ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

レイリー散乱

索引 レイリー散乱

レイリー散乱(レイリーさんらん、Rayleigh scattering)とは、光の波長よりも小さいサイズの粒子による光の散乱である。透明な液体や固体中でも起きるが、典型的な現象は気体中の散乱であり、太陽光が大気で散乱されることによって、空が青く見えるというものである。レイリー散乱という名は、この現象の説明を試みたレイリー卿にちなんで名付けられた。.

50 関係: 反比例双極子夕焼け密度屈折屈折率三省堂幾何光学体積係数ミー散乱トムソン散乱トレーサーテイラーアンドフランシスニューヨークホーボーケン (ニュージャージー州)分光法アルドノア・ゼロアビンドン=オン=テムズカレッジパーク (メリーランド州)ジョン・ワイリー・アンド・サンズジョン・ウィリアム・ストラット (第3代レイリー男爵)円周率光学光速固体積分法立体角米国物理学協会粒子荷電粒子質量距離自由電子電場電子電磁場電荷透明気体波長液体振動振動数散乱散乱断面積

反比例

反比例(はんぴれい、inverse proportionality)とは、2つの量があってそれらの一方が他方の逆数に比例していることをいう。量 A, B について A ∝ B−1 が成り立つとき、あるいは同じことだが、定数(比例定数)k を用いて が成り立つとき A は B に反比例する (inversely proportional) という。反比例のことを逆比例(ぎゃくひれい)ともいう。A が B に反比例するとき、A と B を入れ替えても同様のことが成り立つので A と B は(互いに)反比例の関係にあるということもある。またこのとき、入れ替えたあとの比例定数は入れ替える前のそれと等しい; 反比例の記号として ∝−1 を用いることがある; A ∝−1 B.

新しい!!: レイリー散乱と反比例 · 続きを見る »

双極子

双極子(そうきょくし、)とは、一対の正負の同じ大きさの単極子をわずかに離れた位置に置いたものである。和訳せずダイポールと呼ばれることもある。 双極子は、負から正の単極子への方向ベクトルとその大きさとの積で特徴づけられる。このベクトルを双極子モーメント()あるいは双極子能率といい、このベクトルの方向との関係により指向性を持つ場となる。 一般に双極子のポテンシャルφは単極子のそれφmonopole の空間についての偏微分で表される。.

新しい!!: レイリー散乱と双極子 · 続きを見る »

夕焼け

水平線に沈む太陽 夕焼け空 グリーンフラッシュ 夕焼け(ゆうやけ)は、日没の頃、西の地平線に近い空が赤く見える現象のこと。 夕焼けの状態の空を夕焼け空、夕焼けで赤く染まった雲を“夕焼け雲”と称する。日の出の頃に東の空が同様に見えるのは朝焼け(あさやけ)という。.

新しい!!: レイリー散乱と夕焼け · 続きを見る »

密度

密度(みつど)は、広義には、対象とする何かの混み合いの程度を示す。ただし、科学において、単に密度といえば、単位体積あたりの質量である。より厳密には、ある量(物理量など)が、空間(3 次元)あるいは面上(2 次元)、線上(1 次元)に分布していたとして、これらの空間、面、線の微小部分上に存在する当該量と、それぞれ対応する体積、面積、長さに対する比のことを(それぞれ、体積密度、面密度、線密度と言う)言う。微小部分は通常、単位体積、単位面積、単位長さ当たりに相当する場合が多い。勿論、4 次元以上の仮想的な場合でも、この関係は成立し、密度を定義することができる。 その他の密度としては、状態密度、電荷密度、磁束密度、電流密度、数密度など様々な量(物理量)に対応する密度が存在する(あるいは定義できる)。物理量以外でも人口密度、個体群密度、確率密度、などの値が様々なところで用いられている。密度効果という語もある。.

新しい!!: レイリー散乱と密度 · 続きを見る »

屈折

光が屈折しているため、水中の棒が曲がって見える。 屈折(くっせつ、)とは、波(波動)が異なる媒質を通ることによって進行方向を変えることである。異なる媒質を通るときに、波の周波数が変わらずに進む速度が変わるため進行方向が変わる(エネルギー保存の法則や運動量保存の法則による)。観測されやすい屈折は、波が0度以外の角度で媒質を変えるものである。 光の屈折がもっとも身近な例であるが、例えば音波や水の波動も屈折する。波が進行方向を変える度合いとしてはホイヘンスの原理を使ったスネルの法則が成り立つ。部分的に反射する振る舞いはフレネルの式で表される。なぜ光が屈折するかについては、量子力学的にファインマンの経路積分によって説明される。.

新しい!!: レイリー散乱と屈折 · 続きを見る »

屈折率

屈折率(くっせつりつ、)とは、真空中の光速を物質中の光速(より正確には位相速度)で割った値であり、物質中での光の進み方を記述する上での指標である。真空を1とした物質固有の値を絶対屈折率、2つの物質の絶対屈折率の比を相対屈折率と呼んで区別する場合もある。.

新しい!!: レイリー散乱と屈折率 · 続きを見る »

三省堂

株式会社三省堂(さんせいどう)は、日本の出版社である。辞典・事典・六法・教科書などの出版で知られる。 本社はJR水道橋駅と神田川に挟まれたエリアにある。この場所は、かつて自社印刷工場の倉庫として使われていた場所であった。.

新しい!!: レイリー散乱と三省堂 · 続きを見る »

幾何光学

幾何光学(きかこうがく)とは、光の波動性や量子性その他を無視して、光の進む線の性質のみを幾何学的に研究する光学の分野である。 光学機器の設計に重要な位置を占める。光の波長が、(光学系のサイズに比べて)極端に小さい場合の現象を取り扱う。.

新しい!!: レイリー散乱と幾何光学 · 続きを見る »

体積

体積(たいせき)とは、ある物体が 3 次元の空間でどれだけの場所を占めるかを表す度合いである。和語では嵩(かさ)という。.

新しい!!: レイリー散乱と体積 · 続きを見る »

初等幾何学における図形の径(けい、diameter)は、その図形の差し渡しをいう。διάμετρος(「亙りの」+ 「大きさ」) に由来する。 円の直径は、その円の中心を通り、両端点がその円周上にある任意の線分であり、またその円の最長のでもある。球体の直径についても同様。 より現代的な用法では、任意の直径の(一意な)長さ自身も同じく「直径」と呼ばれる(一つの円に対して線分の意味での直径は無数にあるが、その何れも同じ長さを持つことに注意する。それゆえ(量化を伴わず)単に円の直径といった場合、ふつうは長さとしての意味である)。長さとして、直径は半径 (radius) の二倍に等しい。 平面上の凸図形に対して、その径は図形の両側から接する二本の平行線の間の最長距離として定義される(同様の最小距離は幅 (width) と呼ばれる)。径(および幅)はを用いて効果的に計算することができる。ルーローの三角形のような定幅図形では、任意の平行接線が同じ長さを持つから、径と幅は一致する。.

新しい!!: レイリー散乱と径 · 続きを見る »

係数

係数(けいすう、coefficient)は、多項式の各項(単項式)を構成する因子において、変数(不定元)を除いた、定数等の因子である。例えば、4α+3β+2における、4と3と2である。この例では2がそれであるが、それ自体で項全体となっている項(あるいは、形式的には 1に掛かっている係数)を、特に定数項と呼ぶ。.

新しい!!: レイリー散乱と係数 · 続きを見る »

ミー散乱

ミー散乱(ミーさんらん、Mie-Streuung)は、光の波長程度以上の大きさの球形の粒子による光の散乱現象である。粒子のサイズが非常に大きくなると、ミー散乱と幾何光学の二つの手法による計算結果が類似するようになる。なお、波長に対して粒子(散乱体)が大きい場合は回折散乱が、光の波長の1/10以下になるとレイリー散乱が適用される。 により厳密解が導かれたとされているが、同時期にルードヴィヒ・ローレンツやピーター・デバイなども厳密解を得ていた。散乱の特徴として、粒子のサイズが大きくなるにつれて前方への指向性が強くなる。その際には、側方および後方へはあまり散乱しなくなる。 雲が白く見える一因である。これは雲を構成する雲粒の半径が数 - 数 の大きさで、太陽光の可視光線の波長に対してミー散乱の領域となり、可視域の太陽放射がどの波長域でもほぼ同程度に散乱されるためである。.

新しい!!: レイリー散乱とミー散乱 · 続きを見る »

トムソン散乱

トムソン散乱(トムソンさんらん、)とは、ニュートン力学的に考察する事の出来る束縛を受けていない自由な荷電粒子による、古典的な電磁波の散乱で、弾性散乱の一種である。イギリスの物理学者であるJ. J. トムソンが、1個の電子に対して一定の方向から光が当たる時、どの方向にどれだけ光が散乱されるかを算定した事に因んで名付けられた。.

新しい!!: レイリー散乱とトムソン散乱 · 続きを見る »

トレーサー

トレーサー(tracer)とは、液体など流体の流れ、あるいは特定の物質(代謝などで化学変化する場合を含む)を追跡するために使われる、微量添加物質や性質である。追跡子(ついせきし)ともいう。.

新しい!!: レイリー散乱とトレーサー · 続きを見る »

テイラーアンドフランシス

テイラー・アンド・フランシス・グループ(Taylor & Francis Group)は、イギリスを本拠とするインフォーマ(Informa)社の一部門である学術書出版社である。本社はイギリスのオックスフォード。イギリスの他、アメリカ合衆国、オーストラリア、シンガポール、中国、日本、マレーシア、スイス、インド、南アフリカの世界各国にオフィスを持つ。 同社は1852年、リチャード・テイラーの出版業に、化学者ウィリアム・フランシスが加わり、設立された。 1936年に有限責任株式会社化、1998年にロンドン証券取引所上場、2004年にはインフォーマと合併。合併以降同社は、インフォーマの学術出版部門として運営されている。 Taylor & Francis Groupは、毎年約2400の学術誌、7000タイトル以上の書籍を新刊し、約13万の既刊書を有する。.

新しい!!: レイリー散乱とテイラーアンドフランシス · 続きを見る »

ニューヨーク

ニューヨーク市(New York City)は、アメリカ合衆国ニューヨーク州にある都市。 1790年以来、同国最大の都市であり、市域人口は800万人を超え、都市圏人口では定義にもよるが2000万人以上である.

新しい!!: レイリー散乱とニューヨーク · 続きを見る »

ホーボーケン (ニュージャージー州)

ホーボーケン()はアメリカ合衆国ニュージャージー州ハドソン郡にある都市である。2010年国勢調査での人口は50,005人である。ニューヨーク都市圏に属している。.

新しい!!: レイリー散乱とホーボーケン (ニュージャージー州) · 続きを見る »

分光法

プリズムによる光線の波長分割 分光法(ぶんこうほう、spectroscopy)とは、物理的観測量の強度を周波数、エネルギー、時間などの関数として示すことで、対象物の定性・定量あるいは物性を調べる科学的手法である。 spectroscopy の語は、元々は光をプリズムあるいは回折格子でその波長に応じて展開したものをスペクトル (spectrum) と呼んだことに由来する。18世紀から19世紀の物理学において、スペクトルを研究する分野として分光学が確立し、その原理に基づく測定法も分光法 (spectroscopy) と呼ばれた。 もともとは、可視光の放出あるいは吸収を研究する分野であったが、光(可視光)が電磁波の一種であることが判明した19世紀以降は、ラジオ波からガンマ線(γ線)まで、広く電磁波の放出あるいは吸収を測定する方法を分光法と呼ぶようになった。また、光の発生または吸収スペクトルは、物質固有のパターンと物質量に比例したピーク強度を示すために物質の定性あるいは定量に、分析化学から天文学まで広く応用され利用されている。 また光子の吸収または放出は量子力学に基づいて発現し、スペクトルは離散的なエネルギー状態(エネルギー準位)と対応することが広く知られるようになった。そうすると、本来の意味の「スペクトル」とは全く異なる、「質量スペクトル」や「音響スペクトル」など離散的なエネルギー状態を表現した測定チャートもスペクトルとよばれるようになった。また「質量スペクトル」などは物質の定性に使われることから、今日では広義の分光法は「スペクトル」を使用して物性を測定あるいは物質を同定・定量する技法一般の総称となっている。.

新しい!!: レイリー散乱と分光法 · 続きを見る »

アルドノア・ゼロ

『アルドノア・ゼロ』(ALDNOAH.ZERO)は、A-1 Pictures・TROYCA共同制作による日本のオリジナルテレビアニメ作品。分割2クールで、第1クールは2014年7月から9月まで、第2クールは2015年1月から3月まで放送された。.

新しい!!: レイリー散乱とアルドノア・ゼロ · 続きを見る »

アビンドン=オン=テムズ

アビンドン=オン=テムズ (Abingdon-on-Thames) は、イギリス、イングランドのオックスフォード州ヴェール・オヴ・ホワイト・ホース(州南西部)のタウンで行政教区である。かつてはバークシャーに属していた。 人口3万6000人。ブリテン島で最も古いと主張する現存する町のひとつである。 名門男子校アビンドン・スクールで知られる。1256年創立で、イギリスでも最も古いとされるパブリック・スクール(中学高校に相当)のひとつである。 1929年より1980年まで、イギリスのスポーツカーのブランドであるMGの主要生産工場が存在していた。.

新しい!!: レイリー散乱とアビンドン=オン=テムズ · 続きを見る »

カレッジパーク (メリーランド州)

レッジパーク(College Park)は、アメリカ合衆国メリーランド州プリンスジョージズ郡に位置する都市である。2010年国勢調査での人口は30,413 人だった。市内にメリーランド大学カレッジパーク校があることと、1994年からアメリカ国立公文書記録管理局の新館(アーカイブス・ツー)もあることで知られている。 カレッジパークの郵便番号は20740、20741(バーウィンハイツ、ノースカレッジパーク)、20742(メリーランド大学)である。.

新しい!!: レイリー散乱とカレッジパーク (メリーランド州) · 続きを見る »

ジョン・ワイリー・アンド・サンズ

ョン・ワイリー・アンド・サンズ(John Wiley & Sons、略称: Wiley、)は、1807年創業の科学、医学、教育などの分野の世界的な学術出版社である。 大学院のための教材、トレーニング教材、百科事典などの印刷、オンライン製品やオンラインサービスのような電子的情報も扱っている。『フォー・ダミーズ』シリーズの出版でも知られている。.

新しい!!: レイリー散乱とジョン・ワイリー・アンド・サンズ · 続きを見る »

ジョン・ウィリアム・ストラット (第3代レイリー男爵)

3代レイリー男爵ジョン・ウィリアム・ストラット(Baron Rayleigh、1842年11月12日 - 1919年6月30日)は、イギリスの物理学者。レイリー卿(レーリー卿あるいはレーリ卿とも、Lord Rayleigh)としても知られる。光の散乱の研究から空が青くなる理由を示す(レイリー散乱)、地震の表面波(レイリー波)の発見、ラムゼーとの共同研究によるアルゴンの発見、熱放射を古典的に扱ったレイリー・ジーンズの法則の導出などを行った。このほかにも流体力学(レイリー数)や毛細管現象の研究など、古典物理学の広範な分野に業績がある。 「気体の密度に関する研究、およびこの研究により成されたアルゴンの発見」により、1904年の ノーベル物理学賞を受賞した。.

新しい!!: レイリー散乱とジョン・ウィリアム・ストラット (第3代レイリー男爵) · 続きを見る »

円周率

円周率(えんしゅうりつ)は、円の周長の直径に対する比率として定義される数学定数である。通常、ギリシア文字 (パイ、ピー、ラテン文字表記: )で表される。数学をはじめ、物理学、工学といった様々な科学分野に出現し、最も重要な数学定数とも言われる。 円周率は無理数であり、その小数展開は循環しない。円周率は、無理数であるのみならず、超越数でもある。 円周率の計算において功績のあったルドルフ・ファン・コーレンに因み、ルドルフ数とも呼ばれる。ルドルフは、小数点以下35桁までを計算した。小数点以下35桁までの値は次の通りである。.

新しい!!: レイリー散乱と円周率 · 続きを見る »

上方から入ってきた光の道筋が、散乱によって見えている様子。(米国のアンテロープ・キャニオンにて) 光(ひかり)とは、基本的には、人間の目を刺激して明るさを感じさせるものである。 現代の自然科学の分野では、光を「可視光線」と、異なった名称で呼ぶことも行われている。つまり「光」は電磁波の一種と位置付けつつ説明されており、同分野では「光」という言葉で赤外線・紫外線まで含めて指していることも多い。 光は宗教や、哲学、自然科学、物理などの考察の対象とされている。.

新しい!!: レイリー散乱と光 · 続きを見る »

光学

光学(こうがく、)は、光の振舞いと性質および光と物質の相互作用について研究する、物理学のひとつの部門。光学現象を説明し、またそれによって裏付けられる。 光学で通常扱うのは、電磁波のうち光と呼ばれる波長域(可視光、あるいはより広く赤外線から紫外線まで)である。光は電磁波の一種であるため、光学は電磁気学の一部門でもあり、電波やX線・マイクロ波などと類似の現象がみられる。光の量子的性質による光学現象もあり、量子力学に関連するそのような分野は量子光学と呼ばれる。.

新しい!!: レイリー散乱と光学 · 続きを見る »

光速

光速(こうそく、speed of light)、あるいは光速度(こうそくど)とは、光が伝播する速さのことであるニュートン (2011-12)、pp. 24–25.。真空中における光速の値は (≒30万キロメートル毎秒)と定義されている。つまり、太陽から地球まで約8分20秒(8分19秒とする場合もある)、月から地球は、2秒もかからない。俗に「1秒間に地球を7回半回ることができる速さ」とも表現される。 光速は宇宙における最大速度であり、物理学において時間と空間の基準となる特別な意味を持つ値でもある。 現代の国際単位系では長さの単位メートルは光速と秒により定義されている。光速度は電磁波の伝播速度でもあり、マクスウェルの方程式で媒質を真空にすると光速が一定となるということが相対性理論の根本原理になっている。 重力作用も光速で伝播することが相対性理論で予言され、2002年に観測により確認された。.

新しい!!: レイリー散乱と光速 · 続きを見る »

固体

固体インスリンの単結晶形態 固体(こたい、solid)は物質の状態の一つ。固体内の原子は互いに強く結合しており、規則的な幾何学的格子状に並ぶ場合(金属や通常の氷などの結晶)と、不規則に並ぶ場合(ガラスなどのアモルファス)がある。 液体や気体と比較して、変形あるいは体積変化が非常に小さい。変形が全く起こらない剛体は理想化された固体の一つである。連続体力学においては、固体は静止状態においてもせん断応力の発生する物体と捉えられる。液体のように容器の形に合わせて流動することがなく、気体のように拡散して容器全体を占めることもない。 固体を扱う物理学は固体物理学と呼ばれ、物性物理学の一分野である。また物質科学はそもそも、強度や相変化といった固体の性質を扱う学問であり、固体物理学と重なる部分が多い。さらに固体化学の領域もこれらの学問と重なるが、特に新しい物質の開発(化学合成)に重点が置かれている。 今まで知られている最も軽い固体はエアロゲルであり、そのうち最も軽いものでは密度は約 1.9 mg/cm3 と水の密度の530分の1程度である。.

新しい!!: レイリー散乱と固体 · 続きを見る »

積分法

積分法(せきぶんほう、integral calculus)は、微分法と共に微分積分学で対を成す主要な分野である。 実数直線上の区間 [a, b] 上で定義される実変数 x の関数 f の定積分 (独: bestimmte Integral, 英: definite integral, 仏: intégrale définie) は、略式的に言えば f のグラフと x-軸、および x.

新しい!!: レイリー散乱と積分法 · 続きを見る »

立体角

立体角(りったいかく、solid angle)とは、二次元における角(平面角)の概念を三次元に拡張したものである。 平面上における角とは、平面上の同一の点(角の頂点)から出る二つの半直線によって区切られた部分のことをいい、この2半直線の開き具合を角度という。角度は、角の頂点を中心とする半径 1の円から、2半直線が切り取った円弧の長さで表すことができる。 これに対し、空間上における立体角とは、空間上の同一の点(角の頂点)から出る半直線が動いてつくる錐面によって区切られた部分のことをいい、この錐面の開き具合を角度という。角度は、角の頂点を中心とする半径 1の球から錐面が切り取った面積の大きさで表すことができる。 立体角の計量単位には次の2つがある。.

新しい!!: レイリー散乱と立体角 · 続きを見る »

米国物理学協会

米国物理学協会(べいこくぶつりがくきょうかい、英語:American Institute of Physics、略称:AIP)は、アメリカ合衆国の物理学系学会の連合組織であると共に、独自でも学術雑誌を発行しており、学会としての機能も有している。12.5万人のメンバーが所属しており、単独の物理系学会では世界最大のドイツ物理学会、その次の米国物理学会より規模が大きい。.

新しい!!: レイリー散乱と米国物理学協会 · 続きを見る »

粒子

粒子(りゅうし、particle)は、比較的小さな物体の総称である。大きさの基準は対象によって異なり、また形状などの詳細はその対象によって様々である。特に細かいものを指す微粒子といった語もある。.

新しい!!: レイリー散乱と粒子 · 続きを見る »

荷電粒子

荷電粒子(かでんりゅうし)とは、電荷を帯びた粒子のこと。通常は、イオン化した原子や、電荷を持った素粒子のことである。 核崩壊によって生じるアルファ線(ヘリウムの原子核)やベータ線(電子)は、荷電粒子から成る放射線である。質量の小さな粒子が電荷を帯びると、電場によって正と負の電荷が引き合ったり、反対に正と正、負と負が反発しあったりするクーロン力を受けたり、また磁場中でこういった粒子が運動することで進行方向とは直角方向に生じる力を受けたりする。これら2つの力をまとめてローレンツ力というが、磁場によって生じる力のほうが大きい場合には電界による力を無視して、磁場の力だけをローレンツ力と言うことがある。これはローレンツ力の定義式にある電界の項をゼロとおき(電界の影響が小さいため無視する)、磁場の影響だけを計算した結果で、近似である。詳しくはローレンツ力を参照。.

新しい!!: レイリー散乱と荷電粒子 · 続きを見る »

青(あお、、蒼、碧)は基本色名のひとつで、晴れた日の海や瑠璃のような色の総称である。青は英語のblue、外来語のブルーに相当する。寒色のひとつ。また、光の三原色のひとつも青と呼ばれる。青色(セイショク、あおいろ)は同義語。 国際照明委員会 (CIE) は435.8nm の波長をRGB表色系において青 (B) と規定している。 「あお」は緑色などの寒色全体を指して用いられることがあり、このように青と緑が明確に分節されてこなかった言語は世界に例が多い。.

新しい!!: レイリー散乱と青 · 続きを見る »

質量

質量(しつりょう、massa、μᾶζα、Masse、mass)とは、物体の動かしにくさの度合いを表す量のこと。.

新しい!!: レイリー散乱と質量 · 続きを見る »

距離

距離(きょり、Entfernung)とは、ある2点間に対して測定した長さの量をいう。本項では日常生活および高校数学の範囲内で使われている距離について触れる。大学以上で扱うより専門的な距離については距離空間を参照。.

新しい!!: レイリー散乱と距離 · 続きを見る »

赤いバラの花 赤いリンゴの実 赤(あか、紅、朱、丹)は色のひとつで、熟したイチゴや血液のような色の総称。JIS規格では基本色名の一つ。国際照明委員会 (CIE) は700 nm の波長をRGB表色系においてR(赤)と規定している。赤より波長の長い光を赤外線と呼ぶが、様々な表色系などにおける赤の波長とは間接的にしか関係ない。語源は「明(アカ)るい」に通じるとされる。「朱・緋(あけ)」の表記が用いられることもある。赤色(セキショク、あかいろ)は赤の同義語。.

新しい!!: レイリー散乱と赤 · 続きを見る »

自由電子

自由電子(じゆうでんし, free electron)とはポテンシャルがいたるところでゼロ、つまり何ら束縛を受けていない電子のこと。電子気体(フェルミ気体)とも呼ばれることがある。この自由電子をモデルとしたものを自由電子モデル(自由電子模型、Free electron model)と言う。現実の電子系について、それらが自由電子であると仮定する近似を自由電子近似と言う。 特に金属の場合は、伝導電子と同じ意味で自由電子という言葉が用いられる。金属内部の自由電子は、電気伝導や熱伝導を担う。 実際には通常の金属においても、伝導電子はごく弱くはあるが相互作用を受けている。強く束縛を受ける伝導電子などには適用できず、電子同士の多体相互作用も無視している。自由電子として扱うのは一種の理想化である。.

新しい!!: レイリー散乱と自由電子 · 続きを見る »

電場

電場(でんば)または電界(でんかい)(electric field)は、電荷に力を及ぼす空間(自由電子が存在しない空間。絶縁空間)の性質の一つ。E の文字を使って表されることが多い。おもに理学系では「電場」、工学系では「電界」ということが多い。また、電束密度と明確に区別するために「電場の強さ」ともいう。時間によって変化しない電場を静電場(せいでんば)または静電界(せいでんかい)とよぶ。また、電場の強さ(電界強度)の単位はニュートン毎クーロンなので、アンテナの実効長または実効高を掛けると、アンテナの誘起電圧 になる。.

新しい!!: レイリー散乱と電場 · 続きを見る »

電子

電子(でんし、)とは、宇宙を構成するレプトンに分類される素粒子である。素粒子標準模型では、第一世代の荷電レプトンに位置付けられる。電子は電荷−1、スピンのフェルミ粒子である。記号は e で表される。また、ワインバーグ=サラム理論において弱アイソスピンは−、弱超電荷は−である。.

新しい!!: レイリー散乱と電子 · 続きを見る »

電磁場

電磁場(でんじば,, EMF)、あるいは電磁界(でんじかい)は、電場(電界)と磁場(磁界)の総称。 電場と磁場は時間的に変化する場合には、互いに誘起しあいながらさらにまた変化していくので、まとめて呼ばれる。 電磁場の変動が波動として空間中を伝播するとき、これを電磁波という。 電場、磁場が時間的に一定で 0 でない場合は、それぞれは分離され静電場、静磁場として別々に扱われる。 電磁場という用語を単なる概念として用いる場合と、物理量として用いる場合がある。 概念として用いる場合は電場の強度と電束密度、あるいは磁場の強度と磁束密度を明確に区別せずに用いるが、物理量として用いる場合は電場の強度と磁束密度の組であることが多い。 また、これらの物理量は電磁ポテンシャルによっても記述され、ラグランジュ形式などで扱う場合は電磁ポテンシャルが基本的な物理量として扱われる。このような場合には電磁ポテンシャルを指して電磁場という事もある。 電磁場のふるまいは、マクスウェルの方程式、あるいは量子電磁力学(QED)によって記述される。マクスウェルの方程式を解いて、電磁場のふるまいについて解析することを電磁場解析と言う。.

新しい!!: レイリー散乱と電磁場 · 続きを見る »

電荷

電荷(でんか、electric charge)は、素粒子が持つ性質の一つである。電気量とも呼ぶ。電荷の量を電荷量という。電荷量のことを単に電荷と呼んだり、電荷を持つ粒子のことを電荷と呼んだりすることもある。.

新しい!!: レイリー散乱と電荷 · 続きを見る »

透明

透明な水晶 透明(とうめい)とは、物体の反対側や内部にあるものが透けて見えること。曇ったり、歪んだりはしているが見える「半透明」もあれば、極端な場合には間にある物体が存在しないかのように感じられる。 転じて「透明な」「透明性」などの形で、比喩として様々な意味・文脈でも用いられる概念である。特に行政や企業の運営状況等の公開に関連して「透明性」の語が用いられる。.

新しい!!: レイリー散乱と透明 · 続きを見る »

気体

気体(きたい、gas)とは、物質の状態のひとつであり岩波書店『広辞苑』 第6版 「気体」、一定の形と体積を持たず、自由に流動し圧力の増減で体積が容易に変化する状態のこと。 「ガス体」とも。.

新しい!!: レイリー散乱と気体 · 続きを見る »

波長

波長(はちょう、Wellenlänge、wavelength)とは、空間を伝わる波(波動)の持つ周期的な長さのこと。空間は3次元と限る必要はない。 正弦波を考えると(つまり波形が時間や、空間の位置によって変わらない状態)、波長λには、 の関係がある。 \begin k \end は波数、 \begin \omega \end は角振動数、 \begin v \end は波の位相速度、 \begin f \end は振動数(周波数)である。波数 \begin k \end は k.

新しい!!: レイリー散乱と波長 · 続きを見る »

液体

液体の滴は表面積が最小になるよう球形になる。これは、液体の表面張力によるものである 液体(えきたい、liquid)は物質の三態(固体・液体・気体)の一つである。気体と同様に流動的で、容器に合わせて形を変える。液体は気体に比して圧縮性が小さい。気体とは異なり、容器全体に広がることはなく、ほぼ一定の密度を保つ。液体特有の性質として表面張力があり、それによって「濡れ」という現象が起きる。 液体の密度は一般に固体のそれに近く、気体よりもはるかに高い密度を持つ。そこで液体と固体をまとめて「凝集系」などとも呼ぶ。一方で液体と気体は流動性を共有しているため、それらをあわせて流体と呼ぶ。.

新しい!!: レイリー散乱と液体 · 続きを見る »

振動

振動(しんどう、oscillation、vibration)とは、状態が一意に定まらず揺れ動く事象をいう。英語では、重力などによる周期が長い振動と、弾性や分子間力などによる周期の短い振動は別の語が充てられるが、日本語では周期によらず「振動」という語で呼ばれる。周期性のある振動において、単位時間あたりの振動の数を振動数(または周波数)、振動のふれ幅を振幅、振動の一単位にかかる時間を周期という。 振動は、同じ場所での物質の周期的な運動であるが、物理学においてさまざまな現象の中に現れ、基本的な概念の一つとして扱われる。物理的にもっとも単純な振動は単振動である。また、振動する系はそれぞれ固有振動(数)をもつ。振動の振幅を減少させる要因がある場合には、振動が次第に弱まる減衰振動となる。外部から一定の間隔で力を与えることなどにより振動を引き起こすことを強制振動とよぶ。強制振動の振動数がその系の固有振動数に近い場合、共振(または共鳴とも)を引き起こす。古典物理学だけでなく、電磁気学では電気回路や電場・磁場の振動を扱い、またミクロな現象を扱う現代物理学などにおいても、振動は基本的な性質である。 波動現象は、振動が時間的変化にとどまらず空間的に伝わっていく現象であり、自然現象の理解になくてはならない基礎概念へと関連している。.

新しい!!: レイリー散乱と振動 · 続きを見る »

振動数

振動数(しんどうすう、英語:frequency)は、物理学において等速円運動あるいは単振動などの振動運動や波動が単位時間当たりに繰り返される回数である。振動数は、運動の周期の逆数であり、単位はヘルツ(Hz)原康夫 『物理学通論 I』 第I部3章3.4 単振動、学術図書出版、1988年。 「周波数」も英語では frequency(ラテン語で「“frequentia”」から) であり根本的には同じことであるが、「周波数」がおもに電気振動(電磁波や振動電流)のような電気工学・電波工学または音響工学などで用いられる工学用語であるのに対し、力学的運動など自然科学(理学)における物理現象には「振動数」が用いられることが多い。一般的には記号 f を用いて表されるが、光の振動数などはν(ニュー)の記号を用いられることが多い。 等速円運動においては、振動数は「回転速度(回転数)」と同じ数値になるが、単位は異なる。.

新しい!!: レイリー散乱と振動数 · 続きを見る »

散乱

散乱(さんらん、)とは、光などの波や粒子がターゲットと衝突あるいは相互作用して方向を変えられること。.

新しい!!: レイリー散乱と散乱 · 続きを見る »

散乱断面積

散乱断面積とは、量子的には、散乱が起きる確率を表す量である。 古典的な散乱では、入射粒子を点と見なしたときの、散乱体の断面積に相当する。.

新しい!!: レイリー散乱と散乱断面積 · 続きを見る »

ここにリダイレクトされます:

レーリー散乱

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »