ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

リプシッツ連続

索引 リプシッツ連続

解析学におけるリプシッツ連続性(リプシッツれんぞくせい、Lipschitz continuity)は、に名を因む、函数のより強い形の一様連続性である。直観的には、リプシッツ連続函数は変化の速さが制限される。即ち、適当な有限値の実数が存在して、その函数のグラフ上の任意の二点を結ぶ直線の傾きの絶対値はその実数を超えない。この上界をその函数の「リプシッツ定数」(あるいは)と呼ぶ。例えば一階微分が有界な任意の函数はリプシッツである。 微分方程式論において、リプシッツ連続性は初期値問題の解の存在と一意性を保証するの中心的な条件である。リプシッツ連続性の特別な場合で、縮小性はバナッハの不動点定理において用いられる。 実数直線の有界閉集合上で定義される函数に関して、以下のような包含関係の鎖が知られている: また、 も成り立つ。.

48 関係: ほとんど (数学)半連続単射収縮写像可微分多様体同型写像同程度連続実数局所コンパクト空間三角関数一様収束一様連続一様有界性平均値の定理位相同型微分微分可能微分方程式区間 (数学)ノルム像 (数学)バナッハの不動点定理バナッハ空間ラーデマッヘルの定理ルベーグ測度ヘルダー条件初期値問題制限 (数学)列 (数学)アスコリ=アルツェラの定理コンパクト空間全射全微分絶対連続解析学解析関数距離函数距離空間近傍 (位相空間論)関数 (数学)連続 (数学)連続写像逆写像滑らかな関数指数関数有界変動函数有界函数族 (数学)

ほとんど (数学)

数学において、ほとんど (almost) という語は、ある厳密な意味で用いられる専門用語のひとつである。主に「測度 0 の集合を除いて」という意味であるが、それ単体で用いることはあまりなく、「ほとんど至るところで(almost everywhere)」「ほとんど全ての(almost all)」などの決まり文句でひとつの意味を形成する。.

新しい!!: リプシッツ連続とほとんど (数学) · 続きを見る »

半連続

解析学における半連続性(semi-continuity)とは、拡張実数値関数(値として ±∞ を取り得る)に対して定義される「連続性」よりも弱い性質である。概略的に言うと、拡張実数値関数 f が点 x0 で上(下)半連続であるとは、x0 の十分近くで函数の値が f(x0) に近いかもしくは f(x0) よりも小さい(大きい)ことを言う。.

新しい!!: リプシッツ連続と半連続 · 続きを見る »

単射

数学において、単射あるいは単写(たんしゃ、injective function, injection)とは、その値域に属する元はすべてその定義域の元の像として唯一通りに表されるような写像のことをいう。一対一(いったいいち、)の写像ともいう。似ているが一対一対応は全単射の意味で使われるので注意が必要である。.

新しい!!: リプシッツ連続と単射 · 続きを見る »

収縮写像

収縮写像(英: Contraction mapping)とは、距離空間 (M,d) における M からM への関数 f であり、M における全ての x と y について以下の条件を満たす0 の実数が存在する: より一般化に、収縮写像の考え方は2つの距離空間の間の写像と定義することもできる。つまり、2つの距離空間 (M,d) と (N,g) があるとき、f:M\rightarrow N という写像が考えられ、M のあらゆる x と y について g(f(x),f(y))\leq k\,d(x,y) となるような定数 k が存在する。このような写像をリプシッツ関数という。 そのような k の最小値を f のリプシッツ定数(Lipschitz constant)という。上記条件が 0 で満足される場合、その写像は「非拡大的(non-expansive)」である。 全ての収縮写像はリプシッツ連続であり、一様連続である。 収縮写像には高々1つの不動点が存在する。バナッハの不動点定理によれば、空でない完備距離空間における収縮写像には唯一の不動点があり、M 内の任意の x について反復関数列 x, f (x), f (f (x)), f (f (f (x))),...

新しい!!: リプシッツ連続と収縮写像 · 続きを見る »

可微分多様体

数学において、可微分多様体(かびぶんたようたい、differentiable manifold)、あるいは微分可能多様体(びぶんかのうたようたい)は、局所的に十分線型空間に似ており微積分ができるような多様体である。任意の多様体は、チャート(座標近傍、局所座標)の集まり、アトラス(座標近傍系、局所座標系)、によって記述することができる。各座標近傍は微積分の通常のルールが適用する線型空間の中にあるから、各々のチャートの中で考えるときには微積分学のアイデアを適用できる。チャートが適切に両立可能であれば(すなわち1つのチャートから別のチャートへの変換が微分可能であれば)、1つのチャートでなされた計算は任意の他の微分可能なチャートにおいても有効である。 フォーマルに言えば、可微分多様体は大域的に定義されたを持つ位相多様体である。任意の位相多様体にはアトラスの同相写像と線型空間上の標準的な微分構造を用いて局所的に微分構造を与えることができる。同相写像によって誘導された局所座標系上の大域的な微分構造を誘導するためには、アトラスのチャートの共通部分上での合成が対応する線型空間上の微分可能な関数でなければならない。言い換えると、チャートの定義域が重なっているところでは、各チャートによって定義された座標はアトラスのすべてのチャートによって定義された座標に関して微分可能であることが要求される。様々なチャートによって定義された座標を互いに結びつける写像を変換関数 (transition map/遷移写像/座標変換) と呼ぶ。 微分可能性は文脈によって連続微分可能、k 回微分可能、滑らか、正則といった異なる意味を持つ。さらに、抽象的な空間にそのような可微分構造を誘導できることによって微分可能性の定義を大域的な座標系なしの空間に拡張することができる。微分構造によって大域的に微分可能な接空間、微分可能な関数、微分可能なテンソル場やベクトル場を定義することができる。可微分多様体は物理においても非常に重要である。特別な種類の可微分多様体は古典力学、一般相対論、ヤン・ミルズ理論といった物理理論の基礎をなす。可微分多様体に対して微積分を展開することが可能である。これによって exterior calculus (外微分法/外微分学)のような数学的機構が導かれる。可微分多様体上の微積分の研究は微分幾何学と呼ばれる。.

新しい!!: リプシッツ連続と可微分多様体 · 続きを見る »

同型写像

数学において,同型写像(isomorphismfrom the Ancient Greek: ἴσος isos "equal", and μορφή morphe "form" or "shape")あるいは単に同型とは,は準同型写像あるいは射であって,逆射を持つものである逆関数ではない..2つの数学的対象が同型 (isomorphic) であるとは,それらの間に同型写像が存在することをいう.自己同型写像は始域と終域が同じ同型写像である.同型写像の興味は2つの同型な対象は写像を定義するのに使われる性質のみを使って区別できないという事実にある.したがって同型な対象はこれらの性質やその結果だけを考える限り同じものと考えてよい. 群や環を含むほとんどの代数的構造に対して,準同型写像が同型写像であることと全単射であることは同値である. 位相幾何学において,射とは連続写像のことであるが,同型写像は同相写像あるいは双連続写像とも呼ばれる.解析学において,射は可微分関数であり,同型写像は微分同相とも呼ばれる. 標準的な同型写像 (canonical isomorphism) は同型であるようなである.2つの対象が標準的に同型 (canonically isomorphic) であるとは,それらの間に標準的な同型写像が存在することをいう.例えば,有限次元ベクトル空間 から二重双対空間への標準的な写像は標準的な同型写像である.一方, は双対空間に同型であるが,一般には標準的にではない. 同型写像は圏論を用いて形式化される.ある圏の射 が同型射であるとは,両側逆射を持つことをいう,すなわち,その圏における別の射 があって, かつ となる,ただし と はそれぞれ と の恒等射である..

新しい!!: リプシッツ連続と同型写像 · 続きを見る »

同程度連続

同程度連続(どうていど れんぞく、equicontinuous)は、解析学の用語の一つであり、関数の列の性質を表す。おおまかには、以下の条件を満たす関数列 (fn) が同程度連続であると言われる。.

新しい!!: リプシッツ連続と同程度連続 · 続きを見る »

実数

数学における実数(じっすう、 nombre réel, reelle Zahl, real number)は、様々な量の連続的な変化を表す数の体系である。実数全体の空間は、途切れのなさにあたる完備性とよばれる位相的な性質を持ち、代数的には加減乗除ができるという体の構造を持っている。幾何学や解析学ではこれらのよい性質を利用して様々な対象が定義され、研究されている。一方でその構成方法に自明でない手続きが含まれるため、実数の空間は数学基礎論の観点からも興味深い性質を持っている。また、自然科学における連続的なものの計測値を表すのに十分な数の体系だとも考えられている。 実数の概念は、その形式的な定義が19世紀に達成される前から数の体系として使われていた。「実数」という名前は複素数の概念が導入された後に「普通の数」を表現する言葉として導入されたものである。.

新しい!!: リプシッツ連続と実数 · 続きを見る »

局所コンパクト空間

数学において、位相空間 が局所コンパクト(きょくしょコンパクト、)というのは、雑に言って、 の各点の近傍ではコンパクトであるという性質をもつことである。位相空間がコンパクトであるための条件は非常に厳しく、コンパクトな空間が数学において特殊な位置を占めているのに対して、数学で扱う重要な位相空間の多くが局所コンパクトである。特に局所コンパクトなハウスドルフ空間は数学の中で重要な位置を占める。.

新しい!!: リプシッツ連続と局所コンパクト空間 · 続きを見る »

三角関数

三角関数(さんかくかんすう、trigonometric function)とは、平面三角法における、角の大きさと線分の長さの関係を記述する関数の族および、それらを拡張して得られる関数の総称である。三角関数という呼び名は三角法に由来するもので、後述する単位円を用いた定義に由来する呼び名として、円関数(えんかんすう、circular function)と呼ばれることがある。 三角関数には以下の6つがある。.

新しい!!: リプシッツ連続と三角関数 · 続きを見る »

一様収束

数学の分野である解析学において、一様収束(いちようしゅうそく、uniform convergence)は、各点収束よりも強いの概念である。関数列 が極限関数 f に一様収束する (converge uniformly) とは、fn(x) の f(x) への収束のはやさが x に依らないということである。 関数 fn の連続性やリーマン可積分性といったいくつかの性質は、収束が一様であれば極限 f に引き継がれるが、収束が一様でない場合はそうとは限らないから、一様収束の概念は重要である。 与えられた区間上の関数への一様収束は一様ノルムのことばによって定義できる。 The term uniform convergence was probably first used by Christoph Gudermann, in an 1838 paper on elliptic functions, where he employed the phrase "convergence in a uniform way" when the "mode of convergence" of a series \textstyle is independent of the variables \phi and \psi.

新しい!!: リプシッツ連続と一様収束 · 続きを見る »

一様連続

一様連続(いちようれんぞく、uniformly continuous)は数学における関数に対する概念で、通常の連続性の概念を強めたものである。大雑把に言って、関数の連続性とは引数 x の変化が小さいと関数値 f(x) の変化も小さい事を指すが、このとき f(x) の変化の度合いが x の変化の度合いにのみ依存し、x の値自身にはよらなければ f は一様連続であるという。 すなわち一様連続性とは、f の定義域において x と y が十分近いことを要求するだけで( x の値によらず)、f(x) と f(y) が近い値をとることを保証していることを言う。 定義より一様連続な関数は連続であるが、逆は一般には成り立たない。 しかし定義域が有界閉区間であれば、その区間上連続な関数は一様連続である事が知られている(ハイネ・カントールの定理)。 一様連続性の定義はユークリッド空間や、それを一般化した概念である距離空間において定義される。 さらに一般に一様空間上でも定義可能である。.

新しい!!: リプシッツ連続と一様連続 · 続きを見る »

一様有界性

数学の分野における有界関数とは、下界と上界、すなわちその関数のどの値の絶対値よりも大きい定数が存在する関数のことを言うが、そのような関数の族を考えた場合には、関数によってそのような定数が異なるものとなる場合がある。もしもそれら全てを抑えるような一つの定数を見つけることが出来るなら、そのような関数の族は一様有界(いちようゆうかい、)であると呼ばれ、そのような性質のことを一様有界性(いちようゆうかいせい、)と呼ぶ。 関数解析学におけるは、作用素の族が一様有界であるための十分条件を与える。.

新しい!!: リプシッツ連続と一様有界性 · 続きを見る »

平均値の定理

''a'', ''b'' で連続かつ (''a'', ''b'') で微分可能な関数に対して、平均変化率に等しい傾きを持つ接線を与える点 ''c'' が (''a'', ''b'') 内に存在する。 微分積分学における平均値の定理(へいきんちのていり、mean-value theorem)または有限増分の定理 (Théorème des accroissements finis) は、実函数に対して有界な領域上の積分に関わる大域的な値を、微分によって定まる局所的な値として実現する点が領域内に存在することを主張する。平均値の定理にはいくつかバリエーションがあるが、単に 「平均値の定理」 と言った場合は、ラグランジュの平均値の定理と呼ばれる微分に関する平均値の定理のことを指す場合が多い。 平均値の定理は微積分学の他の定理の証明(例えば、テイラーの定理、微分積分学の基本定理)にしばしば利用される、大変有用なものである。平均値の定理の証明自体にはロルの定理を用いる。その一方で、平均値の定理はそのまま多変数の関数に適用することはできない。また、もっと弱い条件の元でも同じ定理が成り立つ。その他種々の理由から、平均値の定理を使うこと避ける数学者もいる。多変数関数にも使えて、平均値の定理の代わりになるような定理として、有限増分不等式がある。これは存在型ではない。あるいは、積分を持ち込んで微積分学の基本定理で代用することもある。.

新しい!!: リプシッツ連続と平均値の定理 · 続きを見る »

位相同型

位相同型 (いそうどうけい、homeomorphic)、あるいは同相(どうそう)とは、2つの位相空間が位相空間として等しいことを表す概念である。 例えば、球の表面と湯飲みの表面とはある「連続」な双方向の移し方で互いに移し合うことができるので同相であり、また穴が1つ開いたドーナツの表面 (トーラス) と持ち手がひとつあるマグカップの表面も同じく同相である。よって球の表面と湯のみの表面は位相幾何学的に全く同一の性質を持ち、ドーナツの表面とマグカップの表面も同一の性質を持つ。しかし、球面とトーラスとはこのような写し方が存在しないので同相とはならない。(直観的には、連続的な変形によって穴の個数が変化することはないということである。) ここで連続な写し方とは、直観的には近いところを近いところに写すような写し方を意味する。.

新しい!!: リプシッツ連続と位相同型 · 続きを見る »

微分

数学におけるの微分(びぶん)、微分係数、微分商または導函数(どうかんすう、derivative)は、別の量(独立変数)に依存して決まるある量(函数の値あるいは従属変数)の変化の感度を測るものである。微分は微分積分学の基本的な道具である。例えば、動く物体の位置の時間に関する導函数はその物体の速度であり、これは時間が進んだときその物体の位置がどれほど早く変わるかを測る。 一変数函数の適当に選んだ入力値における微分係数は、その点における函数のグラフの接線の傾きである。これは導函数がその入力値の近くでその函数の最適線型近似を記述するものであることを意味する。そのような理由で、微分係数はしばしば「瞬間の変化率」として記述される。瞬間の変化率は独立変数に依存する従属変数である。 微分はにも拡張できる。この一般化において、導函数はそのグラフが(適当な変換の後)もとの函数のグラフを最適線型近似する線型変換と解釈しなおされる。ヤコビ行列はこの線型変換を独立および従属変数を選ぶことで与えられる基底に関して表現する行列であり、独立変数に関する偏微分を用いて計算することができる。多変数実数値函数に対して、ヤコビ行列は勾配に簡約される。 導函数を求める過程を微分あるいは微分法、微分演算 (differentiation) と言い、その逆の過程(原始函数を求めること)をという。微分積分学の基本定理は反微分が積分と同じであることを主張する。一変数の微分積分学において微分と積分は基本的な操作の二本柱である。.

新しい!!: リプシッツ連続と微分 · 続きを見る »

微分可能

微分可能(びぶんかのう).

新しい!!: リプシッツ連続と微分可能 · 続きを見る »

微分方程式

微分方程式(びぶんほうていしき、differential equation)とは未知関数とその導関数の関係式として書かれている関数方程式である長倉三郎ほか編、『 』、岩波書店、1998年、項目「微分方程式」より。ISBN 4-00-080090-6。 物理法則を記述する基礎方程式は多くが時間微分、空間微分を含む微分方程式であり、物理学からの要請もあり微分方程式の解法には多くの関心が注がれてきた。微分方程式論は解析学の中心的な分野で、フーリエ変換、ラプラス変換等はもともと微分方程式を解くために開発された手法である。また物理学における微分方程式の主要な問題は境界値問題、固有値問題である。 線型微分方程式の研究は歴史が長く。それに比して、非線型微分方程式の研究は歴史が浅く比較的簡単な方程式しか解析できていない。例えばナビエ-ストークス方程式は、流体の支配方程式として重要であるが、その解の存在性は未解決問題でありミレニアム懸賞問題にも選ばれている。 その他有名な微分方程式については:Category:微分方程式を参照。.

新しい!!: リプシッツ連続と微分方程式 · 続きを見る »

区間 (数学)

数学における(実)区間(じつくかん、(real) interval)は、実数からなる集合で、その集合内の任意の二点に対しその二点の間にあるすべての数がその集合に属するという性質を持つものである。例えば、 を満たす数 全体の成す集合は、 と, およびその間の数すべてを含区間である。他の著しい例として、実数全体の成す集合, 負の実数全体の成す集合および空集合などが挙げられる。 実区間は積分および測度論において、「大きさ」「測度」「長さ」などと呼ばれる量を容易に定義できるもっとも単純な集合として重要な役割がある。測度の概念は実数からなるより複雑な集合に対して拡張され、ボレル測度やルベーグ測度といったような概念までにつながっていく。 不確定性や数学的近似および算術的丸めがあっても勝手な公式に対する保証された一定範囲を自動的に与える一般の法としてのを考えるにあたって、区間はその中核概念を成す。 勝手な全順序集合、例えば整数の集合や有理数の集合上でも、区間の概念は定義することができる。.

新しい!!: リプシッツ連続と区間 (数学) · 続きを見る »

ノルム

解析学において、ノルム (norm, Norm) は、平面あるいは空間における幾何学的ベクトルの "長さ" の概念の一般化であり、ベクトル空間に対して「距離」を与えるための数学の道具である。ノルムの定義されたベクトル空間を線型ノルム空間または単にノルム空間という。.

新しい!!: リプシッツ連続とノルム · 続きを見る »

像 (数学)

'''f''' は始域 '''X''' から終域 '''Y''' への写像。'''Y''' の内側にある小さな楕円形が '''f''' の像である。 数学において、何らかの写像の像(ぞう、image)は、写像の始域(域、定義域)の部分集合上での写像の出力となるもの全てからなる、写像の終域(余域)の部分集合である。すなわち、始域の部分集合 X の各元において写像の値を評価することによって得られる集合を f による(または f に関する、f のもとでの、f を通じた)X の像という。また、写像の終域の何らかの部分集合 S の逆像(ぎゃくぞう、inverse image)あるいは原像(げんぞう、preimage)は、S の元に写ってくるような始域の元全体からなる集合である。 像および逆像は、写像のみならず一般の二項関係に対しても定義することができる。.

新しい!!: リプシッツ連続と像 (数学) · 続きを見る »

バナッハの不動点定理

数学におけるバナッハの不動点定理(バナッハのふどうてんていり、)は、距離空間の理論において重要な役割を担う不動点定理であり、縮小写像の定理あるいは縮小写像の原理としても知られる。この定理はある自己写像の不動点の存在と一意性を保証するものであり、そのような不動点の構成法を提供するものである。1922年に初めて提唱したステファン・バナッハ(1892-1945)の名にちなむ。.

新しい!!: リプシッツ連続とバナッハの不動点定理 · 続きを見る »

バナッハ空間

数学におけるバナッハ空間(バナッハくうかん、Banach space; バナハ空間)は、完備なノルム空間、即ちノルム付けられた線型空間であって、そのノルムが定める距離構造が完備であるものを言う。 解析学に現れる多くの無限次元函数空間、例えば連続函数の空間(コンパクトハウスドルフ空間上の連続写像の空間)、 ''L''''p''-空間と呼ばれるルベーグ可積分函数の空間、ハーディ空間と呼ばれる正則函数の空間などはバナッハ空間を成す。これらはもっとも広く用いられる位相線型空間であり、これらの位相はノルムから規定されるものになっている。 バナッハ空間の名称は、この概念をハーンとヘリーらと共に1920-1922年に導入したポーランドの数学者ステファン・バナフに因む。.

新しい!!: リプシッツ連続とバナッハ空間 · 続きを見る »

ラーデマッヘルの定理

数学の解析学の分野におけるラーデマッヘルの定理(ラーデマッヘルのていり、)とは、ハンス・ラーデマッヘルの名にちなむ、次の定理のことを言う:U を '''R'''''n'' 内のある開部分集合とし、関数 f : U → Rm はリプシッツ連続であるとする。このとき、f は U 内のほとんど至る所でフレシェ微分可能である。すなわち、f が微分可能ではないような U 内の点からなる集合は、そのルベーグ測度がゼロである。.

新しい!!: リプシッツ連続とラーデマッヘルの定理 · 続きを見る »

ルベーグ測度

数学におけるルベーグ測度(ルベーグそくど、Lebesgue measure)は、ユークリッド空間上の長さ、面積、体積の概念を拡張したものである。名称はフランスの数学者アンリ・ルベーグにちなむ。体積には「互いに素な集合の体積は元の体積の和に等しい」という性質(加法性)がある。この性質を保ちながらより複雑な集合に対しても「体積」を定めることができるよう体積の概念を拡張できる。このような拡張は一意である。実解析、特にルベーグ積分で用いられる。体積と同様ルベーグ測度は値として をとりうる。解析学で普通に考えられるような集合に対してはルベーグ測度が与えられるものと考えてよいが、選択公理によって の部分集合でルベーグ測度を与えることができない(無理に与えると加法性が成り立たない)ものが存在することを証明できる。ルベーグ測度が与えられる集合はルベーグ可測であるという。以下の説明ではルベーグ可測な集合 の測度を で表す。.

新しい!!: リプシッツ連続とルベーグ測度 · 続きを見る »

ヘルダー条件

数学において、 次元ユークリッド空間上の実あるいは複素数値函数 がヘルダー条件(ヘルダーじょうけん、)を満たす、あるいはヘルダー連続であるとは、 の定義域内のすべての点 と に対して次の不等式を満たす非負の実定数, が存在することを言う。 より一般に、この条件は任意の二つの距離空間の間の函数に対して考えることが出来る。このような数 はヘルダー条件の指数と呼ばれる。 の場合はリプシッツ条件を意味し、 の場合は単純に函数が有界であることを意味する。この条件の名は、オットー・ヘルダーにちなむ。 実数直線のコンパクトな部分集合上の函数に対して、.

新しい!!: リプシッツ連続とヘルダー条件 · 続きを見る »

初期値問題

数学の微分方程式の分野における初期値問題(しょきちもんだい、Initial value problem)とは、未知関数のある点における値を初期条件として備えた常微分方程式のことを言う(コーシー問題とも呼ばれる)。物理学あるいは他の自然科学の分野において、あるシステムをモデル化することはある初期値問題を解くことと同義である場合が多い。そのような場合、微分方程式は与えられた初期条件に対してシステムがどのように時間発展するかを特徴付ける発展方程式と見なされる。.

新しい!!: リプシッツ連続と初期値問題 · 続きを見る »

制限 (数学)

数学における写像の制限(せいげん、)は、写像のもともとの定義域に対して、写像による対応関係を変えることなくそれよりも小さい集合を定義域に取り直す操作を言う。同様の概念はより一般に二項関係や多項関係などに対しても定義することができる。 写像 の定義域の部分集合 への制限として得られる写像を あるいは f で表す。.

新しい!!: リプシッツ連続と制限 (数学) · 続きを見る »

列 (数学)

数学において列(れつ、sequence)とは、粗く言えば、対象あるいは事象からなる集まりを「順序だてて並べる」ことで、例えば「A,B,C」は3つのものからなる列である。狭義にはこの例のように一列に並べるものを列と呼ぶが、広義にはそうでない場合(すなわち半順序に並べる場合)も列という場合がある(例:有向点列)。集合との違いは順番が決まっている事で、順番を変更したものは別の列であるとみなされる。たとえば列「A,B,C」と列「B,C,A」は異なる列である。 数を並べた列を数列、(何らかの空間上の)点を並べた列を点列、文字を並べた列を文字列(あるいは語)という。このように同種の性質○○を満たすもののみを並べた場合にはその列を「○○列」という言い方をするが、異なる種類のものを並べた列も許容されている。 列の構成要素は、列の要素あるいは項(こう、term)と呼ばれ、例えば「A,B,C」には3つの項がある。項の個数をその列の項数あるいは長さ (length, size) という。項数が有限である列を有限列(ゆうげんれつ、finite sequence)と、そうでないものを無限列(むげんれつ、infinite sequence)と呼ぶ。(例えば正の偶数全体の成す列 (2, 4, 6,...) )。.

新しい!!: リプシッツ連続と列 (数学) · 続きを見る »

アスコリ=アルツェラの定理

数学におけるアスコリ=アルツェラの定理(アスコリ=アルツェラのていり、)は、有界な閉区間上で定義された実数値連続函数の族のすべての列が一様収束する部分列を持つための必要十分条件を与える解析学の一結果である。その主要な条件は、函数の族の同程度連続性である。この定理は、常微分方程式論におけるペアノの存在定理や、複素解析学におけるモンテルの定理、調和解析におけるを含む多くの数学的結果の証明の基盤となっている。 同程度連続性の概念は、 と によってほぼ同時期に導入された。この定理の弱い場合として、コンパクト性のための十分条件は によって証明された。またその必要条件も含めた結果の明示は によって初めて行われた。その後、定義域がコンパクト距離空間である実数値連続函数の集合への定理の一般化は によって行われた。近年におけるこの定理では、定義域はコンパクトなハウスドルフ空間、値域は任意の距離空間にまで拡張されている。より一般的な定理の構成として、から一様空間への函数の族が、コンパクト開位相においてコンパクトであるための必要十分条件を与えるものも存在する。.

新しい!!: リプシッツ連続とアスコリ=アルツェラの定理 · 続きを見る »

コンパクト空間

数学において、コンパクト(compact)は位相空間の性質である。詳細は後述するがコンパクト性の定義それ自身は直観性に乏しいものであり、証明を容易にする為のいわば操作的なものである。しかし距離空間であればより直観的な言葉でいいかえる事ができ、特に有限次元のユークリッド空間においては有界閉集合であることとコンパクト集合であることとは同値になる。したがってコンパクトの概念はユークリッド空間における有界閉集合の概念を一般の位相空間に拡張したものとしてとらえる事ができる。 なお無限次元では有界閉集合はコンパクトとは限らず、例えばヒルベルト空間内の(縁を含んだ)単位球体は有界かつ閉集合であるがコンパクトではない(距離位相を入れた場合)。 ブルバキでは、ここでいう定義を満たす位相空間を準コンパクト(quasi-compact)と呼び、さらにハウスドルフの分離公理を満たすものをコンパクトであると呼んでいる。距離空間など多くの空間ではハウスドルフの分離公理が満たされるので両者の概念は一致するが、一般には注意が必要である。.

新しい!!: リプシッツ連続とコンパクト空間 · 続きを見る »

全射

数学において、写像が全射的(ぜんしゃてき、surjective, onto)であるとは、その終域となる集合の元は何れもその写像の像として得られることを言う。即ち、集合 から集合 への写像 について、 の各元 に対し となるような の元 が(一般には複数あってもよいが)対応させられるとき、写像 は全射 (surjection, onto mapping/function) であるという。全写(あるいは全写像)とも書く。 全射(および単射、双射)の語は20世紀フランスの数学結社ブルバキ(1935年以降『数学原論』シリーズを刊行している)により導入されたものである。接頭辞 sur- はフランス語で「上の」を意味し、写像の始域が終域全体をすっぽり覆い尽くすように写し込まれるイメージを反映したものになっている。sur, in, bi, jection いずれもラテン語源である。.

新しい!!: リプシッツ連続と全射 · 続きを見る »

全微分

微分積分学における多変数函数の全微分商、全微分係数あるいは単に全微分(ぜんびぶん、total derivative)は、外生的な変数の(任意に小さな)変分に対する函数の変分の割合(差分商)の極限である。このとき、外生的な変数による直接的な影響のみならず函数が持つ他の内生的変数を通じてもたらされる影響をも考慮する必要がある。これは(差分商の極限として定義される通常の実函数の微分を形式的に多変数化して得られる)より弱い概念である偏微分を用いるのでは有効な結果を得られないような解析学的主張に対して、より多くの結果を得られるということであり。またこの意味において、微分積分学の様々な概念がこの全微分をもとにして定義される。現代数学の多くの文献において、全微分(全微分可能)を単に微分(微分可能)のように言うことはよくある。 多変数函数に対する全微分可能性は、多変数の微分積分学における基本性質の一つである。函数の与えられた点における全微分可能性は、函数が局所的に線型変換で近似されることを意味している。これに対し、(任意方向の)偏微分は、任意方向を持つ直線上における線形近似に過ぎず、全体としては線型近似になるとは限らない。函数 の変数 に関する全微分の計算において、 以外の変数を定数と見なすことは必要でなく、実際他の変数が に依存することが許される。全微分では の に対する依存関係として、このような変数間の陰伏的な従属関係も含めて考えるのであるChiang, Alpha C. Fundamental Methods of Mathematical Economics, McGraw-Hill, third edition, 1984.

新しい!!: リプシッツ連続と全微分 · 続きを見る »

絶対連続

数学における絶対連続(ぜったいれんぞく、absolute continuity)とは通常の連続性や一様連続性よりも強い条件を課した連続性の概念である。関数と測度とについて、関係しているが見かけ上異なるふたつの絶対連続性の定義がなされる。.

新しい!!: リプシッツ連続と絶対連続 · 続きを見る »

解析学

解析学(かいせきがく、英語:analysis, mathematical analysis)とは、極限や収束といった概念を扱う数学の分野である 日本数学会編、『岩波数学辞典 第4版』、岩波書店、2007年、項目「解析学」より。ISBN978-4-00-080309-0 C3541 。代数学、幾何学と合わせ数学の三大分野をなす。 数学用語としての解析学は要素還元主義とは異なっており、初等的には微積分や級数などを用いて関数の変化量などの性質を調べる分野と言われることが多い。これは解析学がもともとテイラー級数やフーリエ級数などを用いて関数の性質を研究していたことに由来する。 例えばある関数の変数を少しだけずらした場合、その関数の値がどのようにどのぐらい変化するかを調べる問題は解析学として扱われる。 解析学の最も基本的な部分は、微分積分学、または微積分学と呼ばれる。また微分積分学を学ぶために必要な数学はprecalculus(calculusは微積分の意、接頭辞preにより直訳すれば微積分の前といった意味になる)と呼ばれ、現代日本の高校1、2年程度の内容に相当する。また解析学は応用分野において微分方程式を用いた理論やモデルを解くためにも発達し、物理学や工学といった数学を用いる学問ではよく用いられる数学の分野の一つである。 解析学は微積分をもとに、微分方程式や関数論など多岐に渡って発達しており、現代では確率論をも含む。 現代日本においては解析学の基本的分野は概ね高校2年から大学2年程度で習い、進度の差はあれ世界中の高校や大学等で教えられている。.

新しい!!: リプシッツ連続と解析学 · 続きを見る »

解析関数

複素変数 z の複素数値関数 f(z) が1点 z.

新しい!!: リプシッツ連続と解析関数 · 続きを見る »

距離函数

距離函数(きょりかんすう、distance function)、距離計量(きょりけいりょう)あるいは単に距離(きょり、distance)、計量(けいりょう、metric)は、集合の二点間の距離を定義する函数である。距離が定義されている集合を距離空間(きょりくうかん、metric space)と呼ぶ。距離はその集合上の位相(距離位相)を誘導するが、必ずしもすべての位相空間が距離位相によって生成されるわけではない。ある位相空間の位相を距離によって記述することができるとき、その位相空間は距離化可能 (metrizable) であるという。.

新しい!!: リプシッツ連続と距離函数 · 続きを見る »

距離空間

距離空間(きょりくうかん、metric space)とは、距離関数(きょりかんすう)と呼ばれる非負実数値関数が与えられている集合のことである。 古代より、平面や空間、地上の 2 点間の離れ具合を表す尺度である距離は測量や科学、数学において重要な役割を果たしてきた。1906年にモーリス・フレシェは、様々な集合の上で定義された関数の一様連続性の概念を統一的に研究した論文 において、ユークリッド空間から距離の概念を抽出して用い、距離空間の理論を築いた。 平面 R2 の上の 2 点 P1.

新しい!!: リプシッツ連続と距離空間 · 続きを見る »

近傍 (位相空間論)

平面上の集合 ''V'' が点 ''p'' の近傍であるのは、''p'' を中心とする小さな円板が ''V'' に含まれるときである。 矩形の頂点に対して、その矩形は近傍でない。 数学の位相空間論周辺分野でいう近傍(きんぼう、neighbourhood, neighborhood)は位相空間の基本概念の一つで、直観的に言えば与えられた点を含む集合で、その点を少しくらい動かしてもその集合から外に出ないようなものをいう。 近傍の概念は開集合と内部の概念と密接な関連がある。.

新しい!!: リプシッツ連続と近傍 (位相空間論) · 続きを見る »

関数 (数学)

数学における関数(かんすう、、、、、函数とも)とは、かつては、ある変数に依存して決まる値あるいはその対応を表す式の事であった。この言葉はライプニッツによって導入された。その後定義が一般化されて行き、現代的には数の集合に値をとる写像の一種であると理解される。.

新しい!!: リプシッツ連続と関数 (数学) · 続きを見る »

連続 (数学)

数学において、連続(れんぞく、continuous)および連続性(れんぞくせい、continuity)とは、いくら拡大しても近くにあって差が無いことを示す極限概念である。位相空間のあいだの写像について、開集合や極限といった位相的な概念を一定の方法でたもつという条件によって連続性の概念が定められる。これは異なる位相空間のあいだの関係を表す最も基本的な枠組みである。日常語としては「連続」が「切れずに繋がっている」という意味で使われることがあるが、位相空間の性質として「切れずに繋がっている」ということを表す概念は「連結性」である。事実として「連結領域の連続像は必ず連結」であり、従って連結な定義域を持つ連続函数のグラフは文字通り「切れずに繋がっている」ことになるが、それは連続性の本質ではない。.

新しい!!: リプシッツ連続と連続 (数学) · 続きを見る »

連続写像

位相空間論において函数や写像が連続(れんぞく、continuous)であるというのは、ある特定の意味で位相空間の間の位相的構造を保つある種の準同型となっていることを意味し、それ自体が位相空間論における興味の対象ともなる。数学の他の領域における各種の連続性の定義も、位相空間論における連続性の定義から導出することができる。連続性は、空間の位相が同相(位相同型)であることの基礎となる概念であり、特に全単射な連続写像が同相写像であるための必要十分条件は、その逆写像もまた連続となることである。 連続でない写像あるいは函数は、不連続であると言う。 連続性と近しい関係にある概念として、一様連続性、同程度連続性、作用素の有界性などがある。 位相空間の間の写像の連続性の概念は、それが距離空間の間の連続函数の場合のような明確な「距離」の概念を一般には持たない分、より抽象的である。位相空間というのは、集合 とその上の位相(あるいは開集合系)と呼ばれる の部分集合族で(距離空間における開球体全体の成す族の持つ性質を一般化するように)合併と交叉に関する特定の条件を満足するものを組にしたもので、位相空間においても与えられた点の近傍について考えることができる。位相に属する各集合は の(その位相に関する)開部分集合と呼ばれる。.

新しい!!: リプシッツ連続と連続写像 · 続きを見る »

逆写像

数学における逆写像(ぎゃくしゃぞう、inverse mapping)は一口に言えば写像の与える元の対応関係を「反対」にして得られる写像である。すなわち、写像 が を に写すならば、 の逆写像は を に写し戻す。 函数と呼ばれる種類の写像の逆写像は、逆函数 (inverse function) と呼ばれる。.

新しい!!: リプシッツ連続と逆写像 · 続きを見る »

滑らかな関数

数学において、関数の滑らかさ(なめらかさ、smoothness)は、その関数に対して微分可能性を考えることで測られる。より高い階数の導関数を持つ関数ほど滑らかさの度合いが強いと考えられる。.

新しい!!: リプシッツ連続と滑らかな関数 · 続きを見る »

指数関数

実解析における指数関数(しすうかんすう、exponential function)は、冪における指数 を変数として、その定義域を主に実数の全体へ拡張して定義される初等超越関数の一種である。対数関数の逆関数であるため、逆対数 と呼ばれることもある。自然科学において、指数関数は量の増加度に関する数学的な記述を与えるものとして用いられる(や指数関数的減衰の項を参照)。 一般に、 かつ なる定数 に関して、(主に実数の上を亙る)変数 を へ送る関数は、「a を'''底'''とする指数函数」と呼ばれる。「指数関数」との名称は、与えられた底に関して冪指数を変数とする関数であることを示唆するものであり、冪指数を固定して底を独立変数とする冪関数とは対照的である。 しばしば、より狭義の関数を意図して単に「指数関数」と呼ぶこともある。そのような標準的な (the) 指数関数(あるいはより明示的に「自然指数関数」)はネイピア数 を底とする関数 である。これを のようにも書く。この関数は、導関数が自分自身に一致するなど、他の指数関数と比べて著しい性質を持つ。底 を他の底 に取り換えるには自然対数 を用いて、等式 を適用すればよいから、以下本項では主に自然指数関数について記述し、多くの場合「指数関数」は自然指数関数の意味で用いる。.

新しい!!: リプシッツ連続と指数関数 · 続きを見る »

有界変動函数

解析学における有界変動の函数(ゆうかいへんどうのかんすう、fonction of bounded variation)あるいは有界変動函数(-function; BV函数)は、その変動が有界、すなわちが有限値となるような実数値函数を言う。この性質は函数のグラフが以下に述べる意味において素性のよい (well behaved) ものであることを述べるものである。話を一変数の連続函数に限定すれば、有界変動であることはその連続函数のグラフ上を奔る動点の(方向への寄与分は無視して)方向への移動距離が有限であることを意味する。多変数の連続函数の場合にもこれは同様の意味を持つのであるが、考えるべき動点の辿る連続な路としては、与えられた函数のグラフ全体(今の場合これは超曲面になる)を取ることができないという事実があるので、函数のグラフと固定された -軸および -軸に平行な任意の超平面との交叉を取る必要がある。.

新しい!!: リプシッツ連続と有界変動函数 · 続きを見る »

有界函数

数学の分野において、ある集合 X 上で定義される実数あるいは複素数値の函数 f が有界函数(ゆうかいかんすう、)であるとは、その値からなる集合が有界集合であることを言う。言い換えると、X 内のすべての x に対して が成り立つような、x に依らない実数 M が存在することを言う。 しばしば、X 内のすべての x に対して f(x)\le A が成立するとき、その函数は上界 A によって上から抑えられる()と言い、そのような A が存在するときその函数は上に有界であるという。それと対照的に、X 内のすべての x に対して f(x)\ge B が成立するとき、その函数は下界 B によって下から抑えられる()と言い、そのような B が存在するときその函数は下に有界であるという。 (しばしば、函数・写像・作用素などが同意語として扱われることもあるけれども)この概念は、有界作用素のそれと混同しないように注意するべきである。 有界函数の概念の重要で特別な場合として、X を自然数全体の集合 N と取って有界数列()が考えられる。すなわち、ある数列 (a0, a1, a2,...) が有界であるとは、ある実数 M が存在して、すべての自然数 n に対して が成立することを言う。有界数列すべてからなる集合(にベクトル空間の構造を入れたもの)は数列空間を成す。 この定義は、距離空間 Y に値を取る函数へと拡張することが出来る。ある集合 X 上で定義される函数 f が有界であるとは、Y 内のある a に対して適当な実数 M を取れば、距離函数 d で測った a と f(x) との距離が M 以下にできること、すなわち が X 内のすべての x に対して成立することを言う。この場合、a を他の任意の点に取り換えても、三角不等式により、同様な性質を持つ M を取ることができる。.

新しい!!: リプシッツ連続と有界函数 · 続きを見る »

族 (数学)

数学における族(ぞく、family)は、添字付けされた元(要素)の(一般には非可算無限個の)集まりで、対、n-組、列などの概念の一般化である。系(けい、collection)と呼ぶこともある。元がどのような対象であるかによって、点族、集合族(集合系)、関数族(関数系)などと呼ばれる。.

新しい!!: リプシッツ連続と族 (数学) · 続きを見る »

ここにリダイレクトされます:

リプシッツ函数

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »