ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

リッチテンソル

索引 リッチテンソル

微分幾何学において、リッチ曲率テンソル とは、歪んだリーマン多様体上の測地球の体積がユークリッド空間上の球体からどれだけずれるかを表す量である。に因んでその名がある。あるリーマン計量が与えられたとき、その記述する幾何が通常の 次元ユークリッド空間からどれだけ違うか表わす尺度として使うことができる。リッチテンソルはどんな擬リーマン多様体に対しても、リーマン曲率テンソルのトレースとして定義される。計量それ自体と同様、リッチテンソルは多様体の接空間上の対称双線型形式である。 相対性理論では、リッチテンソルは時空の曲率(Rμvと表す)の一部であり、レイチャウデューリ方程式を通じて物質が時間とともにどれだけ収縮もしくは拡散するかの程度に関連する。アインシュタイン方程式を通じて、宇宙に含まれる物質の量にも関連する。微分幾何学では、あるリーマン多様体上のリッチテンソルの下界により、一様な曲率をもつと比較した場合の(も参照)大域的幾何学および位相幾何学的な情報を得ることができる。リッチテンソルが真空のアインシュタイン方程式を満たすとき、その多様体はアインシュタイン多様体であるといい、特に研究されている (cf.)。これと関係して、リッチフロー方程式はある計量がアインシュタイン計量へ発展するさまを記述する。この方法により、ポアンカレ予想が最終的に解決することとなった。.

63 関係: Annals of Mathematics基本群外積代数完備距離空間宇宙宇宙定数対称双線型形式主曲率一般相対性理論幾何化予想体積形式体積要素微分幾何学チャーン類ポアンカレ予想ユークリッド空間ラプラス作用素リチャード・S・ハミルトンリーマン多様体リーマン幾何学リーマン曲率テンソルリッチ平坦多様体リッチフローレヴィ・チヴィタ接続レイチャウデューリ方程式ホモトピーベクトル場アフィン接続アインシュタインの縮約記法アインシュタイン多様体アインシュタイン方程式ウィリアム・サーストンクリストッフェル記号グリゴリー・ペレルマンケンブリッジ大学出版局ケーラー多様体ケーラー微分コンパクト空間コホモロジージョン・ワイリー・アンド・サンズスペクトル (関数解析学)スカラー曲率球体等長写像熱力学的平衡相対性理論順序集合行列式被覆空間複素多様体...計量テンソル調和関数跡 (線型代数学)閉微分形式接ベクトル空間標準束測地線断面曲率擬リーマン多様体拡散方程式曲率形式1970年代1980年代 インデックスを展開 (13 もっと) »

Annals of Mathematics

Annals of Mathematics (略記は Ann. Math. または、Ann. of Math.) はプリンストン大学及び プリンストン高等研究所から隔月発行される数学誌。インパクトファクターなどの基準では、世界で最も権威ある数学誌に位置づけられる。.

新しい!!: リッチテンソルとAnnals of Mathematics · 続きを見る »

基本群

数学、特に代数トポロジーにおいて、基本群(きほんぐん、fundamental group)とは、ある固定された点を始点と終点にもつふたつのループが互いに連続変形可能かを測る点付き位相空間に付帯する群である。直観的には、それは位相空間にある穴についての情報を記述している。基本群はホモトピー群の最初で最も単純な例である。基本群は位相不変量である。つまり同相な位相空間は同じ基本群を持っている。 基本群は被覆空間の理論を用いて研究することができる。なぜなら、基本群は元の空間に付帯する普遍被覆空間の被覆変換群に一致するからである。基本群のアーベル化は、その空間の第一ホモロジー群と同一視することできる。位相空間が単体複体に同相のとき、基本群は群の生成子と関係式のことばで明示的に記述することができる。 基本群はアンリ・ポアンカレによって1895年に論文"Analysis situs"で定義された。ベルンハルト・リーマンとポアンカレとフェリックス・クラインの仕事でリーマン面の理論において基本群の概念が現れた。基本群は閉曲面の位相的な完全な分類を提供するだけでなく、複素函数のモノドロミー的性質の記述もする。.

新しい!!: リッチテンソルと基本群 · 続きを見る »

外積代数

数学におけるベクトルの外積(がいせき、exterior product)あるいは楔積(くさびせき、ウェッジ積、wedge product)はクロス積をある特定の性質に着目して、より高次元の場合へ一般化する代数的な構成である。クロス積やスカラー三重積のようにベクトル同士の外積はユークリッド幾何学において面積や体積およびそれらの高次元における類似物の研究に用いられる。線型代数学において外積は、線型変換の行列式や小行列式を記述する基底の取り方に依存しない抽象代数的な仕方を提供し、階数や線型独立性といった概念に根本的に関係してくる。 外積代数(がいせきだいすう、exterior algebra)は、ヘルマン・グラスマンに因んでグラスマン代数(グラスマンだいすう、Grassmann algebra)としても知られ、与えられた体 上のベクトル空間 上の外積によって生成される多元環である。多重線型代数やその関連分野と同様に、微分形式の成す多元環を通じて現代幾何学、特に微分幾何学と代数幾何学において広く用いられる。 形式的には、外積代数は あるいは で表され、 を線型部分空間として含む、楔積あるいは外積と呼ばれる で表される乗法を持つ、体 上の単位的結合代数である。楔積は結合的で双線型な乗法 であり、本質的な性質として 上の交代性 を持つものである。これは以下の性質 をも特別の場合として含む。 圏論の言葉で言えば、外積代数は普遍構成によって与えられる、ベクトル空間の圏上の函手の典型である。この普遍構成によって、体上のベクトル空間だけに限らず、可換環上の加群やもっとほかの興味ある構造にたいしても外積代数を定義することができる。外積代数は双代数のひとつの例である。つまり、外積代数の(ベクトル空間としての)双対空間にも乗法が定義され、その双対的な乗法が楔積と両立する。この双対代数は特に 上の重線型形式全体の成す多元環で、外積代数とその双対代数との双対性は内積によって与えられる。.

新しい!!: リッチテンソルと外積代数 · 続きを見る »

完備距離空間

位相空間論あるいは解析学において、距離空間 M が完備(かんび、complete)またはコーシー空間(コーシーくうかん、Cauchy space)であるとは、M 内の任意のコーシー点列が M に属する極限を持つ(任意のコーシー点列が収束する)ことを言う。 直観的に言えば、空間が完備であるというのは(その内側や境界において)点を追いかけると「空間からはみ出してしまう」ということが起きないということである。例えば、有理数全体の成す集合 Q は完備でないが、これは例えば 2 の正の平方根は、それに収束する有理コーシー数列が構成できるにも拘らず、有理数ではないので Q からははみ出してしまう(後述)。「こういった抜けを全て埋めてしまう」という考えは後述するように、空間の完備化 (completion) として常に可能である。.

新しい!!: リッチテンソルと完備距離空間 · 続きを見る »

宇宙

宇宙(うちゅう)とは、以下のように定義される。.

新しい!!: リッチテンソルと宇宙 · 続きを見る »

宇宙定数

宇宙定数(うちゅうていすう、)は、アインシュタインの重力場方程式の中に現れる宇宙項(うちゅうこう)の係数。宇宙定数はスカラー量で、通常Λ(ラムダ)と書き表される。.

新しい!!: リッチテンソルと宇宙定数 · 続きを見る »

対称双線型形式

線型代数学における対称双線型形式(たいしょうそうせんけいけいしき、symmetric bilinear form, symmetric bilinear functional)は、ベクトル空間上の対称な双線型形式を言う。平たく言えば、実ベクトル空間上の標準内積を一般化した概念である。対称双線型形式は、直交極性や二次曲面の研究に非常に重要である。 文脈上、双線型形式について述べていると明らかな場合は、単に短く対称形式と呼ぶこともある。対称双線型形式は二次形式と近しい関係にあり、この両者の差異に関する詳細はの項目を参照。.

新しい!!: リッチテンソルと対称双線型形式 · 続きを見る »

主曲率

微分幾何学において、曲面上の与えられた点での 2つの主曲率(principal curvatures)は、その点での(Gauss map)の微分の 2つの固有値である。それらは、曲面がその点で別々な方向へどれくらい曲がっているかを測る。.

新しい!!: リッチテンソルと主曲率 · 続きを見る »

一般相対性理論

一般相対性理論(いっぱんそうたいせいりろん、allgemeine Relativitätstheorie, general theory of relativity)は、アルベルト・アインシュタインが1905年の特殊相対性理論に続いて1915年から1916年にかけて発表した物理学の理論である。一般相対論(いっぱんそうたいろん、general relativity)とも。.

新しい!!: リッチテンソルと一般相対性理論 · 続きを見る »

幾何化予想

幾何化予想(きかかよそう、Geometrization conjecture)は、1982年にアメリカの数学者ウィリアム・サーストンによって提出された「コンパクト3次元多様体は、幾何構造を持つ8つの部分多様体に分解される」という命題。位相幾何学と微分幾何学を結びつけるものでありミレニアム懸賞問題にも挙げられていたポアンカレの予想問題の解法の過程として思いつかれた。2003年、グリゴリー・ペレルマンによるリッチフローを用いた証明が示され、現在ではその証明が基本的に正しいものとされている。これにより、およそ100年にわたり未解決だった3次元ポアンカレ予想が証明されることになった。.

新しい!!: リッチテンソルと幾何化予想 · 続きを見る »

体積形式

微分可能多様体(differentiable manifold)上の体積形式(volume form)とは、多様体上至る所 0 とはならない最高次数の微分形式のことである。特に、次元が n の多様体 M 上では、体積形式は至る所 0 にはならない直線束 \Omega^n(M).

新しい!!: リッチテンソルと体積形式 · 続きを見る »

体積要素

数学において、体積要素(たいせきようそ、)とは、関数を球面座標系や円柱座標系など様々な座標系において体積について積分する際に現われる概念である。次の式により表現される。 ここで、 は座標であり、任意の集合 の体積を次のように計算できるものとする。 たとえば、球面座標系においては であり、従って である。 体積要素という概念は三次元に留まるものではない。二次元では面積要素(めんせきようそ、)と呼ばれることも多く、面積分を行う際に有用である。座標変換の際、(変数変換公式により)体積要素は座標変換のヤコビ行列の行列式の絶対値だけ変化する。この事実から、体積要素は多様体の一種の測度として定義できることが従う。向き付け可能な可微分多様体においては、典型的には体積要素は体積形式、すなわち最高次の微分形式から導かれる。向き付け不可能な多様体においては、典型的には体積要素は(局所的に定義される)体積要素の絶対値であり、を定義する。.

新しい!!: リッチテンソルと体積要素 · 続きを見る »

微分幾何学

数学における微分幾何学(びぶんきかがく、ドイツ語: Differentialgeometrie、英語:differential geometry)とは微分を用いた幾何学の研究である。また、可微分多様体上の微分可能な関数を取り扱う数学の分野は微分位相幾何学(びぶんいそうきかがく、ドイツ語: Differentialtopologie、英語: differential topology)とよばれることがある。微分方程式の研究から自然に発生したこれらの分野は互いに密接に関連しており、特に一般相対性理論をはじめとして物理学に多くの応用がある。これらは可微分多様体についての幾何学を構成しているが、力学系の視点からも直接に研究される。.

新しい!!: リッチテンソルと微分幾何学 · 続きを見る »

チャーン類

数学では、特に代数トポロジーや微分位相幾何学や代数幾何学では、チャーン類(Chern classes)は複素ベクトルバンドルに付随する特性類である。 チャーン類は、 で導入された。.

新しい!!: リッチテンソルとチャーン類 · 続きを見る »

ポアンカレ予想

予想の提唱者アンリ・ポアンカレ (3次元)ポアンカレ予想(ポアンカレよそう、Poincaré conjecture)とは、数学の位相幾何学(トポロジー)における定理の一つである。3次元球面の特徴づけを与えるものであり、定理の主張は というものである。2018年6月現在、7つのミレニアム懸賞問題のうち唯一解決されている問題である。.

新しい!!: リッチテンソルとポアンカレ予想 · 続きを見る »

ユークリッド空間

数学におけるユークリッド空間(ユークリッドくうかん、Euclidean space)は、エウクレイデス(ユークリッド)が研究したような幾何学(ユークリッド幾何学)の場となる平面や空間、およびその高次元への一般化である。エウクレイデスが研究した平面や空間はそれぞれ、2次元ユークリッド空間、3次元ユークリッド空間に当たり、これらは通常、ユークリッド平面、ユークリッド空間などとも呼ばれる。「ユークリッド的」という修飾辞は、これらの空間が非ユークリッド幾何やアインシュタインの相対性理論に出てくるような曲がった空間ではないことを示唆している。 古典的なギリシャ数学では、ユークリッド平面や(三次元)ユークリッド空間は所定の公準によって定義され、そこからほかの性質が定理として演繹されるものであった。現代数学では、デカルト座標と解析幾何学の考え方にしたがってユークリッド空間を定義するほうが普通である。そうすれば、幾何学の問題に代数学や解析学の道具を持ち込んで調べることができるようになるし、三次元以上のユークリッド空間への一般化も容易になるといった利点が生まれる。 現代的な観点では、ユークリッド空間は各次元に本質的に一つだけ存在すると考えられる。たとえば一次元なら実数直線、二次元ならデカルト平面、より高次の場合は実数の組を座標にもつ実座標空間である。つまり、ユークリッド空間の「点」は実数からなる組であり、二点間の距離は二点間の距離の公式に従うものとして定まる。n-次元ユークリッド空間は、(標準的なモデルを与えるものという意味で)しばしば とかかれるが、(余分な構造を想起させない)ユークリッド空間固有の性質を備えたものということを強調する意味で と書かれることもある。ふつう、ユークリッド空間といえば有限次元であるものをいう。.

新しい!!: リッチテンソルとユークリッド空間 · 続きを見る »

ラプラス作用素

数学におけるラプラス作用素(ラプラスさようそ、Laplace operator)あるいはラプラシアン(Laplacian)は、ユークリッド空間上の函数の勾配の発散として与えられる微分作用素である。記号では,, あるいは で表されるのが普通である。函数 の点 におけるラプラシアン は(次元に依存する定数の違いを除いて)点 を中心とする球面を半径が増大するように動かすときの から得られる平均値になっている。直交座標系においては、ラプラシアンは各独立変数に関する函数の二階(非混合)偏導函数の和として与えられ、またほかに円筒座標系や球座標系などの座興系においても有用な表示を持つ。 ラプラス作用素の名称は、天体力学の研究に同作用素を最初に用いたフランス人数学者のピエール=シモン・ド・ラプラス (1749–1827) に因んでいる。同作用素は与えられた重力ポテンシャルに適用すると質量密度の定数倍を与える。現在ではラプラス方程式と呼ばれる方程式 の解は調和函数と呼ばれ、自由空間において可能な重力場を表現するものである。 微分方程式においてラプラス作用素は電気ポテンシャル、重力ポテンシャル、熱や流体の拡散方程式、波の伝搬、量子力学といった、多くの物理現象を記述するのに現れる。ラプラシアンは、函数の勾配フローの流束密度を表す。.

新しい!!: リッチテンソルとラプラス作用素 · 続きを見る »

リチャード・S・ハミルトン

リチャード・ストライト・ハミルトン(Richard Streit Hamilton, 1943年 - )は、アメリカの数学者。 1966年にプリンストン大学でPh.D.を取得。指導教官はだった。カリフォルニア大学バークレー校、カリフォルニア大学サンディエゴ校、コーネル大学を経て、現在コロンビア大学数学科教授。ハミルトンは、グリゴリー・ペレルマン(2006年にフィールズ賞を歴史上初めて辞退して話題となった)がアンリ・ポアンカレとウィリアム・サーストンの幾何化予想を証明する過程で使ったリッチフローの発明で知られる(ハミルトン・ペレルマンのリッチ・フロー理論)。.

新しい!!: リッチテンソルとリチャード・S・ハミルトン · 続きを見る »

リーマン多様体

微分幾何学におけるリーマン多様体(リーマンたようたい、Riemannian manifold)とは、可微分多様体 で 上の各点に基本計量テンソル が与えられているものを言う。ベルンハルト・リーマンによって導入された。.

新しい!!: リッチテンソルとリーマン多様体 · 続きを見る »

リーマン幾何学

リーマン幾何学(リーマンきかがく、Riemannian geometry)とは、リーマン計量や擬リーマン計量と呼ばれる距離の概念を一般化した構造を持つ図形を研究する微分幾何学の分野である。このような図形はリーマン多様体、擬リーマン多様体とよばれる。ドイツの数学者ベルンハルト・リーマンに因んでこの名前がついている。1850年代に確立された。 楕円・放物・双曲の各幾何学は、リーマン幾何学では、曲率がそれぞれ正、0、負の一定値をとる空間(それぞれ球面、ユークリッド空間、双曲空間)上の幾何学と考えられる。なお、楕円幾何学のことをリーマン幾何と呼ぶことがあるが、本稿で述べるリーマン幾何学はそれとは異なるものである。 アルベルト・アインシュタインは、重力、即ち、一様ではなく湾曲した時空を記述するのに擬リーマン多様体の枠組みが有効であることを見いだし、リーマン幾何学を数学的核心とした一般相対性理論を構築した。 3.

新しい!!: リッチテンソルとリーマン幾何学 · 続きを見る »

リーマン曲率テンソル

リーマン幾何学においてリーマン曲率テンソル(リーマンきょくりつテンソル、Riemann curvature tensor)あるいはリーマン-クリストッフェルのテンソル(Riemann–Christoffel tensor)とは、リーマン多様体の曲率を表す4階のテンソルを言う。名称は、ベルンハルト・リーマンおよびエルウィン・ブルーノ・クリストッフェルに因む。 リーマン-クリストッフェルのテンソル(リーマン曲率テンソル)は重力の現代的理論である一般相対性理論における数学的な道具の中心となるものである。.

新しい!!: リッチテンソルとリーマン曲率テンソル · 続きを見る »

リッチ平坦多様体

数学では、リッチ平坦多様体(Ricci-flat manifolds)は、リッチ曲率が 0 であるリーマン多様体である。物理学では、リッチ平坦多様体は、任意の次元で宇宙定数が 0 であるリーマン多様体に対して、アインシュタイン方程式の類似である(vacuum solution)を表わす。リッチ平坦多様体は、通常は宇宙定数が 0 である必要はないアインシュタイン多様体の特別な場合である。 リッチ曲率が、小さな測地用の球の体積がユークリッド空間の中の球の体積から逸脱する量を測る。小さな測地用の球は、体積の変えはしないが、ユークリッド空間の中の標準的な球とは「形」を変えることもありうる。 たとえば、リッチ平坦な多様体の中では、ユークリッド空間の中の円は、変形されて同じ面積を持つ楕円となっていることもありうる。これは(Weyl curvature)のおかげである。 リッチ平坦多様体は、(holonomy group)を制限される場合が多い。重要なケースとして、カラビ・ヤウ多様体や超ケーラー多様体がある。.

新しい!!: リッチテンソルとリッチ平坦多様体 · 続きを見る »

リッチフロー

2次元多様体上のリッチフローの各ステージ リッチフロー (Ricci flow) とは、微分幾何学における本来の(geometric flow)の一つである。リッチフローは、熱伝導方程式に形式的に似た方法でリーマン多様体の計量の特異点を滑らかに変形する過程である。 (Gregorio Ricci-Curbastro)の名前に因むリッチフローは、最初にリチャード・ハミルトン (Richard Hamilton) により1981年に導入され、リッチ・ハミルトンフロー (Ricci–Hamilton flow) とも呼ばれる。リッチフローは、最初にグリゴリー・ペレルマン (Grigori Perelman) によりポアンカレ予想の証明のために使われ、同様に、サイモン・ブレンデルとリチャード・シェーンによる(differentiable sphere theorem) の証明に使われた。.

新しい!!: リッチテンソルとリッチフロー · 続きを見る »

レヴィ・チヴィタ接続

リーマン幾何学では、レヴィ・チヴィタ接続 (Levi-Civita connection) は多様体の接バンドル上の特別な接続であり、特別とは捩れをもたない(metric connection)、つまり、捩れを持たない与えられた(擬)リーマン計量を保存する接バンドル上の接続(アフィン接続)である。 リーマン幾何学の基本定理は、これらの性質を満たす接続が一意的に決まることを言っている。 リーマン多様体や擬リーマン多様体の理論では、共変微分はレヴィ・チヴィタ接続のために使われる。局所座標系の観点からは、この接続の成分はクリストッフェル記号と呼ばれる。.

新しい!!: リッチテンソルとレヴィ・チヴィタ接続 · 続きを見る »

レイチャウデューリ方程式

一般相対性理論において、レイチャウデューリ方程式 (Raychaudhuri equation) もしくはランダウ・レイチャウデューリ方程式 (Landau–Raychaudhuri equation) は物質近傍の運動を記述する、基礎的方程式である。 この方程式はペンローズ・ホーキングの特異点定理の基礎的な補題として、およびの研究において重要であるが、重力がニュートンの重力法則のとおり万有引力であり、どんな質量・エネルギーの間にも働く引力であるという直感を単純かつ一般に示すことができるという点で独立した価値がある。 この方程式はインド人物理学者のとソビエトの物理学者レフ・ランダウが独立に発見した。.

新しい!!: リッチテンソルとレイチャウデューリ方程式 · 続きを見る »

ホモトピー

数学におけるホモトピー (homotopy)とは、点や線や面などの幾何学的対象、あるいはそれらの間の連続写像が連続的に移りあうということを定式化した位相幾何学における概念のひとつである。位相幾何学では、2 つの対象 A と X との関係のうち、連続的な変形によって保たれるものを問題とすることが多い。これらの関係はふつう連続写像 A → X を通して定義され、ホモトピーの概念は連続的に変形する連続写像の族によって定式化される。ホモトピー的な種々の不変量は位相幾何学の研究における基本的な道具となる。 考察している幾何学的対象に「穴」が開いていれば、端を固定された曲線はそれを越えて連続的に変形することができない。したがって、ホモトピーによって「穴」の有無や、単純な構成要素に分解したときのそれらの組み合わせ的なつながり具合といった構造を調べることができる。ホモトピーが威力を発揮するのは、空間や写像といった幾何学的な対象に対し群や準同型などという代数的な対象を対応づけることであり、またそのような代数的な対象がしばしばもとの幾何学的な対象よりも単純化されているということにある。 このように、代数的な道具によって空間と写像の位相的性質を調べるという方法をとる幾何学は、代数的位相幾何学と呼ばれる。.

新しい!!: リッチテンソルとホモトピー · 続きを見る »

ベクトル場

ベクトル場(ベクトルば、vector field)とは、数学において、幾何学的な空間の広がりの中でベクトル的な量の分布を表すものである。単純化された設定のもとではベクトル場はユークリッド空間 Rn (またはその開集合)からベクトル空間 Rn への関数として与えられる。(局所的な)座標系のもとでベクトル場を表示するときは座標に対してベクトルを与えるような関数を考えることになるが、座標系を変更したときにこの関数は一定の規則に従って変換を受けることが要請される。 ベクトル場の概念は物理学や工学においても積極的にもちいられ、例えば動いている流体の速さと向きや、磁力や重力などの力の強さと向きなどが空間的に分布している状況を表すために用いられている。 現代数学では多様体論にもとづき、多様体上の接ベクトル束の断面として(接)ベクトル場が定義される。.

新しい!!: リッチテンソルとベクトル場 · 続きを見る »

アフィン接続

数学の一分野である微分幾何学において、アフィン接続(affine connection)は、滑らかな多様体を幾何学的対象としている。そこでは、近くの接空間どうしを接続し、あたかも固定されたベクトル空間に値を持つ多様体上の函数であるかのように、接ベクトル場を微分とみなす。アフィン接続の考え方は、19世紀の幾何学とテンソル解析に起源を持つ。エリ・カルタン(Élie Cartan)(という一般理論の一部として)とヘルマン・ワイル(Hermann Weyl)(一般相対論の基礎付けの一部として)により研究された1920年代に、アフィン接続は完全に開発された。用語は、カルタンによるもので、ある変換によりユークリッド空間 Rn の中で接空間どうしを同一視することに起源を持つ。アフィン接続を選択すると、無限小では多様体を滑らかではないがアフィン空間のようにユークリッド空間を見ることができるというアイデアである。 滑らかな多様体上には無限個のアフィン接続が存在する。さらに多様体がリーマン計量を持つと、アフィン接続を自然に選択することができ、この接続をレヴィ・チヴィタ接続と呼ぶ。アフィン接続を選択することは、(接)ベクトル場を規定することと同値であり、合理的な性質(線型性やライプニッツ則)を満たす。このことは、接バンドル上の共変微分や(線型)接続として、アフィン接続が妥当な定義であることを意味する。アフィン接続の選択は、曲線に沿って変換する接ベクトルを意味するの考え方と同値でもある。このことはまた、上の平行性を持つ変換を定義する。標構バンドル上の無限小平行移動は、アフィン接続、アフィン群の、あるいは、標構バンドル上の接続の別の記述であることをも意味する。 アフィン接続の主な不変量は、捩れと曲率である。捩れはどのようにして、ベクトル場のリーブラケットがアフィン接続から再現可能かを測る。アフィン接続は、多様体の(アフィン)測地線を定義することに使われる。ここで使われる直線の幾何学である測地線は、通常のユークリッド幾何学からは非常に異なるにもかかわらず、ユークリッド空間の直線の一般化となっている。直線と測地線との違いは、測地線が接続の曲率の中に全ての情報をカプセル化していることである。 n by translation: the idea is that a choice of affine connection makes a manifold look infinitesimally like Euclidean space not just smoothly, but as an affine space.

新しい!!: リッチテンソルとアフィン接続 · 続きを見る »

アインシュタインの縮約記法

アインシュタインの縮約記法(アインシュタインのしゅくやくきほう、Einstein summation convention)またはアインシュタインの記法(アインシュタインのきほう、Einstein notation)は、アインシュタインが 1916 年に用いた添字 の和の記法である 。アインシュタインの規約(アインシュタインのきやく、Einstein convention)とも呼ばれる。 同じ項で添字が重なる場合は、その添字について和を取る、というルールである。この重なる指標を擬標(またはダミーの添字、)、重ならない指標を自由標(またはフリーの添字、)と呼ぶ。 このルールは一般相対性理論、量子力学、連続体力学、有限要素法などで重宝する。 アインシュタインはこの記法を自分の「数学における最大の発見」と(冗談めかして)言ったという。.

新しい!!: リッチテンソルとアインシュタインの縮約記法 · 続きを見る »

アインシュタイン多様体

微分幾何と数理物理において、アインシュタイン多様体(Einstein manifold)は、リッチテンソルが計量テンソルに比例するリーマン多様体もしくは、擬リーマン多様体である。通常、一般相対論で研究する 4次元のローレンツ多様体とは違い、この条件は、符合と同様に計量の次元も任意であることが可能であるにもかかわらず、この条件と計量が(宇宙定数を持つ)真空のアインシュタイン方程式の解であることとが同値であるとの理由から、アインシュタイン多様体はアルベルト・アインシュタイン(Albert Einstein)の名前に由来している。 M が基礎となる n-次元多様体で、g がその計量テンソルであれば、アインシュタインの条件は、ある定数 k が存在し、 であることを意味する。ここに、Ric は g のリッチテンソルを表わす。k.

新しい!!: リッチテンソルとアインシュタイン多様体 · 続きを見る »

アインシュタイン方程式

一般相対性理論におけるアインシュタイン方程式(アインシュタインほうていしき、)アインシュタインの重力場方程式(じゅうりょくばのほうていしき、Einstein's field equations;EFE)とも呼ばれる。は、万有引力・重力場を記述する場の方程式である。アルベルト・アインシュタインによって導入された。 アイザック・ニュートンが導いた万有引力の法則を、強い重力場に対して適用できるように拡張した方程式であり、中性子星やブラックホールなどの高密度・大質量天体や、宇宙全体の幾何学などを扱える。.

新しい!!: リッチテンソルとアインシュタイン方程式 · 続きを見る »

ウィリアム・サーストン

ウィリアム・サーストン ウィリアム・サーストン (William Paul Thurston, 1946年10月30日 - 2012年8月21日)はアメリカの数学者。コーネル大学教授。専門はトポロジーと幾何学。.

新しい!!: リッチテンソルとウィリアム・サーストン · 続きを見る »

クリストッフェル記号

リーマン幾何学において、クリストッフェル記号(クリストッフェルきごう、Christoffel symbols)またはクリストッフェルの三添字記号(クリストッフェルのさんそえじきごう、Christoffel three index symbols)とは、測地線の微分方程式を表すにあたってブルーノ・クリストッフェル (1829–1900) によって導入された記号を言う。 クリストッフェル記号には第一種記号 \left と第二種記号 \left\ の二種類があるが、基本的には第二種記号のことを意味する。.

新しい!!: リッチテンソルとクリストッフェル記号 · 続きを見る »

グリゴリー・ペレルマン

リゴリー・ヤコヴレヴィチ・ペレルマンまたはペレリマン(Григорий Яковлевич Перельман, Grigory Yakovlevich Perelman, 1966年6月13日 – )は、ロシア出身の数学者。.

新しい!!: リッチテンソルとグリゴリー・ペレルマン · 続きを見る »

ケンブリッジ大学出版局

ンブリッジ大学出版局(Cambridge University Press)は、ケンブリッジ大学の出版事業を手がける出版社である。1534年、ヘンリー8世により特許状が発せられたのを起こりとする世界最古の出版社、かつ世界第2の規模の大学出版局であり、聖書や学術誌の出版も手掛けている。 「出版活動を通して、大学の理念である全世界における学問、知識、研究の促進を推し進めること」を使命として掲げている。これは、ケンブリッジ大学規約中の「Statute J」に規定されている。そして、「公益のため継続的に出版活動を行い、ケンブリッジという名前の評価を高めること」を目的としている。 ケンブリッジ大学出版局は、学術、教育分野の書籍の出版を行なっており、ヨーロッパ、中東、アフリカ、アメリカ、アジア太平洋といった地域で事業を展開している。世界中に50以上の事業所を持ち、2000人近くの従業員を抱え、4万以上のタイトルの書籍を発行している。その種類は、専門書、教科書、研究論文、参考書、 300近くに及ぶ学術誌、聖書、祈祷書、英語教育教材、教育ソフト、電子出版など、多岐にわたる。.

新しい!!: リッチテンソルとケンブリッジ大学出版局 · 続きを見る »

ケーラー多様体

数学、特に微分幾何学において、ケーラー多様体(Kähler manifold)とは、複素構造、リーマン構造、シンプレクティック構造という3つが互いに整合性を持つ多様体である。ケーラー多様体 X 上には、ケーラーポテンシャルが存在し、X の計量に対応するレヴィ・チヴィタ接続が、標準直線束上の接続を引き起こす。 滑らかな射影代数多様体はケーラー多様体の重要な例である。小平埋め込み定理により、正の直線束を持つケーラー多様体は、常に射影空間の中へ双正則に埋め込むことができる。 ケーラー多様体の名前はドイツ人数学者エーリッヒ・ケーラー (Erich Kähler) にちなんでいる。.

新しい!!: リッチテンソルとケーラー多様体 · 続きを見る »

ケーラー微分

数学において、ケーラー微分 (Kähler differential) は微分形式の任意の可換環やスキームへの応用を提供する。.

新しい!!: リッチテンソルとケーラー微分 · 続きを見る »

コンパクト空間

数学において、コンパクト(compact)は位相空間の性質である。詳細は後述するがコンパクト性の定義それ自身は直観性に乏しいものであり、証明を容易にする為のいわば操作的なものである。しかし距離空間であればより直観的な言葉でいいかえる事ができ、特に有限次元のユークリッド空間においては有界閉集合であることとコンパクト集合であることとは同値になる。したがってコンパクトの概念はユークリッド空間における有界閉集合の概念を一般の位相空間に拡張したものとしてとらえる事ができる。 なお無限次元では有界閉集合はコンパクトとは限らず、例えばヒルベルト空間内の(縁を含んだ)単位球体は有界かつ閉集合であるがコンパクトではない(距離位相を入れた場合)。 ブルバキでは、ここでいう定義を満たす位相空間を準コンパクト(quasi-compact)と呼び、さらにハウスドルフの分離公理を満たすものをコンパクトであると呼んでいる。距離空間など多くの空間ではハウスドルフの分離公理が満たされるので両者の概念は一致するが、一般には注意が必要である。.

新しい!!: リッチテンソルとコンパクト空間 · 続きを見る »

コホモロジー

数学、とくにホモロジー論と代数トポロジーにおいて、コホモロジー (cohomology) はコチェイン複体から定義されるアーベル群の列を意味する一般的な用語である。つまり、コホモロジーはコチェイン、コサイクル、そしてコバウンダリの抽象的な研究として定義される。コホモロジーは、を、ホモロジーがもっているよりも洗練された代数的構造をもつ位相空間に割り当てる手法と見ることができる。コホモロジーはホモロジーの構成の代数的な双対から生じる。より抽象的でない言葉で言えば、基本的な意味でのコチェインは'量'をホモロジー論のチェインに割り当てる。 位相幾何学におけるその起源から、このアイデアは20世紀後半の数学において主要な手法となった。チェインについての位相的不変関係としてのホモロジーの最初の考えから、ホモロジーとコホモロジーの理論の応用の範囲は幾何学と抽象代数学に渡って拡がった。用語によって、多くの応用においてコホモロジー、反変理論、がホモロジーよりも自然であるという事実が隠されがちである。基本的なレベルではこれは幾何学的な状況において関数とを扱う。空間 X と Y、そして Y 上のある種の関数 F が与えられたとすると、任意の写像 f: X → Y に対して、f との合成は X 上の関数 F o f を引き起こす。コホモロジー群はまたしばしば自然な積、カップ積をもっており、環の構造を与える。この特徴のために、コホモロジーはホモロジーよりも強い不変量である。ホモロジーでは区別できないある種の代数的対象を区別できるのである。.

新しい!!: リッチテンソルとコホモロジー · 続きを見る »

ジョン・ワイリー・アンド・サンズ

ョン・ワイリー・アンド・サンズ(John Wiley & Sons、略称: Wiley、)は、1807年創業の科学、医学、教育などの分野の世界的な学術出版社である。 大学院のための教材、トレーニング教材、百科事典などの印刷、オンライン製品やオンラインサービスのような電子的情報も扱っている。『フォー・ダミーズ』シリーズの出版でも知られている。.

新しい!!: リッチテンソルとジョン・ワイリー・アンド・サンズ · 続きを見る »

スペクトル (関数解析学)

関数解析学において、有界作用素のスペクトルは、行列における固有値の概念の一般化である。特に、 が可逆でなければ、 を有界線形作用素 のスペクトルという。ただし は恒等関数とする。スペクトル及びスペクトルに関連する研究は、スペクトル理論と呼ばれ多くの応用先を持つ。最も良く知られているのが、量子力学の数学的な枠組みについてである。 有限次元ベクトル空間上の作用素のスペクトルは厳密に、固有値の集合となる。しかしながら、無限次元空間上の作用素は、固有値を持たないことがある。例えば、ヒルベルト空間 ℓ2 上では、右シフト作用素 は固有値を持たない。 固有値をもつ、つまり を満たすような 0 でない が存在するとすると、x_1.

新しい!!: リッチテンソルとスペクトル (関数解析学) · 続きを見る »

スカラー曲率

リーマン幾何学におけるスカラー曲率(すからーきょくりつ、Scalar curvature)またはリッチスカラー(Ricci scalar)は、リーマン多様体の最も単純な曲率不変量である。リーマン多様体の各点に、その近傍における多様体の内在的な形状から定まる単一の実数を対応させる。 2次元においては、スカラー曲率はリーマン多様体の曲率を完全に特徴付ける。しかし、次元が3以上の場合は、曲率の決定にはさらに情報が必要である。詳しい議論はリーマン多様体の曲率(en) を参照。 スカラー曲率はしばしば S (その他の表記としてSc, R)と表され、計量テンソル g に関するリッチ曲率 Ric のトレース として定義される。リッチテンソルは (0,2)-型テンソルであり、トレースをとるためには最初の添字を上げて (1,1)-型テンソルとしなければならないから、このトレースは計量の取り方に依存する。局所座標系を用いて と書き表すことができる。ただし である。座標系と計量テンソルが与えられたとき、スカラー曲率は のように表示できる。ここで Γabc は計量のクリストッフェル記号である。 任意のアフィン接続に対して自然に定義されるリーマン曲率テンソルやリッチテンソルとは異なり、スカラー曲率は(その定義がまさに計量と不可分な方法で与えられたことを思えば)完全にリーマン幾何学の領域に特有の概念であることが分かる。.

新しい!!: リッチテンソルとスカラー曲率 · 続きを見る »

球体

数学における球体(きゅうたい、ball)は球面の内側の空間全体を言う。それが境界点の全体である球面を全く含むとき閉球体(へいきゅうたい、closed ball)、全く含まないとき開球体(かいきゅうたい、open ball)と呼ばれる。 これらの概念は三次元ユークリッド空間のみならず、より低次または高次の空間、あるいはより一般の距離空間において定義することができる。-次元の球体は -次元(超)球体(あるいは短く -球体)と呼ばれ、その境界は(''n''−1)-次元(超)球面'''(あるいは短く -球面)と呼ばれる。例えばユークリッド平面における球体は円板のことであり、それを囲む境界は円周である。また、三次元ユークリッド空間における球体(通常の球体)は二次元球面(通常の球面)によって囲まれる体積を占める。 ユークリッド幾何学などの文脈において、球体 (ball) の意味でしばしば略式的に球 (sphere) と呼ぶ場合がある(球が球面の意である場合もある)。.

新しい!!: リッチテンソルと球体 · 続きを見る »

等長写像

数学、とくに幾何学において等長写像(とうちょうしゃぞう)または等距離写像(とうきょりしゃぞう)とは、"長さ" を変えない(距離を保つ、distance preserving)写像のことである。全単射であるものに限って等長写像 (isometry) という場合もある。.

新しい!!: リッチテンソルと等長写像 · 続きを見る »

熱力学的平衡

熱力学的平衡(ねつりきがくてきへいこう、)は、熱力学的系が熱的、力学的、化学的に平衡であることをいう。このような状態では、物質やエネルギー(熱)の正味の流れや相転移(氷から水への変化など)も含めて、熱力学的(巨視的)状態量は変化しない。逆に言えば、系の状態が変化するときは、多少なりとも熱力学的平衡からずれていることを意味する。極限として、限りなく熱力学的平衡に近い状態を保って行われる状態変化は、準静的変化とよばれる。また、系が熱力学的平衡であるとき、あるいは局所的に平衡とみなせる部分について、系の温度や圧力などの示強性状態量を定義することができる。 熱力学的に非平衡 (non-equilibrium) であるとは、上記の熱的、力学的、化学的平衡のいずれかが満たされていない状態であり、系に物質またはエネルギーの正味の流れ、あるいは相転移などが生じる。またこのような非平衡状態は不安定であるため別の状態へ転移するが、転移速度が極めて遅いために不安定な状態が維持される場合、この状態を準安定状態という。.

新しい!!: リッチテンソルと熱力学的平衡 · 続きを見る »

相対性理論

一般相対性理論によって記述される、2次元空間と時間の作る曲面。地球の質量によって空間が歪むとして記述して、重力を特殊相対性理論に取り入れる。実際の空間は3次元であることに注意すべし。 相対性理論(そうたいせいりろん、Relativitätstheorie, theory of relativity)または相対論は特殊相対性理論と一般相対性理論の総称である。量子論に対し古典論に分類される物理の分野としては、物理史的には最後の「大物」であった。量子力学と並び、いわゆる現代物理の基本的な理論である。 特殊と一般の、いずれもアルベルト・アインシュタインにより記述された。まず、等速運動する慣性系の間において物理法則は互いに不変であるはずという原理(相対性原理)と光速度不変の原理から導かれたのが、特殊相対性理論である(1905年)。特殊相対性理論は、時間と空間に関する相互間の変換が、相対速度が光速に近づくと、従来のいわゆる「ニュートン時空」的に信じられていたガリレイ変換の結果とは違ったものになること、そういった場合にはローレンツ変換が正しい変換であることを示した(「ミンコフスキー時空」)。 続いて、等価原理により加速度によるいわゆる「見かけの重力」と重力場を「等価」として、慣性系以外にも一般化したのが一般相対性理論である(1915〜1916年)。.

新しい!!: リッチテンソルと相対性理論 · 続きを見る »

順序集合

数学において順序集合(じゅんじょしゅうごう、ordered set)とは「順序」の概念が定義された集合の事で、「順序」とは大小、高低、長短等の序列に関わる概念を抽象化したものである。ただし、順序集合内の2つの元, に順序関係が定まっている(「比較可能」である)必要はなく、両者が「比較不能」であってもよい。 比較不能のケースを許容していることを強調して順序集合の事を半順序集合(はんじゅんじょしゅうごう、partially ordered set, poset)ともいう。一方、半順序集合の中で比較不能のケースがないものを特に全順序集合 という。(「半順序」という言葉が「全順序」の対義語ではない事に注意。全順序集合も半順序集合の一種である。) 全順序集合の簡単な例は整数の集合や実数の集合で、通常の大小比較を順序とみなしたものがある。 一方、全順序ではない半順序集合の例としては、正の整数全体の集合に整除関係で順序を入れたものや、(2つ以上元を含む)集合の冪集合において、包含関係を順序とみなしたものがある。例えば2元集合 において と はいずれも他方を包含していないので S の冪集合は全順序ではない。 実生活に近い例では、「AさんはBさんの子孫である」という事を「A<B」という大小関係とみなす事で人間全体の集合を半順序集合とみなせる。AさんとBさんはどちらも他方の子孫でない事もありうる(兄弟同士、叔父と甥、赤の他人等)ので、この順序集合は全順序ではない。.

新しい!!: リッチテンソルと順序集合 · 続きを見る »

行列式

数学における行列式(ぎょうれつしき、)とは、正方行列に対して定義される量で、歴史的には行列が表す一次方程式の可解性を判定する指標として導入された。幾何的には線型空間またはより一般の有限生成自由加群上の自己準同型に対して定義され、線型変換によって空間の体積要素が何倍に変わるかという概念を抽象化したものと見なすことができる。行列の可逆性を判定する指標として線型代数学における最も重要な指標の一つと見なされている。.

新しい!!: リッチテンソルと行列式 · 続きを見る »

被覆空間

数学、特に代数トポロジーにおいて、被覆写像(covering map)あるいは被覆射影(covering projection)とは、位相空間 C から X への連続全射 p のうち、 X の各点が p により「均一に被覆される」開近傍をもつものをいう。厳密な定義は追って与える。このとき C を被覆空間(covering space)、X を底空間(base space)と呼ぶ。この定義は、すべての被覆写像は局所同相であることを意味する。 被覆空間はホモトピー論、調和解析、リーマン幾何学、微分幾何学で重要な役割を果たす。たとえば、リーマン幾何学では、分岐は、被覆写像の考え方の一般化である。また、被覆写像はホモトピー群、特に基本群の研究とも深く関係する: X が十分によい位相空間であれば、X の被覆の同値類の集合と 基本群 π1(X) の共役な部分群の類全体との間に全単射が存在する(被覆の分類定理)。 from a topological space, C, to a topological space, X, such that each point in X has an open neighbourhood evenly covered by p (as shown in the image); the precise definition is given below.

新しい!!: リッチテンソルと被覆空間 · 続きを見る »

複素多様体

微分幾何学で複素多様体(ふくそたようたい、complex manifold)とは、多様体上の各点の開近傍が、Cn の中の単位開円板への正則な座標変換を持つ多様体のことを言う。座標変換が正則である場合には、Cn の中で、コーシー・リーマンの方程式の制約を受ける。 複素多様体という言葉は、上の意味で可積分複素多様体として特徴づけることができる。 One must use the open unit disk in Cn as the model space instead of Cn because these are not isomorphic, unlike for real manifolds.

新しい!!: リッチテンソルと複素多様体 · 続きを見る »

計量テンソル

計量テンソル(けいりょうテンソル、metric tensor)は、リーマン幾何学において、空間内の距離と角度を定義する、階数()が2のテンソルである。多様体が与えられたとき、多様体の接空間で、滑らかに変化する非負の2次関数を選ぶことができる場合、その多様体をリーマン多様体と呼ぶ。そのため、計量テンソルは、リーマン計量()と呼ばれることもある。 ひとたび、ある座標系 が選ばれると、計量テンソルは行列形式で定義される。通常、 として表記され、各成分は と表される。以下では、添え字の和に関してアインシュタインの縮約記法を用いる。 点 から までの曲線の長さは、 をパラメータとして、 と定義される。2つの接ベクトル()U.

新しい!!: リッチテンソルと計量テンソル · 続きを見る »

調和関数

帯上で定義された調和関数 数学における調和関数(ちょうわかんすう、harmonic function)は、ラプラス方程式を満足する二回連続的微分可能な関数のことをいう。 調和関数に関する重要な問題はディリクレ問題である。ディリクレ問題の解決方法にはいくつかあるが、その中でも重要な一般的方法はディリクレの原理である。 20世紀には、、、小平邦彦らが調和積分論の発展の中心的な役割を果たした。.

新しい!!: リッチテンソルと調和関数 · 続きを見る »

跡 (線型代数学)

数学、特に線型代数学における行列の跡(せき、trace; トレース、Spur; シュプール)あるいは対角和(たいかくわ)は行列の主対角成分の総和である。それは基底変換に関して不変であり、また固有値の総和(固有値和)に等しい。即ち、行列の跡は行列の相似を除いて定まり、したがって一般に行列に対応する線型写像の跡として定義することができる。 行列の跡は、正方行列に対してのみ定義されることに注意せよ。この語は(この同じ数学的対象を意味する)ドイツ語のSpurからの翻訳借用である。.

新しい!!: リッチテンソルと跡 (線型代数学) · 続きを見る »

閉微分形式

微分位相幾何学における微分形式が閉 (closed) である、または閉微分形式(へいびぶんけいしき、closed differential form、短く閉形式 (closed form) とは、その外微分が零となるときに言う。 シュヴァルツの定理により、-函数係数の任意の完全微分形式は閉微分形式である。ポワンカレの補題はこの部分的な逆を保証する。.

新しい!!: リッチテンソルと閉微分形式 · 続きを見る »

接ベクトル空間

多様体上の接ベクトル空間(せつベクトルくうかん、英語:tangent vector space)あるいは 接空間(英語:tangent space)とは、多様体上の各点で定義されるベクトル空間であり、その点における全ての接ベクトルの集合である。接ベクトル空間は、ユークリッド空間内の曲線や曲面における接ベクトルの一般化ともいえる。.

新しい!!: リッチテンソルと接ベクトル空間 · 続きを見る »

標準束

数学において,体上の 次元非特異代数多様体 の標準束(ひょうじゅんそく,canonical bundle)とは,直線束, すなわち 上の余接束 の 次外冪である. 複素数体上,それは 上の正則 形式の行列式束である.これは 上のセール双対性に対する dualising object である.それはまた可逆層と考えることもできる. 標準類 (canonical class) とは標準束を生じる 上の のである――それは 上のの同値類であり,それに属する任意の因子を標準因子 (canonical divisor) と呼んでよい.反標準 (anticanonical) 因子は を任意の標準因子として因子 のことである. 反標準束 (anticanonical bundle) は対応する である. の反標準束が豊富であるとき, はファノ多様体と呼ばれる. \omega_D.

新しい!!: リッチテンソルと標準束 · 続きを見る »

測地線

測地線(そくちせん、)とは、直線の概念を曲がった空間において一般化したものである。 計量が定義される空間においては、測地線は、2つの離れた点を結ぶ(局所的に)最短な線として定義される。アフィン接続が定義される空間においては、測地線は、曲線のうち、その接ベクトルが曲線に沿って移動しても平行に保たれるような曲線(測地的曲率が常に0)として定義される。測地線の中でその長さが2点間の距離に等しくなるものを最短測地線という。 言葉の由来は、測地学からであり、地球上の2点間の最短ルート(大円の一部)による。この概念は、数学的な空間にも拡張され、例えばグラフ理論ではグラフ上の2つの頂点(vertex)や結節点 () 間の測地線が定義されている。一般相対性理論では、光は曲がった空間での測地線を進むという原理に基づいて構築されている。.

新しい!!: リッチテンソルと測地線 · 続きを見る »

断面曲率

リーマン幾何学において、断面曲率(sectional curvature)は、を記述する方法のひとつである。断面曲率 K(σp) は p の接空間内の 2次元平面 σp に依存する。断面曲率は曲面のガウス曲率であり、σp 方向の点 p から始まる測地線より得られる p での接平面 σp を持つ(言い換えると、この平面は、p でのの下の像である。断面曲率は、多様体上の 2次元のファイバーバンドル上の滑らかな実数値函数である。 断面曲率は、リーマン曲率テンソルを完全に決定する。 p) depends on a two-dimensional plane σp in the tangent space at p. It is the Gaussian curvature of the surface which has the plane σp as a tangent plane at p, obtained from geodesics which start at p in the directions of σp (in other words, the image of σp under the exponential map at p). The sectional curvature is a smooth real-valued function on the 2-Grassmannian bundle over the manifold. The sectional curvature determines the curvature tensor completely.-->.

新しい!!: リッチテンソルと断面曲率 · 続きを見る »

擬リーマン多様体

微分幾何学において、擬リーマン多様体 (pseudo-Riemannian manifold)(また、半リーマン多様体 (semi-Riemannian manifold) ともいう)は、リーマン多様体の一般化であり、そこでは計量テンソルが必ずしもでないこともある。代わって、非退化というより弱い条件が、計量テンソルへ導入される。 一般相対論で極めて重要な多様体として、ローレンツ多様体 (Lorentzian manifold) があり、そこでは、一つの次元が他の次元とは反対の符号を持っている。このことは、接ベクトルが時間的、光的、空間的へと分類される。時空は 4次元ローレンツ多様体としてモデル化される。.

新しい!!: リッチテンソルと擬リーマン多様体 · 続きを見る »

拡散方程式

拡散方程式(かくさんほうていしき、diffusion equation)は拡散が生じている物質あるいは物理量(本稿では拡散物質と記述)の密度のゆらぎを記述する偏微分方程式である。集団遺伝学における対立遺伝子の拡散のように、拡散と同様の振る舞いをする現象を記述するのにも用いられる。伝熱の分野で熱伝導を記述する方程式は熱伝導方程式(Heat equation)と呼ばれる。 方程式は一般に以下のように書かれる。 ただし、\vecは位置、tは時刻、\, \phi(\vec,t) は拡散物質の 密度、 D(\phi,\vec,t) は拡散係数(2階のテンソル量)、ナブラ \, \nabla は空間微分作用素である。拡散係数D が定数ならば、方程式は以下の線形方程式に帰着される。 D が他の変数に依存する場合方程式は非線形となる。さらに、D が正定値対称行列であれば方程式は異方的拡散となる。.

新しい!!: リッチテンソルと拡散方程式 · 続きを見る »

曲率形式

微分幾何学では、曲率形式(curvature form)は、主バンドル上の接続形式の曲率を記述する。リーマン幾何学では、曲率形式は、リーマン曲率テンソルの代行物か一般化と考えることができる。.

新しい!!: リッチテンソルと曲率形式 · 続きを見る »

1970年代

1970年代(せんきゅうひゃくななじゅうねんだい)は、西暦(グレゴリオ暦)1970年から1979年までの10年間を指す十年紀。この項目では、国際的な視点に基づいた1970年代について記載する。.

新しい!!: リッチテンソルと1970年代 · 続きを見る »

1980年代

1980年代(せんきゅうひゃくはちじゅうねんだい)は、西暦(グレゴリオ暦)1980年から1989年までの10年間を指す十年紀。この項目では、国際的な視点に基づいた1980年代について記載する。.

新しい!!: リッチテンソルと1980年代 · 続きを見る »

ここにリダイレクトされます:

リッチ曲率

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »