを考えることができる。.

新しい!!: ローレンツ群と向き · 続きを見る »

場の古典論

場の古典論、もしくは古典場の理論(classical field theory)は、(物理的な)場がどのように物質と相互作用するかについて研究する理論物理学の領域である。古典的という単語は、量子力学と協調する場の量子論(単に、場の理論とも言われる)と対比して使われる。 物理的な場は各々の空間と時間の点に物理量を対応させたとして考えることができる。例えば、天気図を考えると、ある国の一日を通じての風速は、空間の各々の点にベクトルを対応させることにより記述できる。各々のベクトルは、その点での大気の運動の方向を表現する。日が進むにつれて、ベクトルの指す方向はこの方向に応じて変化する。数学的な観点からは、古典場はファイバーバンドル((covariant classical field theory))の切断として記述される。古典場理論という用語は、電磁気と重力という自然界の基本的力のうちの 2つを記述する物理理論に共通に使われる。 物理的な場の記述は、相対論の発見の前に行われており、相対論に照らして修正された。従って、古典場の理論は通常、非相対論的と相対論的なカテゴリ分けがなされる。.

新しい!!: ローレンツ群と場の古典論 · 続きを見る »

大圏コース

実線はさまざまな大圏コース(破線は緯線) 大圏(たいけん、Great circle)とは地球における大円を指す。大圏コース(たいけんコース、Great circle route)とは、地球上の2点間を大圏(の一部である弧)で結んだルートのことである。大圏航路、大円コースと呼ばれる場合もある。最短距離のルートになるため、航空機や船舶の航路に利用される。また弾道ミサイルの飛行コースとしても重要である。.

新しい!!: ローレンツ群と大圏コース · 続きを見る »

天球

天球(てんきゅう、celestial sphere)とは、惑星や恒星がその上に張り付き運動すると考えられた、地球を中心として取り巻く球体のこと。また、位置天文学において地球から見える天体の方向を表すために無限遠の距離にある仮想の球面上の点も天球と呼ぶ。.

新しい!!: ローレンツ群と天球 · 続きを見る »

子午線

リニッジ天文台のかつての本初子午線(グリニッジ子午線)。現在の本初子午線は、この位置から、東へ、角度で5.301秒、距離にして102.478mの位置を通過している。 子午線(しごせん、)とは地球の赤道に直角に交差するように両極を結ぶ大円である。南北線(なんぼくせん)・南北圏(なんぼくけん)とも言う。同一経度の地点を結ぶ経線(けいせん、circles of longitude)と一致する。 子午線に対して直交するのが卯酉線(ぼうゆうせん)で、東西圏とも言う。これに対して同一緯度の地点を結ぶのが緯線である。.

新しい!!: ローレンツ群と子午線 · 続きを見る »

実数

数学における実数(じっすう、 nombre réel, reelle Zahl, real number)は、様々な量の連続的な変化を表す数の体系である。実数全体の空間は、途切れのなさにあたる完備性とよばれる位相的な性質を持ち、代数的には加減乗除ができるという体の構造を持っている。幾何学や解析学ではこれらのよい性質を利用して様々な対象が定義され、研究されている。一方でその構成方法に自明でない手続きが含まれるため、実数の空間は数学基礎論の観点からも興味深い性質を持っている。また、自然科学における連続的なものの計測値を表すのに十分な数の体系だとも考えられている。 実数の概念は、その形式的な定義が19世紀に達成される前から数の体系として使われていた。「実数」という名前は複素数の概念が導入された後に「普通の数」を表現する言葉として導入されたものである。.

新しい!!: ローレンツ群と実数 · 続きを見る »

対称性

対称性(たいしょうせい、ラテン語・ギリシャ語: συμμετρία symmetria, 独:Symmetrie, 英:symmetry)とは、ある変換に関して不変である性質である。 英語を音訳したシンメトリーと呼ぶこともあるが、2つのmは同時に発音されるため、英語の発音は「シメトリー」に近い。.

新しい!!: ローレンツ群と対称性 · 続きを見る »

射影線型群

数学における射影線型群(しゃえいせんけいぐん、projective linear group)あるいは射影一般線型群(しゃえいいっぱんせんけいぐん、projective general linear group)とは一般線型群の中心による剰余群のことである。 同様に、射影特殊線型群(しゃえいとくしゅせんけいぐん、projective special linear group)とは特殊線型群の中心による剰余群のことである。 有限体上の射影特殊線型群はほとんどの場合に非可換有限単純群となる。 これらの群は射影空間に忠実に作用する。.

新しい!!: ローレンツ群と射影線型群 · 続きを見る »

巡回群

群論における巡回群(じゅんかいぐん、cyclic group、monogenous group)とは、ただ一つの元で生成される群(単項生成群)のことである。ここで群が「ただ一つの元で生成される」というのは、その群の適当な元 g をとれば、その群のどの元も(群が乗法的に書かれている場合は)g の整数冪として(群が加法的に書かれている場合は g の整数倍として)表されるということであり、このような元 g はこの群の生成元 (generator) あるいは原始元 (primitive) と呼ばれる。.

新しい!!: ローレンツ群と巡回群 · 続きを見る »

不動点

不動点を三つ持つ関数 数学において写像の不動点(ふどうてん)あるいは固定点(こていてん、fixed point, fixpoint)とは、その写像によって自分自身に写される点のことである。.

新しい!!: ローレンツ群と不動点 · 続きを見る »

常微分方程式

常微分方程式(じょうびぶんほうていしき、ordinary differential equation, O.D.E.)とは、数学において、未知関数とその導関数からなる等式で定義される方程式である微分方程式の一種で、未知関数が本質的にただ一つの変数を持つものである場合をいう。すなわち、変数 の未知関数 に対して、(既知の)関数 を用いて という形にできるような関数方程式を常微分方程式と呼ぶ。 は未知関数 の 階の導関数である。未知関数が単独でない場合には、関数の組をベクトルの記法を用いて表せば次のようになる。 \left(\boldsymbol^(t).

新しい!!: ローレンツ群と常微分方程式 · 続きを見る »

二次形式

数学における二次形式(にじけいしき、quadratic form) は、いくつかの変数に関する次数が 2 の斉次多項式である。たとえば は変数 x, y に関する二次形式である。 二次形式は数学のいろいろな分野(数論、線型代数学、群論(直交群)、微分幾何学(リーマン計量)、微分位相幾何学(四次元多様体の交叉形式)、リー理論(キリング形式)など)で中心的な位置を占める概念である。.

新しい!!: ローレンツ群と二次形式 · 続きを見る »

弦理論

弦理論(げんりろん、string theory)は、粒子を0次元の点ではなく1次元の弦として扱う理論、仮説のこと。ひも理論、ストリング理論とも呼ばれる。.

新しい!!: ローレンツ群と弦理論 · 続きを見る »

位置空間と運動量空間

物理学や幾何学では、密接に関連した2つのベクトル空間がある。これは通常は3次元であるが、一般的にはどんな有限次元の空間でもよい。 位置空間(いちくうかん、position space)、あるいは実空間(じつくうかん、real space)ないし座標空間(ざひょうくうかん、coordinate space)などとも呼ばれる、は空間の全ての位置ベクトル の集合で、長さの次元を持つ。位置ベクトルは空間中の場所を定義する。ある位置ベクトルは位置空間上の一つの点に対応づけられる。 点粒子の運動は時間を変数として位置ベクトルを与える関数によって表され、関数によって与えられる位置ベクトル全体の集合は、粒子の描く軌道に対応づけられる。 運動量空間(うんどうりょうくうかん、momentum space)は、系が持ちうる全ての運動量ベクトル の集合である。 粒子の運動量ベクトルは、粒子の運動に対応し、の次元を持つ。 数学的には、位置と運動量の双対性はポントリャーギン双対性の1つの例である。特に位置空間で関数 が与えられたとき、そのフーリエ変換は運動量空間における関数 となる。逆に、運動量空間の関数を逆変換したものは位置空間の関数となる。 これらの量や考えは古典物理学と量子物理学を含むすべての(微視的)理論に通底するものである。系は構成粒子の位置または運動量を用いて記述でき、どちらの形式でも考えている系について等価な情報を与える。 位置と運動量の他に、波動に対して定義すると有用な量がある。波数ベクトル (または単に"ベクトル"とも呼ばれる)は長さの逆数の次元を持ち、時間の逆数の次元を持つ角周波数 との類似性を持つ。全ての波数ベクトルの集合を空間という。 通常、位置 は波数 よりも直観的にわかりやすく単純であるが、固体物理学などではその逆のことが言える。 量子力学における位置と運動量の双対性について、基礎的な結果として(ハイゼンベルクの)不確定性原理とが挙げられる。不確定性原理 は、位置と運動量を同時に正確に知ることはできないことを述べている( はそれぞれ位置と運動量の不確定性を表す。 は換算プランク定数である)。ド・ブロイの関係式 は、自由粒子の運動量と波数は互いに比例関係にあることを述べている。 ド・ブロイの関係を念頭に置き、文脈に応じて「運動量」と「波数」という言葉を使い分けることがある。しかしド・ブロイの関係は結晶中において成り立たない。.

新しい!!: ローレンツ群と位置空間と運動量空間 · 続きを見る »

位相同型

位相同型 (いそうどうけい、homeomorphic)、あるいは同相(どうそう)とは、2つの位相空間が位相空間として等しいことを表す概念である。 例えば、球の表面と湯飲みの表面とはある「連続」な双方向の移し方で互いに移し合うことができるので同相であり、また穴が1つ開いたドーナツの表面 (トーラス) と持ち手がひとつあるマグカップの表面も同じく同相である。よって球の表面と湯のみの表面は位相幾何学的に全く同一の性質を持ち、ドーナツの表面とマグカップの表面も同一の性質を持つ。しかし、球面とトーラスとはこのような写し方が存在しないので同相とはならない。(直観的には、連続的な変形によって穴の個数が変化することはないということである。) ここで連続な写し方とは、直観的には近いところを近いところに写すような写し方を意味する。.

新しい!!: ローレンツ群と位相同型 · 続きを見る »

位相群

数学における位相群(いそうぐん、topological group)は、位相の定められた群であって、そのすべての群演算が与えられた位相に関して連続となるという意味において代数構造と位相構造が両立する。したがって位相群に関して、群としての代数的操作を行ったり、位相空間として連続写像について扱ったりすることができる。位相群のは、連続対称性を調べるのに利用でき、例えば物理学などにも多くの応用を持つ。 文献によっては、本項に言うところの位相群を連続群と呼び、単に「位相群」と言えば位相空間として T2(ハウスドルフの分離公理)を満たす連続群すなわちハウスドルフ位相群を意味するものがある。.

新しい!!: ローレンツ群と位相群 · 続きを見る »

微分同相写像

数学において、微分同相写像(びぶんどうそうしゃぞう、diffeomorphism)は滑らかな多様体の同型写像である。それは1つの可微分多様体を別の可微分多様体に写す可逆関数であって、関数と逆関数が両方滑らかであるようなものである。.

新しい!!: ローレンツ群と微分同相写像 · 続きを見る »

微分作用素

数学における微分作用素(differential operator)は、微分演算 の函数として定義された作用素である。ひとまずは表記法の問題として、微分演算を(計算機科学における高階函数と同じ仕方で)入力函数を別の函数を返す抽象的な演算と考えるのが有効である。 本項では、最もよく扱われる種類である線型作用素を主に扱う。しかし、のような非線型微分作用素も存在する。.

新しい!!: ローレンツ群と微分作用素 · 続きを見る »

ミンコフスキー空間

ミンコフスキー空間(ミンコフスキーくうかん、Minkowski space)とは、非退化で対称な双線型形式を持つ実ベクトル空間である。ドイツの数学者のヘルマン・ミンコフスキーに因んで名付けられている。アルベルト・アインシュタインによる特殊相対性理論を定式化する枠組みとして用いられる。この特定の設定の下では空間に時間を組み合わせた時空を表現するため、物理学の文脈ではミンコフスキー時空とも呼ばれる。.

新しい!!: ローレンツ群とミンコフスキー空間 · 続きを見る »

ノルム

解析学において、ノルム (norm, Norm) は、平面あるいは空間における幾何学的ベクトルの "長さ" の概念の一般化であり、ベクトル空間に対して「距離」を与えるための数学の道具である。ノルムの定義されたベクトル空間を線型ノルム空間または単にノルム空間という。.

新しい!!: ローレンツ群とノルム · 続きを見る »

マクスウェルの方程式

マクスウェルの方程式(マクスウェルのほうていしき、Maxwell's equations)は、電磁場のふるまいを記述する古典電磁気学の基礎方程式である。マイケル・ファラデーが幾何学的考察から見出した電磁力に関する法則が1864年にジェームズ・クラーク・マクスウェルによって数学的形式として整理された。マクスウェル-ヘルツの電磁方程式、電磁方程式などとも呼ばれ、マクスウェルはマックスウェルとも表記される。 真空中の電磁気学に限れば、マクスウェルの方程式の一般解は、ジェフィメンコ方程式として与えられる。 なお、電磁気学の単位系は、国際単位系に発展したMKSA単位系のほか、ガウス単位系などがあるが、以下では原則として、国際単位系を用いることとする。.

新しい!!: ローレンツ群とマクスウェルの方程式 · 続きを見る »

ポワンカレの上半平面モデル

非ユークリッド幾何学におけるポワンカレ半平面模型(はんへいめんもけい、Poincaré half-plane model)は、上半平面(以下 H と記す)にポワンカレ計量と呼ばれる計量をあわせて考えたもので、二次元双曲幾何学のモデルを形成する。 名称はアンリ・ポワンカレに因むものだが、そもそもはベルトラミが、クライン模型・(リーマンによる)ポワンカレ円板模型とともに、双曲幾何学がユークリッド幾何学にであることを示すために用いたものである。円板模型と半平面模型とは共形写像のもとで同型である。.

新しい!!: ローレンツ群とポワンカレの上半平面モデル · 続きを見る »

ポアンカレ群

ポアンカレ群(ポアンカレぐん、Poincaré group)とは、ポアンカレ変換の為す変換群。10次元のノンコンパクトリー群である。.

新しい!!: ローレンツ群とポアンカレ群 · 続きを見る »

メビウス変換

幾何学における平面上のメビウス変換(メビウスへんかん、Möbius transformation)は、 の形で表される複素一変数 に関する有理函数である。ここで、係数 は を満足する複素定数である。 幾何学的にはメビウス変換は、複素数平面を実二次元球面へ立体射影したものの上で回転と平行移動により各点の位置と向きを変更したものを再度平面に立体射影することによって得られる。これらの変換は「角度」を保ち(「等角性」)、任意の「直線または円」を「直線または円」に写す(「円円対応」)。 メビウス変換は複素射影直線上の射影変換であり、その全体はメビウス群と呼ばれる射影一般線型群 を成す。メビウス群およびその部分群は数学および物理学においてざまざまな応用を持つ。 メビウス変換の名はアウグスト・フェルディナント・メビウスの業績に因むものだが、ほかにも射影変換や一次分数変換(あるいは単に一次変換)などと呼ばれることもある。.

新しい!!: ローレンツ群とメビウス変換 · 続きを見る »

モーレー・カルタンの微分形式

数学において、モーレー・カルタンの微分形式 あるいはMaurer–Cartan 形式とは、リー群の上に自然に定められ、群構造の無限小近似を与える1次微分形式のことである。エリ・カルタンによる動標構の理論の中で大きな役割を果たし、この理論に貢献のあった (Ludwig Maurer) とともにその名前が付けられている。 リー群 G の Maurer–Cartan 形式は G のリー環に値をとる微分形式である。このリー環は G の単位元における接ベクトル空間 TeG と同一視できるため、Maurer–Cartan 形式は G の各点 g における接空間 TgG から TeG への写像と見なすことができる。この見方に立つと、Maurer–Cartan 形式は g における接ベクトル X に対して、左から g−1 をかけることで定まる G 上の微分同相による像 を対応させるもの、として定義することができる。.

新しい!!: ローレンツ群とモーレー・カルタンの微分形式 · 続きを見る »

ユークリッドの運動群

数学におけるユークリッド群(ユークリッド-ぐん、Euclidean group)あるいは運動群 (motion group) は、ユークリッド空間のを言う。その元はユークリッド距離に付随する等距変換であり、合同変換あるいはユークリッドの運動 (motion) と呼ばれる。ユークリッドの運動群の研究は、少なくとも二次元や三次元の場合については極めて古く、群の概念が発するよりもずっと以前から(従ってもちろん群としてでなく、もっと陰伏的な形で)よく調べられている。 -次元ユークリッド空間の運動群は や などとも表される。; 三次元までの等長変換についての概観 は の任意の元が螺旋変位であることを主張する。.

新しい!!: ローレンツ群とユークリッドの運動群 · 続きを見る »

ラピディティ

対性理論において、ラピディティ (Rapidity) とは 速さにかわる運動の大きさの尺度である。相対論的な速度とは異なり、ラピディティには並進速度については(言い換えれば、一次元空間においては)単純な加法性が備わる。低速域ではラピディティと速さは比例関係にあるが、高速域ではラピディティの方が大きくなっていく。光速に対応するラピディティは無限大である。 逆双曲正接関数 を用いて、ラピディティ \varphi は速さ から \varphi.

新しい!!: ローレンツ群とラピディティ · 続きを見る »

リー代数

数学において、リー代数、もしくはリー環日本語ではしばしば Lie algebra のことをリー環と呼ぶが、後述の Lie ring はより一般的な概念である。本項ではこの2つの用語を区別して用いる。は、「リー括弧積」(リーブラケット、Lie bracket)と呼ばれる非結合的な乗法 を備えたベクトル空間である。 の概念を研究するために導入された。"Lie algebra" という言葉は、ソフス・リーに因んで、1930年代にヘルマン・ワイルにより導入された。古い文献では、無限小群 (infinitesimal group) という言葉も使われている。 リー代数はリー群と密接な関係にある。リー群とは群でも滑らかな多様体でもあるようなもので、積と逆元を取る群演算がであるようなものである。任意のリー群からリー代数が生じる。逆に、実数あるいは複素数上の任意の有限次元リー代数に対し、対応する連結リー群がによる違いを除いて一意的に存在する()。このによってリー群をリー代数によって研究することができる。.

新しい!!: ローレンツ群とリー代数 · 続きを見る »

リーマン球面

リーマン球面は、複素平面で包んだ球面(ある形式の立体射影による ― 詳細は下記参照)として視覚化できる。 数学においてリーマン球面(リーマンきゅうめん、Riemann sphere)は、無限遠点を一点追加して複素平面を拡張する一手法であり、ここに無限遠点 は、少なくともある意味で整合的かつ有用である。 19 世紀の数学者ベルンハルト・リーマンから名付けられた。 これはまた、以下の通りにも呼ばれる。.

新しい!!: ローレンツ群とリーマン球面 · 続きを見る »

リー群

リー群(リーぐん、Lie group)は群構造を持つ可微分多様体で、その群構造と可微分構造とが両立するもののことである。ソフス・リーの無限小変換と連続群の研究に端を発するためこの名がある。.

新しい!!: ローレンツ群とリー群 · 続きを見る »

ローレンツ変換

ーレンツ変換(ローレンツへんかん、Lorentz transformation)は、2 つの慣性系の間の座標(時間座標と空間座標)を結びつける線形変換で、電磁気学と古典力学間の矛盾を回避するために、アイルランドのジョセフ・ラーモア(1897年)とオランダのヘンドリック・ローレンツ(1899年、1904年)により提案された。 アルベルト・アインシュタインが特殊相対性理論(1905年)を構築したときには、慣性系間に許される変換公式として、理論の基礎を形成した。特殊相対性理論では全ての慣性系は同等なので、物理法則はローレンツ変換に対して不変な形、すなわち同じ変換性をもつ量の間のテンソル方程式として与えられなければならない。このことをローレンツ不変性(共変性)をもつという。 幾何学的には、ミンコフスキー空間における 2 点間の世界間隔を不変に保つような、原点を中心にした回転変換を表す(ミンコフスキー空間でみたローレンツ変換節参照)。.

新しい!!: ローレンツ群とローレンツ変換 · 続きを見る »

ロジャー・ペンローズ

ャー・ペンローズ(Sir Roger Penrose, 1931年8月8日 - )は、イギリス・エセックス州コルチェスター生まれの数学者、宇宙物理学・理論物理学者。.

新しい!!: ローレンツ群とロジャー・ペンローズ · 続きを見る »

ヘリシティー (素粒子)

ヘリシティー (helicity) は、粒子のスピンの回転方向を表す数値である。その値が-のものを左巻き、+のものを右巻きと呼ぶ。 数学的には、スピン\vec Sの運動量の向き \hat p への射影として、次のように表される: ある軸に関するスピンの固有値は離散的な値なので、ヘリシティーの固有値は離散的である。スピンSの粒子について、ヘリシティーの固有値はS,,..., −Sである。スピンSの粒子で計測されるヘリシティーは−Sから+Sの範囲を取りうる。ヘリシティーは、 \vec S の代わりに全角運動量演算子 \vec J によって等価に書き表すことができる。これは、線運動量に沿った軌道角運動量の射影は次のように0になるためである: 3 + 1次元において、質量を持たない粒子についての小群はSE(2)の二重被覆である。これは、SE(2)の"並進"に対して不変でありSE(2)のθ回転に対してeihθ変換を行うユニタリ表現を持つ。これはヘリシティーh表現である。SE(2)の並進に対して非自明に変換を行う別のユニタリ表現もある。これは、連続スピン表現である。 次元において、小群はSE() の二重被覆である。(の場合はエニオンなどのためにさらに複雑である。)前述のように、"標準"表現(SE()の"並進")および"連続スピン"表現に対して変換を行わない(不変である)ユニタリ表現が存在する。 質量を持たない2粒子にとって、ヘリシティーは\hbar/2倍されたカイラル演算子と等価である。.

新しい!!: ローレンツ群とヘリシティー (素粒子) · 続きを見る »

ヘンドリック・ローレンツ

ヘンドリック・アントーン・ローレンツ(Hendrik Antoon Lorentz、1853年7月18日 - 1928年2月4日)は、オランダの物理学者。ゼーマン効果の発見とその理論的解釈により、ピーター・ゼーマンとともに1902年のノーベル物理学賞を受賞した。ローレンツ力、ローレンツ変換などに名を残し、特に後者はアルベルト・アインシュタインが時空間を記述するのに利用した。.

新しい!!: ローレンツ群とヘンドリック・ローレンツ · 続きを見る »

パリティ (物理学)

物理学において、パリティ変換 (parity transformation) は一つの空間座標の符号を反転させることである。パリティ反転 (parity inversion) とも呼ぶ。一般的に、三次元におけるパリティ変換は空間座標の符号を三つとも同時に反転することで記述される: パリティ変換の3×3行列表現 P は−1に等しい行列式を持つため、1に等しい行列式を持つ回転へ還元することができない。対応する数学的概念は点対称変換である。 二次元平面では、パリティ変換は全ての条件の同時反転、数学的には180°の回転ではない。P行列の行列式が−1であること、つまりパリティ変換はxとyの両方ではなくどちらかの符号を反転させる二次元での180°回転ではないということが重要である。.

新しい!!: ローレンツ群とパリティ (物理学) · 続きを見る »

パウリ行列

パウリ行列(パウリぎょうれつ, Pauli matrices)、パウリのスピン行列(パウリのスピンぎょうれつ, Pauli spin matrices)とは、下に挙げる3つの2×2複素行列の組みのことである猪木、河合(1994)、第7章J.J Sakurai and Jim Napolitano(2010), chapter 3。(シグマ)で表記されることが多い。量子力学のスピン角運動量や、部分偏極状態の記述方法に関連が深い。1927年に物理学者ヴォルフガング・パウリによって、スピン角運動量の記述のために導入された。 \sigma_1.

新しい!!: ローレンツ群とパウリ行列 · 続きを見る »

ビアンキ分類

数学では、(Luigi Bianchi)の名前に因んだ、ビアンキ分類(Bianchi classification)は、リー代数の分類である。 3-次元実リー代数は、11個のクラスに分類され、その中の 9個は単独のグループで、残る 2つは同型類で繋がるという性質を持っている。(2つのグループは、無限個の族をなし、11個のグループの中に含まれることがあり、9個のグループをなることがある。).

新しい!!: ローレンツ群とビアンキ分類 · 続きを見る »

ピン群

特殊直交群 SO(n) が二重被覆としてスピノル群 Spin(n) を持つ様に、 直交群 O(n) は 2 つの同型でない被覆群 Pin+(n) と Pin−(n) を有する。 この両者は、ピン群(ピンぐん、英:Pin group)と呼ばれる。 (この名前は、セールの「spin が SO(n) に対応するように、pin は O(n) に対応する」という「冗談」に由来する。) この様な奇妙な状況は、O(n) が(SO(n) と異なり)連結でないことによる (その 2 つの連結成分は、行列式がそれぞれ +1 と −1 の行列の集合である)。 O(n) と SO(n) では、2π の回転は恒等写像だが、 ピン群では、Spin(n) と同様、4π の回転が恒等写像になるものの、 2π の回転では恒等写像にならない。 Pin+(n) においては、折り返しを 2 度繰り返すと、恒等写像になる。 Pin−(n) においては、折り返しを 2 度繰り返すと、2π の回転になる。 p ≠ q のとき、Spin(p,q) には 8 個もの異なる二重被覆がある。 このうち 2 つのみがピン群として取り上げられるが、これはクリフォード多元環を表現とすることができることに由来する。 これらは夫々、Pin(p,q)、 Pin(q,p) と呼ばれる。.

新しい!!: ローレンツ群とピン群 · 続きを見る »

ツイスター理論

ツイスター理論(ツイスターりろん、)は、ロジャー・ペンローズによって1960年代後半に提唱された数学の理論の一つである。.

新しい!!: ローレンツ群とツイスター理論 · 続きを見る »

ディラック方程式

ディラック方程式(ディラックほうていしき)はフェルミ粒子を記述するディラック場が従う基礎方程式である。ポール・ディラックにより相対論的量子力学として導入され、場の量子論に受け継がれている。.

新しい!!: ローレンツ群とディラック方程式 · 続きを見る »

ファイバー束

ファイバー束(ファイバーそく、fiber bundle, fibre bundle)とは、位相空間に定義される構造の一つで、局所的に 2 種類の位相空間の直積として表現できる構造の事である。.

新しい!!: ローレンツ群とファイバー束 · 続きを見る »

ド・ジッター宇宙

ド・ジッター宇宙(ド・ジッターうちゅう、De Sitter universe)とは、ウィレム・ド・ジッターが解いたアルベルト・アインシュタインの一般相対性理論の重力場方程式の三つの解のうちの一つの解であり、密度と圧力がともにゼロで、宇宙項が正の値をとる宇宙である。この解はド・ジッターの名をとってド・ジッター宇宙と呼ばれるようになった。 この模型では、宇宙は空間的に平坦であり、普通の物質を無視し、そして宇宙の力学は宇宙定数により支配されている。この宇宙定数はダークエネルギーに相当すると考えられている。.

新しい!!: ローレンツ群とド・ジッター宇宙 · 続きを見る »

ド・ジッター空間

数学や物理学において、ド・ジッター空間 (de Sitter space) は、通常のユークリッド空間の球面の、ミンコフスキー空間あるいは時空における類似物である。n 次元ド・ジッター空間は dSn と書き、(標準のリーマン計量を持つ)''n'' 次元球面のローレンツ多様体での類似である。この空間は、最大の対称性を持ち、正の定曲率を持ち、3 以上の n に対し、単連結である。ド・ジッター空間は反ド・ジッター空間と同様に、ライデン大学の天文学の教授で、ライデン天文台の天文台長であったウィレム・ド・ジッター (Willem de Sitter) (1872–1934) の名前に因んでいる。ウィレム・ド・ジッターとアルベルト・アインシュタイン (Albert Einstein) は、1920年代にライデンで、宇宙の時空の構造について研究を共にした。 一般相対論のことばでは、ド・ジッター空間は最大対称性を持ち、(正の真空エネルギー密度と負の圧力に対応する)正(反発力)の宇宙定数 \Lambda を持つアインシュタイン場の方程式の(vacuum solution)である。( 3つの空間次元と 1つの時間次元)では、ド・ジッター空間は物理的な宇宙の天文学的なモデルである。ド・ジッター宇宙(de Sitter universe)を参照。 ド・ジッター空間はウィレム・ド・ジッターにより、また同時に、独立してトゥーリオ・レヴィ=チヴィタ (Tullio Levi-Civita) により発見された。 さらに最近は、ド・ジッター空間がミンコフスキー空間を使うというよりも、特殊相対論の設定として考えられるようになった。その理由は、(group contraction)は、ド・ジッター空間の等長変換群をポアンカレ群へと還元し、(semi-simple group)というよりも単純群の中へ、時空変換部分群やポアンカレ群のローレンツ変換部分群を統一することを可能とする。この特殊相対論の定式化を(de Sitter relativity)と呼ぶ。 n, is the Lorentzian manifold analog of an ''n''-sphere (with its canonical Riemannian metric); it is maximally symmetric, has constant positive curvature, and is simply connected for n at least 3.

新しい!!: ローレンツ群とド・ジッター空間 · 続きを見る »

ベクトル場

ベクトル場(ベクトルば、vector field)とは、数学において、幾何学的な空間の広がりの中でベクトル的な量の分布を表すものである。単純化された設定のもとではベクトル場はユークリッド空間 Rn (またはその開集合)からベクトル空間 Rn への関数として与えられる。(局所的な)座標系のもとでベクトル場を表示するときは座標に対してベクトルを与えるような関数を考えることになるが、座標系を変更したときにこの関数は一定の規則に従って変換を受けることが要請される。 ベクトル場の概念は物理学や工学においても積極的にもちいられ、例えば動いている流体の速さと向きや、磁力や重力などの力の強さと向きなどが空間的に分布している状況を表すために用いられている。 現代数学では多様体論にもとづき、多様体上の接ベクトル束の断面として(接)ベクトル場が定義される。.

新しい!!: ローレンツ群とベクトル場 · 続きを見る »

分子対称性

ホルムアルデヒドの対称要素。C2は2回回転軸である。σvおよびσv' は2つの等価でない鏡映面である。 化学における分子の対称性(ぶんしのたいしょうせい、molecular symmetry)は、分子に存在する対称性およびその対称性に応じた分子の分類を述べる。分子対称性は化学における基本概念であり、双極子モーメントや許容分光遷移(ラポルテの規則といった選択則に基づく)といった分子の化学的性質の多くを予測あるいは説明することができる。多くの大学レベルの物理化学や量子化学、無機化学の教科書は、対称性のために一章を割いている。 分子の対称性の研究には様々な枠組みが存在するが、群論が主要な枠組みである。この枠組みは、ヒュッケル法、配位子場理論、ウッドワード・ホフマン則といった応用に伴って分子軌道の対称性の研究にも有用である。大規模な系では、固体材料の結晶学的対称性を説明するために結晶系が枠組みとして使用されている。 分子対称性を実質的に評価するためには、X線結晶構造解析や様々な分光学的手法(例えば金属カルボニルの赤外分光法)など多くの技術が存在する。.

新しい!!: ローレンツ群と分子対称性 · 続きを見る »

アフィン写像

幾何学におけるアフィン写像(アフィンしゃぞう、affine map)はベクトル空間(厳密にはアフィン空間)の間で定義される、平行移動を伴う線型写像である。アフィン (affine) はラテン語で「類似・関連」を意味する affinis に由来する。 始域と終域が同じであるようなアフィン写像はアフィン変換(アフィンへんかん、affine transformation)と呼ばれる。アフィン写像はアフィン空間の構造を保つ。.

新しい!!: ローレンツ群とアフィン写像 · 続きを見る »

エルミート行列

線型代数学におけるエルミート行列(エルミートぎょうれつ、Hermitian matrix)または自己随伴行列(じこずいはんぎょうれつ、self-adjoint matrix)は、複素数に成分をとる正方行列で自身の随伴行列(共軛転置)と一致するようなものを言う。エルミート行列は、実対称行列の複素数に対する拡張版の概念として理解することができる。 行列 の随伴を と書くとき、複素行列がエルミートであるということは、 が成り立つということであり、これはまた が成り立つことと同値ゆえ、その成分は任意の添字 について -成分は -成分の複素共軛と等しい。 随伴行列 は と書かれるほうが普通だが、 を複素共軛(本項では と書いた)の意味で使う文献も多く紛らわしい。 エルミート行列の名はシャルル・エルミートに因む。エルミートは1855年、この種の行列が固有値が常に実数となるという実対称行列と同じ性質を持つことを示した。 よく知られたパウリ行列、ゲルマン行列および一般化されたそれらはエルミートである。理論物理学においてそれらのエルミート行列には、しばしば虚数の係数が掛かって歪エルミート行列となる。.

新しい!!: ローレンツ群とエルミート行列 · 続きを見る »

オランダ人

ランダ人(オランダじん、Nederlanders)は、オランダ国民、またはオランダを父祖の土地とする民族のこと。 南部アフリカへ移民したオランダ人はアフリカーナーになった。さらにバルト・ドイツ人とともにロシアに移民したオランダ人もいた。オーストリア大統領のアレクサンダー・ファン・デア・ベレンは父がオランダ系ロシア貴族出身である。.

新しい!!: ローレンツ群とオランダ人 · 続きを見る »

キリングベクトル場

リングベクトル場(Killing vector field)(時々、キリング場(Killing fieldとも呼ばれる)は、(Wilhelm Killing)の名前に因んだ名称で、計量を保存するリーマン多様体や擬リーマン多様体上のベクトル場であり、計量テンソルを保存する。キリング場は、等長(isometry)なリー群に付随するリー代数の無限小生成子である。すなわち、キリング場により生成されるフロー (幾何学)(flow)であり、多様体の(continuous isometries)写像である。さらに単純化すると、フローは、各々の点をキリングベクトル場の方法へ同じ距離にある対象上の各々の点を動かすことが、距離を曲げないという意味の対称性を生成する。.

新しい!!: ローレンツ群とキリングベクトル場 · 続きを見る »

クラインの四元群

ラインの四元群とは、巡回群でない位数が最小の群である。また、位数2の巡回群の直積と同型である。 クラインの四群元の単位元以外の元の位数は、2である。 クラインの四元群の演算表は: また、交代群 A4 の正規部分群 と同型。.

新しい!!: ローレンツ群とクラインの四元群 · 続きを見る »

クリフォード代数

数学において、クリフォード代数 (Clifford algebra) は結合多元環の一種である。K-代数として、それらは実数、複素数、四元数、そしていくつかの他の超複素数系を一般化する。クリフォード代数の理論は二次形式と直交変換の理論と親密に関係がある。クリフォード代数は幾何学、理論物理学、デジタル画像処理を含む種々の分野において重要な応用を持つ。それらはイギリス人幾何学者にちなんで名づけられている。 最もよく知られたクリフォード代数、あるいは直交クリフォード代数 (orthogonal Clifford algebra) は、リーマンクリフォード代数 (Riemannian Clifford algebra) とも呼ばれる。.

新しい!!: ローレンツ群とクリフォード代数 · 続きを見る »

コンパクト空間

数学において、コンパクト(compact)は位相空間の性質である。詳細は後述するがコンパクト性の定義それ自身は直観性に乏しいものであり、証明を容易にする為のいわば操作的なものである。しかし距離空間であればより直観的な言葉でいいかえる事ができ、特に有限次元のユークリッド空間においては有界閉集合であることとコンパクト集合であることとは同値になる。したがってコンパクトの概念はユークリッド空間における有界閉集合の概念を一般の位相空間に拡張したものとしてとらえる事ができる。 なお無限次元では有界閉集合はコンパクトとは限らず、例えばヒルベルト空間内の(縁を含んだ)単位球体は有界かつ閉集合であるがコンパクトではない(距離位相を入れた場合)。 ブルバキでは、ここでいう定義を満たす位相空間を準コンパクト(quasi-compact)と呼び、さらにハウスドルフの分離公理を満たすものをコンパクトであると呼んでいる。距離空間など多くの空間ではハウスドルフの分離公理が満たされるので両者の概念は一致するが、一般には注意が必要である。.

新しい!!: ローレンツ群とコンパクト空間 · 続きを見る »

スピン群

数学 において、 スピン群(スピンぐん、spin group) Spin(n) は特殊直交群 SO(n) の二重被覆であり、従って、以下に記すリー群の短完全系列が存在する。 n > 2 に対し、Spin(n) は単連結であり、よって SO(n) の普遍被覆である。 従って、リー群 Spin(n) の次元は n(n − 1)/2 と特殊直交群と同じであり、リー環も特殊直交群のものと同じである。 Spin(n) は、クリフォード多元環 Cℓ(n) の乗法可逆元からなる部分群として構成できる。 n 次元実ユークリッド空間 Rn の標準的正値 2 次形式に対するクリフォード多元環および偶クリフォード多元環を夫々 Cℓ(n)、Cℓ0(n) と書く。 Cℓ(n) の乗法可逆元全体 Cℓ(n)× は乗法群になり、Cℓ0(n) の乗法可逆元全体 Cℓ0(n)× はその部分群になる。 X∈Cℓ(n)× に対して、 は Cℓ(n) の内部自己同型である。 一般クリフォード群 は、Cℓ(n)× の部分群で、特殊クリフォード群 も部分群である。 Cℓ(n) の主逆自己同型を J と書くとき、X∈Γ(n) のノルム は Cℓ(n) の中心の可逆元である。 準同型としてのノルム写像 ν の Γ0(n) への制限の核 Ker(ν|Γ0(n)) は、Spin(n) になる。.

新しい!!: ローレンツ群とスピン群 · 続きを見る »

タキオン

タキオン(tachyon)は、超光速で動くと仮定されている粒子である。タキオンの存在は特殊相対性理論に反しないが、場の理論において否定的であり、現在においても存在は確認されていない。語源はギリシャ語の「ταχύς(速い)」に由来する。 SF作品中で超光速通信の手段として用いられたり、疑似科学の世界でタキオングッズとして「製品化」されたりしている。.

新しい!!: ローレンツ群とタキオン · 続きを見る »

商群

数学において,商群(しょうぐん,quotient group, factor group)あるいは剰余群,因子群とは,群構造を保つ同値関係を用いて,大きい群から似た元を集めて得られる群である.例えば,n を法とした加法の巡回群は,整数から,差が の倍数の元を同一視し,そのような各類(合同類と呼ばれる)に1つの実体として作用する群構造を定義することによって得られる.群論と呼ばれる数学の分野の一部である. 群の商において,単位元の同値類はつねにもとの群の正規部分群であり,他の同値類たちはちょうどその正規部分群の剰余類たちである.得られる商は と書かれる,ただし はもとの群で は正規部分群である.(これは「(ジーモッドエヌ)」と読まれる."mod" は modulo の略である.) 商群の重要性の多くはその準同型との関係に由来する.第一同型定理は任意の群 の準同型による像はつねに のある商と同型であると述べている.具体的には,準同型 による の像は と同型である,ただし は の核 を表す. 商群の双対概念は部分群であり,これらが大きい群から小さい群を作る2つの主要な方法である.任意の正規部分群 は,大きい群から部分群 の元の間の差異を除去して得られる,対応する商群を持つ.圏論では,商群は商対象の例であり,これは部分対象の双対である.商対象の他の例は,商環,商線型空間,商位相空間,商集合を参照..

新しい!!: ローレンツ群と商群 · 続きを見る »

全射

数学において、写像が全射的(ぜんしゃてき、surjective, onto)であるとは、その終域となる集合の元は何れもその写像の像として得られることを言う。即ち、集合 から集合 への写像 について、 の各元 に対し となるような の元 が(一般には複数あってもよいが)対応させられるとき、写像 は全射 (surjection, onto mapping/function) であるという。全写(あるいは全写像)とも書く。 全射(および単射、双射)の語は20世紀フランスの数学結社ブルバキ(1935年以降『数学原論』シリーズを刊行している)により導入されたものである。接頭辞 sur- はフランス語で「上の」を意味し、写像の始域が終域全体をすっぽり覆い尽くすように写し込まれるイメージを反映したものになっている。sur, in, bi, jection いずれもラテン語源である。.

新しい!!: ローレンツ群と全射 · 続きを見る »

共役類

数学、とくに群論において、任意の群は共役類(きょうやくるい、conjugacy class)に分割できる。同じ共役類の元は多くの性質を共有し、非アーベル群の共役類の研究はそれらの構造のたくさんの重要な特徴を明らかにする。.

新しい!!: ローレンツ群と共役類 · 続きを見る »

光子

|mean_lifetime.

新しい!!: ローレンツ群と光子 · 続きを見る »

光円錐

特殊および一般相対性理論において、光円錐(こうえんすい) とはある (時空上の一点)からあらゆる方向に向けて発せられた閃光が描く時空上の軌跡をいう。 ある二次元平面上に閉じ込められた光を考えてみれば、事象 E で発せられた光は同心円状に拡がっていき、時間を表わす縦軸を付け加えれば、光の軌跡は円錐を描くことがわかるだろう。これを未来光円錐と呼ぶ。過去光円錐とはこれを時間反転したもので、円の半径は光速で縮まっていき事象 E において一点に収縮する。実際には、空間の次元は3であるので、光は2次元平面上の円ではなく3次元空間上の球面を描いて拡がっていく4次元時空上の(3次元空間上の円錐の断面が二次元平面上の円となるのと同様)であるが、この概念を可視化するためには空間次元を2に落としたほうが簡単である。 数式で表わせば座標 が下記の式を満たす事象の集合である。 信号その他の因果関係の伝播は光速を超えることができないため(特殊相対性理論および量子もつれの項を参照のこと)、光円錐は因果律を定義する上で重要な役割を果たす。ある事象 E について、E の過去円錐内に含まれる事象群は信号を送って E に何らかの影響を与えることが可能である。例えば、E の十年前において E に将来影響を与えうるような事象をすべて集めると、 E が将来起こることになる位置を中心とする球体(2次元ならば円盤)を成す。したがって、この球面上およびその内側にある点は光速あるいはそれより遅い速度で伝播する信号を送り、事象 E に影響を及ぼすのに十分な時間があるということになる。逆に、その瞬間にこの球面の外側にある点は決して E に影響を及ぼすことはできない。同様に、事象 E の「未来」光円錐に含まれる事象は E の位置と時刻から信号を受け取ることができる全ての点を含むので、未来光円錐には E から相対論的因果律に従って影響を受ける可能性のある事象が全て含まれている。.

新しい!!: ローレンツ群と光円錐 · 続きを見る »

回転 (数学)

平面における点 ''O'' の周りでの回転 初等幾何学および線型代数学における回転(かいてん、rotation)は、平面あるいは空間において固定された一点の周りでの剛体の運動を記述する。回転は、不動点を持たない平行移動とは違うし、剛体を「裏返し」にしてしまう鏡映とも異なる。回転を含めたこれらの変換は等距変換、即ちこれらの変換の前後で二点間の距離を変えない。 回転を考える際には基準系を知ることが重要であり、全ての回転はある特定の基準系に対するものとして記述される。一般に、ある座標系に関する剛体の任意の直交変換に対し、その逆変換が存在して、それを基準系に施すと剛体はもとと同じ座標にいることになる。例えば二次元の座標上の1点を定めて剛体を置いた時、1点を軸として剛体を時計回りに回すことと、剛体を動かさず1点を軸として座標を反時計回りに回すことは等価である。.

新しい!!: ローレンツ群と回転 (数学) · 続きを見る »

図形の相似

2つの図形 F と G が相似(そうじ、similar)であるとは、一方を適当に一様スケール変換(拡大 または縮小)して他方と合同になる(すなわち、有限回の平行移動、回転移動、対称移動により重なる)ことである。それらの「形」が等しいことであるとも言い換えられる。記号では、欧米では F ∽ G と表すが、日本では「∽」でなく S を横に倒したような記号で表すことが多い。G を r 倍に一様スケール変換して F と合同であるとき、r: 1 を F と G の相似比という。F と G の相似比は、対応する線分の長さの比(一定)に等しい。 相似な直線図形(多角形など)においては、対応する辺の長さの比は一定で相似比に等しくなり、対応する角はそれぞれ等しくなる。 特に r.

新しい!!: ローレンツ群と図形の相似 · 続きを見る »

固有値

線型代数学において、線型変換の特徴を表す指標として固有値 (eigenvalue) や固有ベクトル (eigenvector) がある。この2つの用語を合わせて、固有対 (eigenpair) という。与えられた線型変換の固有値および固有ベクトルを求める問題のことを固有値問題 (eigenvalue problem) という。ヒルベルト空間論において線型作用素 あるいは線型演算子と呼ばれるものは線型変換であり、やはりその固有値や固有ベクトルを考えることができる。固有値という言葉は無限次元ヒルベルト空間論や作用素代数におけるスペクトルの意味でもしばしば使われる。.

新しい!!: ローレンツ群と固有値 · 続きを見る »

四元数

数学における四元数(しげんすう、quaternion(クォターニオン))は複素数を拡張した数体系である。四元数についての最初の記述は、1843年にアイルランドの数学者ウィリアム・ローワン・ハミルトンによってなされ、三次元空間の力学に応用された。四元数の特徴は、二つの四元数の積が非可換となることである。ハミルトンは、四元数を三次元空間内の二つの有向直線の商として定義した。これは二つのベクトルの商と言っても同じである。四元数をスカラーと三次元のベクトルとの和として表すこともできる。 一般に、四元数は の形に表される。ここで、 a, b, c, d は実数であり、i, j, k は基本的な「四元数の単位」である。 四元数は純粋数学のみならず応用数学、特に3Dグラフィクスやコンピュータビジョンにおいてでも用いられる。これはオイラー角や回転行列あるいはそれらに代わる道具などとともに、必要に応じて利用される。 現代数学的な言い方をすれば、四元数の全体は実数体上四次元の結合的ノルム多元体を成し、またそれゆえに非可換整域となる。歴史的には四元数の体系は、最初に発見された非可換多元体である。四元数全体の成すこの代数は、ハミルトンに因んで H(あるいは黒板太文字でユニコードの Double-Struck Capital H, U+210D, )と書かれる。またこの代数を、クリフォード代数の分類に従って というクリフォード代数として定義することもできる。この代数 は解析学において特別な位置を占めている。というのも、フロベニウスの定理に従えば は実数の全体 を真の部分環として含む有限次元可除環の二種類しかないうちの一つ(もう一つは複素数の全体 )だからである。 従って、単位四元数は三次元球面 上の群構造を選んだものとして考えることができて、群 を与える。これは に同型、あるいはまた の普遍被覆に同型である。.

新しい!!: ローレンツ群と四元数 · 続きを見る »

等角写像

矩形格子(上)と等角写像 ''f'' によるその像(下)。''f'' が、90°で交差している2つの直線をなおも90°で交差している2つの曲線へ移していることが確認できる。 等角写像(とうかくしゃぞう、conformal transformation)とは、2次元以上のユークリッド空間からユークリッド空間への写像であって、任意の点の近傍の微小な2つの線分が、その成す角を保存するように写像されるものをいう。いいかえれば、座標変換の関数行列が回転行列のスカラー倍となるものである。即ち、平面上の一つの図形を他の図形に変換(写像)したとき、図形上の二曲線の交角はその写像によっても等しく保たれるような写像を等角写像と呼ぶ。一見すると、原形から大きく図形が変わったように見えても、対応する微小部分に注目すると、原形の図形と相似になっているのが、等角写像である。等角写像は、複素関数論と深い関係があり、工学上、流体の挙動の記述などにおいて非常に有用である。.

新しい!!: ローレンツ群と等角写像 · 続きを見る »

等角航路

等角航路(とうかくこうろ)とは、地球上の2点間を結ぶ航路のうち、進行方向が経線となす角度が常に一定となるものをいう。航程線とも呼ばれる。.

新しい!!: ローレンツ群と等角航路 · 続きを見る »

等質空間

数学、とくにリー群、代数群、位相群の理論において、群 の等質空間(とうしつくうかん、homogeneous space)は、 が推移的に作用するような空でない多様体あるいは位相空間 である。 の元は の対称変換 (symmetry) と呼ばれる。特別な場合は、問題の が空間 の自己同型群であるときである――ここで「自己同型群」は、微分同相群、あるいはの意味である。この場合 が等質空間であるとは、直感的には が、等長写像(リジッド幾何学)、微分同相写像(微分幾何学)、あるいは同相写像(位相幾何学)の意味において、各点で局所的に同じに見えるということである。著者によっては の作用が忠実である(非単位元は非自明に作用する)ことを要求するが、本記事ではそうしない。したがって、 上のある「幾何学的構造」を保ち を単一の G-軌道にすると考えられるような の への群作用が存在する。.

新しい!!: ローレンツ群と等質空間 · 続きを見る »

等長写像

数学、とくに幾何学において等長写像(とうちょうしゃぞう)または等距離写像(とうきょりしゃぞう)とは、"長さ" を変えない(距離を保つ、distance preserving)写像のことである。全単射であるものに限って等長写像 (isometry) という場合もある。.

新しい!!: ローレンツ群と等長写像 · 続きを見る »

線型写像

数学の特に線型代数学における線型変換(せんけいへんかん、linear transformation、一次変換)あるいは線型写像(せんけいしゃぞう、linear mapping)は、ベクトルの加法とスカラー乗法を保つ特別の写像である。特に任意の(零写像でない)線型写像は「直線を直線に移す」。 抽象代数学の言葉を用いれば、線型写像とは(体上の加群としての)ベクトル空間の構造を保つ準同型のことであり、また一つの固定された体上のベクトル空間の全体は線型写像を射とする圏を成す。 「線型変換」は線型写像とまったく同義と扱われる場合もあるが、始域と終域を同じくする線型写像(自己準同型)の意味で用いていることも少なくない。また函数解析学の分野では、(特に無限次元空間上の)線型写像のことを「線型作用素」(せんけいさようそ、linear operator)と呼ぶことも多い。スカラー値の線型写像はしばしば「線型汎函数」もしくは「一次形式」(いちじけいしき、linear form, one-form; 線型形式; 1-形式)とも呼ばれる一次の微分形式(一次微分形式もしくは微分一次形式; differential one-form)を単に「一次形式」または「1-形式」(one-form) と呼ぶこともある。これとの対照のため、本項に云う意味での一次形式を「代数一次形式」(albegraic one-form) と呼ぶ場合がある。。 線形等の用字・表記の揺れについては線型性を参照。.

新しい!!: ローレンツ群と線型写像 · 続きを見る »

線型性

線型性(せんけいせい、英語: linearity)あるいは線型、線形、線状、リニア(せんけい、英語: linear、ラテン語: linearis)とは、直線そのもの、または直線のようにまっすぐな図形やそれに似た性質をもつ対象および、そのような性質を保つ変換などを指して用いられている術語である。対義語は非線型性(英語:Non-Linearity)である。 英語の数学用語のlinear にあてる日本語訳としては、線型が本来の表記であると指摘されることもあるが、他にも線形、線状などといった表記もしばしば用いられている。また一次という表記・表現もしばしば用いられている。というのはlinearは、(多変数の)斉一次函数を指していると考えて間違っていない場合も多いためである。.

新しい!!: ローレンツ群と線型性 · 続きを見る »

群 (数学)

数学における群(ぐん、group)とは最も基本的と見なされる代数的構造の一つである。群はそれ自体興味深い考察対象であり、群論における主要な研究対象となっているが、数学や物理学全般にわたってさまざまな構成に対する基礎的な枠組みを与えている。.

新しい!!: ローレンツ群と群 (数学) · 続きを見る »

群作用

数学における群作用(ぐんさよう、group action)は、群を用いて物体の対称性を記述する方法である。.

新しい!!: ローレンツ群と群作用 · 続きを見る »

翻訳

翻訳(ほんやく)とは、Aの形で記録・表現されているものから、その意味するところに対応するBの形に翻案することである。一般に自然言語のそれを指し、起点言語 (source language、原言語) による文章を、別の目標言語 (target language、目的言語) による文章に変換する。例えば、英文から日本文へ翻訳された場合は、起点言語が英語であり、目標言語が日本語である。起点言語による文を原文といい、目標言語による文を訳文・翻訳文と言う。一方文章ではなく、自然言語の発話を別言語に置き換える行為は通訳とも呼ばれる。.

新しい!!: ローレンツ群と翻訳 · 続きを見る »

物理学

物理学(ぶつりがく, )は、自然科学の一分野である。自然界に見られる現象には、人間の恣意的な解釈に依らない普遍的な法則があると考え、自然界の現象とその性質を、物質とその間に働く相互作用によって理解すること(力学的理解)、および物質をより基本的な要素に還元して理解すること(原子論的理解)を目的とする。化学、生物学、地学などほかの自然科学に比べ数学との親和性が非常に強い。 古代ギリシアの自然学 にその源があり, という言葉も、元々は自然についての一般的な知識の追求を意味しており、天体現象から生物現象までを含む幅広い概念だった。現在の物理現象のみを追求する として自然哲学から独立した意味を持つようになったのは19世紀からである。 物理学の古典的な研究分野は、物体の運動、光と色彩、音響、電気と磁気、熱、波動、天体の諸現象(物理現象)である。.

新しい!!: ローレンツ群と物理学 · 続きを見る »

特殊ユニタリ群

次の特殊ユニタリ群(とくしゅユニタリぐん、special unitary group) とは、行列式が1の 次ユニタリ行列の為す群の事である。群の演算は行列の積で与えられる。 特殊ユニタリ群 はユニタリ群 の部分群であり、さらに一般線型群 の部分群である。 特殊ユニタリ群は素粒子物理学において、電弱相互作用のワインバーグ=サラム理論や強い相互作用の量子色力学、あるいはそれらを統合した標準模型や大統一理論などに出てくる。.

新しい!!: ローレンツ群と特殊ユニタリ群 · 続きを見る »

特殊線型群

数学において、 体 上の次数 の特殊線型群(とくしゅせんけいぐん、special linear group)とは、 行列式が である 次正方行列のなす集合に、通常の行列の積と逆行列の演算が入った群である。この群は、行列式 の核として得られる、一般線型群 の正規部分群である。 ここで は の乗法群(つまり、 から を除いた集合)を表す。 特殊線型群の元は「特殊な」もの、つまりある多項式が定める一般線型群の部分代数多様体、である(行列式は多項式であることに注意)。.

新しい!!: ローレンツ群と特殊線型群 · 続きを見る »

特殊相対性理論

特殊相対性理論(とくしゅそうたいせいりろん、Spezielle Relativitätstheorie、Special relativity)とは、慣性運動する観測者が電磁気学的現象および力学的現象をどのように観測するかを記述する、物理学上の理論である。アルベルト・アインシュタインが1905年に発表した論文に端を発する。特殊相対論と呼ばれる事もある。.

新しい!!: ローレンツ群と特殊相対性理論 · 続きを見る »

随伴作用素

数学の特に函数解析学において、ヒルベルト空間上の各有界線型作用素は、対応する随伴作用素(ずいはんさようそ、adjoint operator)を持つ。作用素の随伴は正方行列の随伴行列の概念の無限次元の場合をも許すような一般化である。ヒルベルト空間上の作用素を「一般化された複素数」と考えれば、作用素の随伴は複素数に対する複素共軛の役割を果たすものである。 作用素 の随伴は、シャルル・エルミートに因んでエルミート共軛 (Hermitian conjugate) とも呼ばれ、 あるいは などで表される(後者は特にブラケット記法とともに用いられる)。.

新しい!!: ローレンツ群と随伴作用素 · 続きを見る »

運動学

運動学(うんどうがく)という語は、だいたい以下の2通りの意味で使われている。.

新しい!!: ローレンツ群と運動学 · 続きを見る »

行列式

数学における行列式(ぎょうれつしき、)とは、正方行列に対して定義される量で、歴史的には行列が表す一次方程式の可解性を判定する指標として導入された。幾何的には線型空間またはより一般の有限生成自由加群上の自己準同型に対して定義され、線型変換によって空間の体積要素が何倍に変わるかという概念を抽象化したものと見なすことができる。行列の可逆性を判定する指標として線型代数学における最も重要な指標の一つと見なされている。.

新しい!!: ローレンツ群と行列式 · 続きを見る »

被覆空間

数学、特に代数トポロジーにおいて、被覆写像(covering map)あるいは被覆射影(covering projection)とは、位相空間 C から X への連続全射 p のうち、 X の各点が p により「均一に被覆される」開近傍をもつものをいう。厳密な定義は追って与える。このとき C を被覆空間(covering space)、X を底空間(base space)と呼ぶ。この定義は、すべての被覆写像は局所同相であることを意味する。 被覆空間はホモトピー論、調和解析、リーマン幾何学、微分幾何学で重要な役割を果たす。たとえば、リーマン幾何学では、分岐は、被覆写像の考え方の一般化である。また、被覆写像はホモトピー群、特に基本群の研究とも深く関係する: X が十分によい位相空間であれば、X の被覆の同値類の集合と 基本群 π1(X) の共役な部分群の類全体との間に全単射が存在する(被覆の分類定理)。 from a topological space, C, to a topological space, X, such that each point in X has an open neighbourhood evenly covered by p (as shown in the image); the precise definition is given below.

新しい!!: ローレンツ群と被覆空間 · 続きを見る »

計量テンソル

計量テンソル(けいりょうテンソル、metric tensor)は、リーマン幾何学において、空間内の距離と角度を定義する、階数()が2のテンソルである。多様体が与えられたとき、多様体の接空間で、滑らかに変化する非負の2次関数を選ぶことができる場合、その多様体をリーマン多様体と呼ぶ。そのため、計量テンソルは、リーマン計量()と呼ばれることもある。 ひとたび、ある座標系 が選ばれると、計量テンソルは行列形式で定義される。通常、 として表記され、各成分は と表される。以下では、添え字の和に関してアインシュタインの縮約記法を用いる。 点 から までの曲線の長さは、 をパラメータとして、 と定義される。2つの接ベクトル()U.

新しい!!: ローレンツ群と計量テンソル · 続きを見る »

部分群

二項演算 * に関して群 G が与えられたとする。 G の部分集合である H が G の部分群であるということは、 H が演算 * に関して群になるということである。より正確に表現すると、 H が G の部分群であるということは、群の演算 * を H×H (Hの直積)に制限したときに、 H における群の演算になっているということである。この関係は通常、 H ≤ G という記号で表現し、「 H は G の部分群である」と読む。 G の真部分群とは、部分群 H が G の真部分集合である(つまり H≠G である)ことである。任意の群 G に対し、G 自身と単位元のみからなる集合 は常に G の部分群である。 H が G の部分群であるとき、 G は H の拡大群であると表現する場合がある。 G が任意の半群であるときも、G の部分群の定義はそのまま通用するが、本項では群の部分群についてのみを扱うにとどめる。群 G は順序対 (G, &lowast) として記述されることもあるが、このように書くのは普通、G を台となる集合としてその上に演算 "∗" が代数的構造(あるいはもっとほかの構造)を定めるということを強調するためである。 以下では、通常の慣習に倣って ∗ を省略し、積 a ∗ b を単に ab と表記する。また、群の演算を単に「積」と表記する場合もある。.

新しい!!: ローレンツ群と部分群 · 続きを見る »

重力子

重力子(じゅうりょくし、graviton、グラビトン)は、素粒子物理学における四つの力のうちの重力相互作用を伝達する役目を担わせるために導入される仮説上の素粒子。2016年までのところ未発見である。 アルベルト・アインシュタインの一般相対性理論より導かれる重力波を媒介する粒子として提唱されたものである。スピン2、質量0、電荷0、寿命無限大のボース粒子であると予想され、力を媒介するゲージ粒子である。.

新しい!!: ローレンツ群と重力子 · 続きを見る »

量子力学

量子力学(りょうしりきがく、quantum mechanics)は、一般相対性理論と同じく現代物理学の根幹を成す理論として知られ、主として分子や原子、あるいはそれを構成する電子など、微視的な物理現象を記述する力学である。 量子力学自身は前述のミクロな系における力学を記述する理論だが、取り扱う系をそうしたミクロな系の集まりとして解析することによって、ニュートン力学に代表される古典論では説明が困難であった巨視的な現象についても記述することができる。たとえば量子統計力学はそのような応用例の一つである。従って、生物や宇宙のようなあらゆる自然現象もその記述の対象となり得る。 代表的な量子力学の理論として、エルヴィン・シュレーディンガーによって創始された、シュレーディンガー方程式を基礎に置く波動力学と、ヴェルナー・ハイゼンベルク、マックス・ボルン、パスクアル・ヨルダンらによって構成された、ハイゼンベルクの運動方程式を基礎に置く行列力学がある。ただしこの二つは数学的に等価である。 基礎科学として重要で、現代の様々な科学や技術に必須な分野である。 たとえば科学分野について、太陽表面の黒点が磁石になっている現象は、量子力学によって初めて解明された。 技術分野について、半導体を利用する電子機器の設計など、微細な領域に関するテクノロジーのほとんどは量子力学を基礎として成り立っている。そのため量子力学の適用範囲の広さと現代生活への影響の大きさは非常に大きなものとなっている。一例として、パソコンや携帯電話、レーザーの発振器などは量子力学の応用で開発されている。工学において、電子工学や超伝導は量子力学を基礎として展開している。.

新しい!!: ローレンツ群と量子力学 · 続きを見る »

自然法則

自然法則(しぜんほうそく、law of nature)とは、自然の事象の間になりたっている、反復可能で一般的な関係のこと広辞苑 第五版 p.1175 第三段。 自然律とも言うデジタル大辞泉。 法則と言ってもいくつか分類があるが、自然法則というのは、規範法則ではないもののほうであり、人間の道徳的なlaw(法規)ではないほうの法則である。自然法則は因果関係を基礎に置いて考えられている。 川崎謙によると、東洋の歴史で自然に数理的法則を見出す考え方が生まれず、それに対して西洋の歴史においてガリレオらによって自然の中に意図的に数理的法則(自然法則)を見出そうとする近代科学が生まれることになったのは、東洋と西洋では自然観が全く異なっていたこと、別の言い方をすると「nature」と「自然」の用法や概念が全然違っていたことによる、とのことである。.

新しい!!: ローレンツ群と自然法則 · 続きを見る »

離散群

数学において,位相群 の離散部分群(りさんぶぶんぐん,discrete subgroup)とは,部分群 であって, の開被覆で任意の開部分集合が の元をちょうどひとつ含むようなものが存在するものである.言い換えると, の における部分空間位相は離散位相である.例えば,整数の全体 は実数の全体 (標準的な距離位相をいれる)の離散部分群であるが,有理数の全体 は離散部分群ではない.離散群とは離散位相を備えた位相群である. 任意の群には離散位相を与えることができる.離散空間からの任意の写像は連続であるから,離散群の間の位相的準同型はちょうどその群の間の群準同型である.したがって,群の圏と離散群の圏の間には同型がある.離散群はしたがってその(抽象)群と同一視できる. 位相群あるいはリー群に「自然に逆らって」離散位相を入れると有用な場合がある.例えばの理論やリー群の群コホモロジーにおいてである. 離散は距離空間の任意の点に対して等長変換のもとでの点の像の集合が離散集合であるような等長変換群である.離散は離散等長変換群である対称変換群である..

新しい!!: ローレンツ群と離散群 · 続きを見る »

電子

電子(でんし、)とは、宇宙を構成するレプトンに分類される素粒子である。素粒子標準模型では、第一世代の荷電レプトンに位置付けられる。電子は電荷−1、スピンのフェルミ粒子である。記号は e で表される。また、ワインバーグ=サラム理論において弱アイソスピンは−、弱超電荷は−である。.

新しい!!: ローレンツ群と電子 · 続きを見る »

電磁気学

電磁気学(でんじきがく、)は、物理学の分野の1つであり、電気と磁気に関する現象を扱う学問である。工学分野では、電気磁気学と呼ばれることもある。.

新しい!!: ローレンツ群と電磁気学 · 続きを見る »

連続写像

位相空間論において函数や写像が連続(れんぞく、continuous)であるというのは、ある特定の意味で位相空間の間の位相的構造を保つある種の準同型となっていることを意味し、それ自体が位相空間論における興味の対象ともなる。数学の他の領域における各種の連続性の定義も、位相空間論における連続性の定義から導出することができる。連続性は、空間の位相が同相(位相同型)であることの基礎となる概念であり、特に全単射な連続写像が同相写像であるための必要十分条件は、その逆写像もまた連続となることである。 連続でない写像あるいは函数は、不連続であると言う。 連続性と近しい関係にある概念として、一様連続性、同程度連続性、作用素の有界性などがある。 位相空間の間の写像の連続性の概念は、それが距離空間の間の連続函数の場合のような明確な「距離」の概念を一般には持たない分、より抽象的である。位相空間というのは、集合 とその上の位相(あるいは開集合系)と呼ばれる の部分集合族で(距離空間における開球体全体の成す族の持つ性質を一般化するように)合併と交叉に関する特定の条件を満足するものを組にしたもので、位相空間においても与えられた点の近傍について考えることができる。位相に属する各集合は の(その位相に関する)開部分集合と呼ばれる。.

新しい!!: ローレンツ群と連続写像 · 続きを見る »

連結空間

位相幾何学や関連する数学の分野において、連結空間(れんけつくうかん、connected space)とは、2つ以上の互いに素な空でない開部分集合の和集合として表すことのできない位相空間のことである。空間の連結性は主要なの1つであり、位相空間の区別をつけることに利用できる。より強い意味での連結性として、弧状連結 (path-connected) という概念があり、これは任意の2点が道によって結べることをいう。 位相空間 X の部分集合が連結であるとは、X の相対位相によってそれ自身を位相空間と見たときに連結であることをいう。 連結でない空間の例は、平面から直線を取り除いたものがある。非連結空間(すなわち連結でない空間)の他の例には、平面からアニュラスを取り除いたものや、2つの交わりを持たない閉円板の和集合がある。ただし、これら3つの例はいずれも、2次元ユークリッド空間から誘導される相対位相を考えている。.

新しい!!: ローレンツ群と連結空間 · 続きを見る »

T対称性

T対称性(ティーたいしょうせい、T-symmetry)または時間反転対称性(じかんはんてんていしょうせい、time reversal symmetry)とは となるような変換に関しての物理的対称性である。 初期状態と終状態を反転する変換下での物理的現象の普遍性が物理学でしばしば考察の対象となる。時間反転演算子を とすれば となる。 初期状態 から 終状態 へ時間発展するある物理現象を考えた場合に、行列要素が となる。これは すなわち から への時間発展という物理現象についての行列要素と等しい。.

新しい!!: ローレンツ群とT対称性 · 続きを見る »

核 (代数学)

数学において、準同型の核(かく、kernel)とは、その準同型の単射からのずれの度合いを測る道具である。代数系における準同型の核が "自明" (trivial) であることとその準同型が単射であることとが同値となる。.

新しい!!: ローレンツ群と核 (代数学) · 続きを見る »

次元 (数学)

数学における対象(図形)の次元(じげん、dimension)は、(やや不正確だが)その対象に属する点を特定するのに必要な座標の数の最小値として定まる。次元はその対象の内在的性質であって、その対象が「どのような空間に埋め込まれるか」ということとは無関係であることに注意すべきである。例えば、平面における単位円上の点は、平面上の点として二つの成分を持つ直交座標系によって特定することもできるけれども、極座標の偏角としての一つの座標のみによっても特定することができるので、単位円は(二次元の平面上に存在するものであるけれども)一次元の対象である。このような内在的な次取り扱いは、日常的な意味で用いられる「次元」とは異なる、数学的な意味での次元の概念を峻別するための根本的な観点である。 ''n''-次元ユークリッド空間 の次元は である。このことを別な種類の空間に対して一般化しようとするとき、「 を -次元たらしめるところのものはいったい何であるか」という問題に直面する。その一つの答えとして、 における球体を固定し、それを小さい半径 の球によって被覆するとき、被覆に必要な小さい球の数のオーダーが であることが挙げられる。この観点からはミンコフスキー次元あるいはより精緻なハウスドルフ次元の概念が導かれる。しかし、先ほどの問いの別な答えとして、例えば における球体の境界が局所的に と見なせることを挙げれば、帰納次元の概念が導かれる。これらの次元の概念は 上では一致するけれども、もっと一般の空間で考えたときには異なるということが起こりうる。 正八胞体(テッセラクト)は四次元図形の例である。数学と関係ない文脈では「正八胞体は四つの次元を持つ」というような「次元」の語の用例が見られるものの、数学用語としての用法では「正八胞体は次元 4 を持つ」とか「正八胞体の次元は 4 である」といったような表現になる。 高次元の概念自体はルネ・デカルトまで遡れるかもしれないけれども、実質的な高次元幾何学が形成され始めるのは19世紀に入ってから、ケイリー、ハミルトン、シュレーフリ、リーマンらの研究を通じてである。1854年にリーマンの Habilitationsschrift、1852年にシュレーフリの Theorie der vielfachen Kontinuität、1843年にハミルトンの四元数の発見、ケイリー数の構成などによって、高次元幾何学の幕は開かれた。 以下、いくつか数学的に重要な次元の定義を説明する。.

新しい!!: ローレンツ群と次元 (数学) · 続きを見る »

正規部分群

数学、とくに抽象代数学における正規部分群(せいきぶぶんぐん、normal subgroup)は、群の任意の元による内部自己同型のもとで不変な部分群である。正規部分群は、与えられた群から剰余群を構成するのに用いることができる。 正規部分群の重要性は、エヴァリスト・ガロアによって最初に明らかにされた。.

新しい!!: ローレンツ群と正規部分群 · 続きを見る »

準同型

準同型(じゅんどうけい、homomorphic)とは、複数の対象(おもに代数系)に対して、それらの特定の数学的構造に関する類似性を表す概念で、構造を保つ写像である準同型写像(じゅんどうけいしゃぞう、homomorphism) を持つことを意味する。構造がまったく同じであることを表すときは、準同型・準同型写像の代わりに同型(どうけい、isomorphic)および同型写像(どうけいしゃぞう、isomorphism)という術語を用いる。しばしば、準同型写像・同型写像のことを指して単に準同型・同型と呼ぶ。いずれも、「型」の代わりに「形」が用いられることが稀にある。.

新しい!!: ローレンツ群と準同型 · 続きを見る »

数学

数学(すうがく、μαθηματικά, mathematica, math)は、量(数)、構造、空間、変化について研究する学問である。数学の範囲と定義については、数学者や哲学者の間で様々な見解がある。.

新しい!!: ローレンツ群と数学 · 続きを見る »

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »