ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
ダウンロード
ブラウザよりも高速アクセス!
 

ランベルトのW関数

索引 ランベルトのW関数

数学におけるランベルト W 函数(ランベルトWかんすう、Lambert W function)あるいはオメガ函数 (ω function), 対数積(product logarithm; 乗積対数)は、函数 の逆関係の分枝として得られる函数 の総称である。ここに は指数函数で は任意の複素数とする。すなわち は を満たす。 上記の方程式で と置きかえれば、任意の複素数 に対する 函数(一般には 関係)の定義方程式 を得る。 函数 は単射ではないから、関係 は( を除いて)多価である。仮に実数値の に注意を制限するとすれば、複素変数 は実変数 に取り換えられ、関係の定義域は区間 に限られ、また開区間 上で二価の函数になる。さらに制約条件として を追加すれば一価函数 が定義されて、 および を得る。それと同時に、下側の枝は であって、 と書かれる。これは から まで単調減少する。 ランベルト 関係は初等函数では表すことができない。ランベルト は組合せ論において有用で、例えば木の数え上げに用いられる。指数函数を含む様々な方程式(例えばプランク分布、ボーズ–アインシュタイン分布、フェルミ–ディラック分布などの最大値)を解くのに用いられ、また のような の解としても生じる。生化学において、また特に酵素動力学において、ミカエリス–メンテン動力学の経時動力学解析に対する閉じた形の解はランベルト 函数によって記述される。 W の絶対値で決定している。.

53 関係: 単射収束半径多価関数常微分方程式主値一般相対性理論二項関係代数的数区間 (数学)ミカエリス・メンテン式ヨハン・ハインリヒ・ランベルトリンデマンの定理レオンハルト・オイラーローラン級数ボース分布関数プランクの法則テイラー展開ディラトンフィジカル・レビューフェルミ分布関数ニュートン法ダランベールの収束判定法初等関数分岐オメガ定数ガウス積分シュプリンガー・サイエンス・アンド・ビジネス・メディアスターリング数置換積分絶対値組合せ数学生化学Digital Library of Mathematical Functions複素対数函数複素数複素数の偏角超幾何級数超越数関数 (数学)量子力学量子重力理論酵素反応速度論逆関係陰関数MaplePARI/GP極座標系極限正則関数水素分子イオン...木 (数学)指数関数数学 インデックスを展開 (3 もっと) »

単射

数学において、単射あるいは単写(たんしゃ、injective function, injection)とは、その値域に属する元はすべてその定義域の元の像として唯一通りに表されるような写像のことをいう。一対一(いったいいち、)の写像ともいう。似ているが一対一対応は全単射の意味で使われるので注意が必要である。.

新しい!!: ランベルトのW関数と単射 · 続きを見る »

収束半径

収束半径(しゅうそくはんけい、radius of convergence) とは、冪級数が収束する定義域を与える非負量(実数あるいは∞)である。 次の冪級数を考える。 ただし、中心 a や係数 cn は複素数(特に実数)とする。次の条件が成立するとき、r をこの級数の収束半径という。 であるとき、級数は収束し、 であるとき、級数は発散する。 もし、級数が全ての複素数 z に関して収束するならば、収束半径は ∞ となる。.

新しい!!: ランベルトのW関数と収束半径 · 続きを見る »

多価関数

多価関数(たかかんすう、multivalued function)とは、完全関係のひとつであり、一つの入力が与えられたときに一つあるいは複数の出力を得るものである。しかし現代的な定義での関数は写像の一種とみなされ、一つの入力があるときに出力を一つだけ得るものと定義されることが多く、この場合には多価関数を「関数」と呼ぶのは不適切となる(下記多価関数#歴史的経緯参照)。多価関数は単射でない関数から得ることができる。そのような関数では逆関数が定義できないが、逆関係 (inverse relation) はある。多価関数は、この逆関係に相当する。.

新しい!!: ランベルトのW関数と多価関数 · 続きを見る »

常微分方程式

常微分方程式(じょうびぶんほうていしき、ordinary differential equation, O.D.E.)とは、数学において、未知関数とその導関数からなる等式で定義される方程式である微分方程式の一種で、未知関数が本質的にただ一つの変数を持つものである場合をいう。すなわち、変数 の未知関数 に対して、(既知の)関数 を用いて という形にできるような関数方程式を常微分方程式と呼ぶ。 は未知関数 の 階の導関数である。未知関数が単独でない場合には、関数の組をベクトルの記法を用いて表せば次のようになる。 \left(\boldsymbol^(t).

新しい!!: ランベルトのW関数と常微分方程式 · 続きを見る »

主値

複素解析において、関数値として複数の複素数を取る多価関数を考えるとき、関数の主値(しゅち、principal value)とはその関数の分枝から取られる値のことである。多価関数の値を主値に限定することで、一価の関数となる。.

新しい!!: ランベルトのW関数と主値 · 続きを見る »

一般相対性理論

一般相対性理論(いっぱんそうたいせいりろん、allgemeine Relativitätstheorie, general theory of relativity)は、アルベルト・アインシュタインが1905年の特殊相対性理論に続いて1915年から1916年にかけて発表した物理学の理論である。一般相対論(いっぱんそうたいろん、general relativity)とも。.

新しい!!: ランベルトのW関数と一般相対性理論 · 続きを見る »

二項関係

数学において、二項関係(にこうかんけい、binary relation)あるいは二変数関係 (dyadic relation, 2-place relation) は、集合 の元からなる順序対のあつまりである。別な言い方をすれば、直積集合 の部分集合を、集合 上の二項関係と呼ぶ。あるいはもっと一般に、二つの集合 に対して、 と との間の二項関係とは、直積 の部分集合のことをいう。 二項関係の一つの例は素数全体の成す集合 と整数全体の成す集合 の間の整除関係である。この整除関係では任意の素数 は、 の倍数である任意の整数 に関係を持ち、倍数でない整数には関係しないものとして扱われる。例えば、素数 が関係を持つ整数には などが含まれるが や は含まれない。同様に素数 が関係する整数として などが挙げられるが、 や はそうではない。 二項関係は数学のさまざまな分野で用いられ、不等関係、恒等関係、算術の整除関係、初等幾何学の合同関係、グラフ理論の隣接関係、線型代数学の直交関係などのさまざまな概念が二項関係として定式化することができる。また、写像の概念を特別な種類の二項関係として定義することもできる。二項関係は計算機科学においても重用される。 二項関係はn-項関係 (各 -番目の成分が関係の -番目の始集合 からとられているようなn-組からなる集合)で とした特別の場合である。 ある種の公理的集合論では(集合の一般化としての)類の上の関係を考えることができる。このような拡張は、集合論における元の帰属関係や包含関係の概念(に限った話ではないが)のモデル化を、ラッセルの逆理のような論理矛盾に陥らずに行うために必要である。.

新しい!!: ランベルトのW関数と二項関係 · 続きを見る »

代数的数

代数的数(だいすうてきすう、algebraic number)とは、 複素数であって、有理数係数(あるいは同じことだが、分母を払って、 整数係数)の 0 でない一変数多項式の根 (すなわち多項式の値が 0 になるような値)となるものをいう。 すべての整数や有理数は代数的数であり、またすべての整数の冪根も代数的数である。 実数や複素数には代数的数でないものも存在し、そのような数は超越数と呼ばれる。 例えば π や e は超越数である。 ほとんどすべての複素数は超越数である(#集合論的性質)。.

新しい!!: ランベルトのW関数と代数的数 · 続きを見る »

区間 (数学)

数学における(実)区間(じつくかん、(real) interval)は、実数からなる集合で、その集合内の任意の二点に対しその二点の間にあるすべての数がその集合に属するという性質を持つものである。例えば、 を満たす数 全体の成す集合は、 と, およびその間の数すべてを含区間である。他の著しい例として、実数全体の成す集合, 負の実数全体の成す集合および空集合などが挙げられる。 実区間は積分および測度論において、「大きさ」「測度」「長さ」などと呼ばれる量を容易に定義できるもっとも単純な集合として重要な役割がある。測度の概念は実数からなるより複雑な集合に対して拡張され、ボレル測度やルベーグ測度といったような概念までにつながっていく。 不確定性や数学的近似および算術的丸めがあっても勝手な公式に対する保証された一定範囲を自動的に与える一般の法としてのを考えるにあたって、区間はその中核概念を成す。 勝手な全順序集合、例えば整数の集合や有理数の集合上でも、区間の概念は定義することができる。.

新しい!!: ランベルトのW関数と区間 (数学) · 続きを見る »

ミカエリス・メンテン式

ミカエリス・メンテン式のプロット ミカエリス・メンテン式(ミカエリス・メンテンしき、Michaelis–Menten equation)とは、酵素の反応速度論に大きな業績を残したレオノール・ミカエリスとモード・レオノーラ・メンテンにちなんだ、酵素の反応速度v に関する式で、 で表される。ここで、は基質濃度、Vmax は基質濃度が無限大のときの反応速度である。また、Km はミカエリス・メンテン定数と言い、v.

新しい!!: ランベルトのW関数とミカエリス・メンテン式 · 続きを見る »

ヨハン・ハインリヒ・ランベルト

ヨハン・ハインリヒ・ランベルト(Johann Heinrich Lambert、1728年8月26日 - 1777年9月25日)は、ドイツの数学者・物理学者・化学者・天文学者・哲学者。地図の投影法(ランベルト正積方位図法・ランベルト正角円錐図法など)を考案したことや、円周率が無理数である証明をしたことなどで知られる。 主著に『新オルガノン』など。.

新しい!!: ランベルトのW関数とヨハン・ハインリヒ・ランベルト · 続きを見る »

リンデマンの定理

リンデマンの定理(リンデマンのていり、Lindemann's theorem)は、1882年にフェルディナント・フォン・リンデマンが証明した、超越数論における定理の一つである。この定理は、円周率やネイピア数などの数が超越数であることを内包する。1885年のカール・ワイエルシュトラスによる寄与を踏まえ、リンデマン.

新しい!!: ランベルトのW関数とリンデマンの定理 · 続きを見る »

レオンハルト・オイラー

レオンハルト・オイラー(Leonhard Euler, 1707年4月15日 - 1783年9月18日)は、18世紀の数学者・天文学者(天体物理学者)。 18世紀の数学の中心となり、続く19世紀の厳密化・抽象化時代の礎を築いた 日本数学会編『岩波数学辞典 第4版』、岩波書店、2007年、項目「オイラー」より。ISBN 978-4-00-080309-0 C3541 。スイスのバーゼルに生まれ、現在のロシアのサンクトペテルブルクにて死去した。.

新しい!!: ランベルトのW関数とレオンハルト・オイラー · 続きを見る »

ローラン級数

ーラン級数(ローランきゅうすう、Laurent series)とは負冪の項も含む形での冪級数としての関数の表示のことである。テイラー級数展開できない複素関数を表示する場合に利用される。ローラン級数の名は、最初の発表が1843年にピエール・アルフォンス・ローランによってなされたことに由来する。ローラン級数の概念自体はそれより先の1841年にカール・ワイエルシュトラスによって発見されていたが公表されなかった。 特定の点 ''c'' および閉曲線 γ に関して定義されたローラン級数。 積分路である γ は赤で塗ったアニュラスの内側に載っており、アニュラスの内側で ''f''(''z'') は正則である.

新しい!!: ランベルトのW関数とローラン級数 · 続きを見る »

ボース分布関数

ボース分布関数()は、相互作用のないボース粒子の系において、一つのエネルギー準位に入る粒子の数(占有数)を与える理論式である。ボース–アインシュタイン分布関数 とも呼ばれる。 エネルギーが に等しい準位の占有数を与えるボース分布関数は で表される。パラメータ は逆温度で、熱力学温度 と で関係付けられる。 は系の化学ポテンシャルである。 である。 となるのは生成および消滅が起こる光子やフォノンなどの粒子系か、ボース–アインシュタイン凝縮を起こしている粒子系である。 量子数 で指定される準位のエネルギーを とすれば、このエネルギー準位の占有数 の統計的期待値は で与えられる。.

新しい!!: ランベルトのW関数とボース分布関数 · 続きを見る »

プランクの法則

プランクの法則(プランクのほうそく、Planck's law)とは物理学における黒体から輻射(放射)される電磁波の分光放射輝度、もしくはエネルギー密度の波長分布に関する公式。プランクの公式とも呼ばれる。ある温度 における黒体からの電磁輻射の分光放射輝度を全波長領域において正しく説明することができる。1900年、ドイツの物理学者マックス・プランクによって導かれた。プランクはこの法則の導出を考える中で、輻射場の振動子のエネルギーが、あるエネルギー素量(現在ではエネルギー量子と呼ばれている) の整数倍になっていると仮定した。このエネルギーの量子仮説(量子化)はその後の量子力学の幕開けに大きな影響を与えている。.

新しい!!: ランベルトのW関数とプランクの法則 · 続きを見る »

テイラー展開

数学において、テイラー級数 (Taylor series) は関数のある一点での導関数たちの値から計算される項の無限和として関数を表したものである。そのような級数を得ることをテイラー展開という。 テイラー級数の概念はスコットランドの数学者ジェームズ・グレゴリーにより定式化され、フォーマルにはイギリスの数学者ブルック・テイラーによって1715年に導入された。0 を中心としたテイラー級数は、マクローリン級数 (Maclaurin series) とも呼ばれる。これはスコットランドの数学者コリン・マクローリンにちなんでおり、彼は18世紀にテイラー級数のこの特別な場合を積極的に活用した。 関数はそのテイラー級数の有限個の項を用いて近似することができる。テイラーの定理はそのような近似による誤差の定量的な評価を与える。テイラー級数の最初のいくつかの項として得られる多項式はと呼ばれる。関数のテイラー級数は、その関数のテイラー多項式で次数を増やした極限が存在すればその極限である。関数はそのテイラー級数がすべての点で収束するときでさえもテイラー級数に等しいとは限らない。開区間(あるいは複素平面の開円板)でテイラー級数に等しい関数はその区間上の解析関数と呼ばれる。.

新しい!!: ランベルトのW関数とテイラー展開 · 続きを見る »

ディラトン

ディラトン(英:dilaton)とは、超弦理論に登場する仮説上の粒子である。.

新しい!!: ランベルトのW関数とディラトン · 続きを見る »

フィジカル・レビュー

『フィジカル・レビュー』(英語:Physical Review)はアメリカ物理学会が発行する学術雑誌で、物理学の専門誌としては最も権威がある。現在、Physical Review AからEまでの領域別専門誌と、物理学全領域を扱う速報誌Physical Review Lettersに分かれており、特にPhysical Review Lettersに論文を載せることは物理学者の一つの目標となっている。.

新しい!!: ランベルトのW関数とフィジカル・レビュー · 続きを見る »

フェルミ分布関数

フェルミ分布関数(フェルミぶんぷかんすう、)とは、相互作用のないフェルミ粒子の系において、一つのエネルギー準位にある粒子の数(占有数)の分布を与える理論式である東京大学 知の構造化センター「物性物理学入門 (進化する教科書 Wiki)」。フェルミ・ディラック分布とも呼ばれる。.

新しい!!: ランベルトのW関数とフェルミ分布関数 · 続きを見る »

ニュートン法

数値解析の分野において、ニュートン法(ニュートンほう、Newton's method)またはニュートン・ラフソン法(Newton-Raphson method)は、方程式系を数値計算によって解くための反復法による求根アルゴリズムの1つである。対象とする方程式系に対する条件は、領域における微分可能性と2次微分に関する符号だけであり、線型性などは特に要求しない。収束の速さも2次収束なので古くから数値計算で使用されていた。名称はアイザック・ニュートンとに由来する。.

新しい!!: ランベルトのW関数とニュートン法 · 続きを見る »

ダランベールの収束判定法

ダランベールの収束判定法(―のしゅうそくはんていほう、ratio test) とは、実数や複素数を項にもつ級数が、収束するか発散するかを判定する方法である。級数における、前後の項の比を考える。もし、この比の極限が 1 未満であれば、級数は絶対収束する。 この判定法は、ジャン・ル・ロン・ダランベールによって発表された。.

新しい!!: ランベルトのW関数とダランベールの収束判定法 · 続きを見る »

初等関数

初等関数(しょとうかんすう、)とは、実数または複素数の1変数関数で、代数関数、指数関数、対数関数、三角関数、逆三角関数および、それらの合成関数を作ることを有限回繰り返して得られる関数のことである。ガンマ関数、楕円関数、ベッセル関数、誤差関数などは初等関数でない。初等関数のうちで代数関数でないものを初等超越関数という。双曲線関数やその逆関数も初等関数である。 初等関数の導関数はつねに初等関数になるが、初等関数の不定積分や初等関数を用いた微分方程式の解なども一般に初等関数にはならない。例えば、次の二つの不定積分 f(x).

新しい!!: ランベルトのW関数と初等関数 · 続きを見る »

分岐

分岐(ぶんき)、分岐点(ぶんきてん).

新しい!!: ランベルトのW関数と分岐 · 続きを見る »

オメガ定数

メガ定数(オメガていすう、) とは、 で定義される数学定数であり、およそ である。 また、 とも定義できる(ただし、W: ランベルトのW関数)。「オメガ定数」という名前は、ランベルトのW関数の別称、「オメガ関数」によるものである。 オメガ定数は、黄金比に似た性質を持っている。これは が、 と同値であるということである。このことから、初期値 Ω0 から初めて、Ω が漸化式 を用いて反復計算できることがわかる。この数列は に収束する。.

新しい!!: ランベルトのW関数とオメガ定数 · 続きを見る »

ガウス積分

π) がガウス積分を表す ガウス積分(がうす-せきぶん、Gaussian integral)あるいはオイラー=ポアソン積分(—せきぶん、Euler–Poisson integral)はガウス関数 の実数全体での広義積分: のことである。名称は、数学・物理学者のカール・フリードリヒ・ガウスに由来する。 この積分の応用は広い。例えば、変数の微小変化に伴う正規分布の正規化定数の計算に用いられる。積分の上の限界を有限な値に替えることで、誤差関数や正規分布の累積分布関数とも深く関連する。 誤差関数を表す初等関数は存在しないが、リッシュのアルゴリズムにより微分積分学の道具立てを用いてガウス積分の値が解析的に求まることが証明できる。つまり、初等関数としての不定積分 \textstyle\int e^ \, dx は存在しないが、定積分 \textstyle\int_^ e^ \, dx は評価することができるのである。 ガウス積分は物理学で非常に頻繁に現れ、またガウス積分の様々な一般化が場の量子論に現れる。.

新しい!!: ランベルトのW関数とガウス積分 · 続きを見る »

シュプリンガー・サイエンス・アンド・ビジネス・メディア

ュプリンガー・サイエンス・アンド・ビジネス・メディア(Springer Science+Business Media, Springer)は、科学(Science)、技術(Technology、工学など)、医学(Medicine)、すなわちSTM関連の書籍、電子書籍、査読済みジャーナルを出版するグローバル企業である。シュプリンガーはまた、"SpringerLink"(「シュプリンガー・リンク」) 、"SpringerProtocols"(「」) 、"SpringerImages"(「シュプリンガー・イメージ」) 、"SpringerMaterials"(「シュプリンガー・マテリアル」) などいくつかの科学データベース・サービスのホスティングも行っている。 出版物には、参考図書(Reference works、レ(リ)ファレンス・ワークス)、教科書、モノグラフ(Monograph)、(Proceedings)、叢書など多数が含まれる。また、シュプリンガー・リンクには45,000以上のタイトルが自然科学など13の主題・テーマで集められており、それらは電子書籍として利用可能である。シュプリンガーはSTM分野の書籍に関しては世界最大の出版規模を持ち、ジャーナルでは世界第2位である(第1位はエルゼビア)。 多数のインプリントや、20ヶ国に約55の発行所(パブリッシング・ハウス)、5,000人以上の従業員を抱え、毎年約2,000のジャーナル、7,000以上の新書(これにはSTM分野だけではなく、B2B分野のものも含まれる)を発刊している。シュプリンガーはベルリン、ハイデルベルク、ドルトレヒト、ニューヨークに主要オフィスを構える。近年成長著しいアジア市場のために、アジア地域本部を香港に置いており、2005年8月からは北京に代表部を設置している 。 2015年5月、シュプリンガー・サイエンス+ビジネスメディアとマクミラン・サイエンス・アンド・エデュケーションの大半の事業の合併が、欧州連合や米国司法省などの主要な公正競争監視機関により承認された。新会社の名称は「シュプリンガー・ネイチャー(Springer Nature)」。.

新しい!!: ランベルトのW関数とシュプリンガー・サイエンス・アンド・ビジネス・メディア · 続きを見る »

スターリング数

ターリング数(スターリングすう、Stirling number)は、上昇階乗冪 や 下降階乗冪 を数値の冪乗と関係づけるための級数の展開係数として、イギリスの数学者が1730年に彼の著書 Methodus Differentialis で導入した数である。スターリング数は第1種スターリング数と、第2種スターリング数に分類される。 第1種スターリング数はべき乗から階乗への変換に、第2種スターリング数は階乗からべき乗への変換に現れる。また、スターリング数は組合せ数学において意味をもった数値を与える。.

新しい!!: ランベルトのW関数とスターリング数 · 続きを見る »

置換積分

置換積分(ちかんせきぶん, Integration by substitution)は、積分の方法の1つであり、部分積分法に並ぶ微分積分学の基本定理の1つとして主に不定積分に用いられる.

新しい!!: ランベルトのW関数と置換積分 · 続きを見る »

絶対値

数の絶対値は零からの距離と考えられる 数学における実数 の絶対値(ぜったいち、absolute value)または母数(ぼすう、modulus) は、その符号を無視して得られる非負の値を言う。つまり正数 に対して および負数 に対して (このとき は正)であり、また である。例えば の絶対値は であり の絶対値も である。数の絶対値はその数の零からの距離と見なすことができる。 実数の絶対値を一般化する概念は、数学において広範で多様な設定のもとで生じてくる。例えば、絶対値は複素数、四元数、順序環、体などに対しても定義することができる。様々な数学的あるいは物理学的な文脈における (magnitude) や距離およびノルムなどの概念は、絶対値と緊密な関係にある.

新しい!!: ランベルトのW関数と絶対値 · 続きを見る »

組合せ数学

組合せ数学(くみあわせすうがく、combinatorics)や組合せ論(くみあわせろん)とは、特定の条件を満たす(普通は有限の)対象からなる集まりを研究する数学の分野。特に問題とされることとして、集合に入っている対象を数えたり(数え上げ的組合せ論)、いつ条件が満たされるのかを判定し、その条件を満たしている対象を構成したり解析したり(組合せデザインやマトロイド理論)、「最大」「最小」「最適」な対象をみつけたり(極値組合せ論や組合せ最適化)、それらの対象が持ちうる代数的構造をみつけたり(代数的組合せ論)することが挙げられる。.

新しい!!: ランベルトのW関数と組合せ数学 · 続きを見る »

生化学

生化学(せいかがく、英語:biochemistry)は生命現象を化学的に研究する生化学辞典第2版、p.713 【生化学】生物学または化学の一分野である。生物化学(せいぶつかがく、biological chemistry)とも言う(若干生化学と生物化学で指す意味や範囲が違うことがある。生物化学は化学の一分野として生体物質を扱う学問を指すことが多い)。生物を成り立たせている物質と、それが合成や分解を起こすしくみ、そしてそれぞれが生体システムの中で持つ役割の究明を目的とする。.

新しい!!: ランベルトのW関数と生化学 · 続きを見る »

Digital Library of Mathematical Functions

Digital Library of Mathematical Functions (DLMF)とはアメリカ国立標準技術研究所(NIST)が特殊関数と自身のアプリケーション向けに数学リファレンスデータの主要なリソースを開発するためのオンラインプロジェクトである。Abramowitz's and Stegun's Handbook of Mathematical Functions (A&S)の更新版に位置づけられている。いくつかの章は既に掲載されていたが、2010年5月7日にオンライン正式公開された。 初版を合衆国政府印刷局が発行し、アメリカ合衆国内でパブリックドメインとなっていたA&Sとは対照的に、NISTはDLMFに関しては著作権を所有することを宣言し17 U.S.C. §105下に置かれるとしている。.

新しい!!: ランベルトのW関数とDigital Library of Mathematical Functions · 続きを見る »

複素対数函数

複素解析における複素対数函数(ふくそたいすうかんすう、complex logarithm)は、実自然対数函数が実自然指数函数の逆函数であるのと同様の意味において、複素指数函数の逆「函数」である。すなわち、複素数 の対数 とは を満たす複素数を言い、そのような を や などと書く。任意の非零複素数 は無限個の対数を持つから、そのような表記が紛れのない意味を為すように気を付けねばならない。 極形式を用いて と書くならば、 は の対数の一つを与えるが、これに の任意の整数倍を加えたもので の対数はすべて尽くされる。.

新しい!!: ランベルトのW関数と複素対数函数 · 続きを見る »

複素数

数学における複素数(ふくそすう、complex number)は、実数の対 と と線型独立な(実数ではない)要素 の線型結合 の形に表される数(二元数: 実数体上の二次拡大環の元)で、基底元 はその平方が になるという特別な性質を持ち虚数単位と呼ばれる。 複素数全体の成す集合を太字の あるいは黒板太字で と表す。 は、実数全体の成す集合 と同様に、可換体の構造を持ち、とくに を含む代数閉体を成す。複素数体はケイリー–ディクソン代数(四元数、八元数、十六元数など)の基点となる体系であり、またさまざまな超複素数系の中で最もよく知られた例である。 複素数の概念は、一次元の実数直線を二次元の複素数平面に拡張する。複素数は自然に二次元平面上に存在すると考えることができるから、複素数全体の成す集合上に自然な大小関係(つまり全順序)をいれることはできない。すなわち は順序体でない。 ある数学的な主題や概念あるいは構成において、それが複素数体を基本の体構造として考えられているとき、そのことはしばしばそれら概念等の名称に(おおくは接頭辞「複素-」を付けることで)反映される。例えば、複素解析、複素行列、複素(係数)多項式、複素リー代数など。.

新しい!!: ランベルトのW関数と複素数 · 続きを見る »

複素数の偏角

数学において,arg は(複素平面において視覚化される)複素数上の関数である.それは正の実軸から点と原点を結ぶ直線までの角度を与える.図1では で表されており,点の偏角(へんかく、argument)と呼ばれる..

新しい!!: ランベルトのW関数と複素数の偏角 · 続きを見る »

超幾何級数

数学において、超幾何級数(ちょうきかきゅうすう、hypergeometric series)は、一般に の形式で表される級数である。但し、 (x)_0 &.

新しい!!: ランベルトのW関数と超幾何級数 · 続きを見る »

超越数

超越数(ちょうえつすう、transcendental number)とは、代数的数でない数、すなわちどんな有理係数の代数方程式 のにもならないような複素数のことである。有理数は一次方程式の解であるから、超越的な実数はすべて無理数になるが、無理数 2 は の解であるから、逆は成り立たない。超越数論は、超越数について研究する数学の分野で、与えられた数の超越性の判定などが主な問題である。 よく知られた超越数にネイピア数(自然対数の底)や円周率がある。ただし超越性が示されている実数のクラスはほんの僅かであり、与えられた数が超越数であるかどうかを調べるのは難しい問題だとされている。例えば、ネイピア数と円周率はともに超越数であるにもかかわらず、それをただ足しただけの すら超越数かどうか分かっていない。 代数学の標準的な記号 \mathbb で有理数係数多項式全体を表し、代数的数全体の集合を、代数的数 algebraic number の頭文字を使って と書けば、超越数全体の集合は となる。 なお、本稿では を自然対数とする。.

新しい!!: ランベルトのW関数と超越数 · 続きを見る »

関数 (数学)

数学における関数(かんすう、、、、、函数とも)とは、かつては、ある変数に依存して決まる値あるいはその対応を表す式の事であった。この言葉はライプニッツによって導入された。その後定義が一般化されて行き、現代的には数の集合に値をとる写像の一種であると理解される。.

新しい!!: ランベルトのW関数と関数 (数学) · 続きを見る »

量子力学

量子力学(りょうしりきがく、quantum mechanics)は、一般相対性理論と同じく現代物理学の根幹を成す理論として知られ、主として分子や原子、あるいはそれを構成する電子など、微視的な物理現象を記述する力学である。 量子力学自身は前述のミクロな系における力学を記述する理論だが、取り扱う系をそうしたミクロな系の集まりとして解析することによって、ニュートン力学に代表される古典論では説明が困難であった巨視的な現象についても記述することができる。たとえば量子統計力学はそのような応用例の一つである。従って、生物や宇宙のようなあらゆる自然現象もその記述の対象となり得る。 代表的な量子力学の理論として、エルヴィン・シュレーディンガーによって創始された、シュレーディンガー方程式を基礎に置く波動力学と、ヴェルナー・ハイゼンベルク、マックス・ボルン、パスクアル・ヨルダンらによって構成された、ハイゼンベルクの運動方程式を基礎に置く行列力学がある。ただしこの二つは数学的に等価である。 基礎科学として重要で、現代の様々な科学や技術に必須な分野である。 たとえば科学分野について、太陽表面の黒点が磁石になっている現象は、量子力学によって初めて解明された。 技術分野について、半導体を利用する電子機器の設計など、微細な領域に関するテクノロジーのほとんどは量子力学を基礎として成り立っている。そのため量子力学の適用範囲の広さと現代生活への影響の大きさは非常に大きなものとなっている。一例として、パソコンや携帯電話、レーザーの発振器などは量子力学の応用で開発されている。工学において、電子工学や超伝導は量子力学を基礎として展開している。.

新しい!!: ランベルトのW関数と量子力学 · 続きを見る »

量子重力理論

量子重力理論(りょうしじゅうりょくりろん、)は、重力相互作用(重力)を量子化した理論である。単に量子重力(りょうしじゅうりょく:Quantum Gravity(QG), Quantum Gravitation)または重力の量子論(Quantum Theory of Gravity)などとも呼ばれる。 ユダヤ系ロシア人のマトベイ・ブロンスタインがパイオニアとされる。一般相対性理論と量子力学の双方を統一する理論と期待されている。物理学の基礎概念である時間、空間、物質、力を統一的に理解するための鍵であり、物理学における最重要課題の一つと言われている。 量子重力理論は現時点ではまったく未完成の未知の理論である。量子重力を考える上で最大の問題点はその指針とすべき基本的な原理がよく分かっていないということである。そもそも重力は自然界に存在する四つの力(基本相互作用)の中で最も弱い。従って、量子化された重力が関係していると考えられる現象が現在到達できる技術レベルでは観測できないためである。.

新しい!!: ランベルトのW関数と量子重力理論 · 続きを見る »

酵素反応速度論

''大腸菌''のジヒドロ葉酸還元酵素。活性部位に2つの基質ジヒドロ葉酸 (右) とNADPH (左) が結合している。蛋白質はリボンダイアグラムで示されており、αヘリックスは赤、ベータシートは黄、ループは青に着色されている。http://www.rcsb.org/pdb/explore.do?structureId.

新しい!!: ランベルトのW関数と酵素反応速度論 · 続きを見る »

逆関係

数学における二項関係の逆関係(ぎゃくかんけい、inverse relation)は、関係(のグラフ)に属する順序対の成分を逆順にして得られる関係である。例えば、「~の子である」という関係の逆関係は「~の親である」という関係である。.

新しい!!: ランベルトのW関数と逆関係 · 続きを見る »

陰関数

数学の特に解析学における陰函数(いんかんすう、implicit function; 陰伏函数)は、陰伏方程式すなわち適当な多変数函数(しばしば多変数多項式) によって の形に表される関係によって(その函数の引数のうちの一つの変数のを残りの変数に関係付けることによって)陰伏的 (implicitly) に定義される函数を言う。 例えば、単位円を定める陰伏方程式は であり、このときの に対する陰函数 は、 によって陰伏的に定められる。この陰伏方程式が、 の連続函数として を定めるのは に対してのみ、かつ函数の値として非負の値のみ(あるいは非正の値のみ)を取るものとしたときである(非負または非正の二つの連続な枝がある)。陰函数定理はこのような関係がいつ陰伏函数を定義するのかという十分条件を与えるものである。 が多変数多項式であるときの なる形の関係に対して、この関係を満足する変数の値の組全体の成す集合を、 のときは陰伏曲線、 のときはと呼ぶ。このような陰伏方程式は代数幾何学の基盤であり、古典的な代数幾何学では多項式の零点を記述する陰伏方程式からなる連立方程式の解を研究する。そのようなはアフィン代数的集合と呼ばれる。 微分方程式の解は一般には陰函数の形で得られる。.

新しい!!: ランベルトのW関数と陰関数 · 続きを見る »

Maple

Maple(メイプル)とは、数式処理、数値計算、グラフ作成などを行うソフトウェアのひとつである。Mapleは、1980年代前半にカナダのウォータールー大学で開発され(株式会社としてはWaterloo Maple名義。以下Maplesoft)、日本ではサイバネットシステムが販売、翻訳を行っていたが、2009年9月に、Maplesoftをサイバネットシステムが買収した。Mapleを使うと、紙と鉛筆で行う数学の計算や作図をコンピュータで行うことができる。 また、販売方法としては、アカデミックバージョンを出し、学生や、教員、研究者向けに廉価で(1ライセンス2~3万円程度)ほとんどスペックの落ちない製品を販売している。また、小学校、中学校、高校などの初等教育の現場における数学、理科の授業から、大学や企業のR&D部門などの研究機関に至るまで幅広いユーザ層が開拓されつつある。.

新しい!!: ランベルトのW関数とMaple · 続きを見る »

PARI/GP

PARI/GPは計算機代数アプリケーションであり、数論に関する様々な演算を行うために開発された。バージョン2.1.0からはフリーソフトウェアとしてGNU General Public Licenseにしたがって米フリーソフトウェア財団から公開、配布されている。PARI/GPはマルチプラットフォームであり、多くのプラットフォームで実行することができる。.

新しい!!: ランベルトのW関数とPARI/GP · 続きを見る »

極座標系

極座標系(きょくざひょうけい、polar coordinates system)とは、n 次元ユークリッド空間 R 上で定義され、1 個の動径 r と n − 1 個の偏角 θ, …, θ からなる座標系のことである。点 S(0, 0, x, …,x) を除く直交座標は、局所的に一意的な極座標に座標変換できるが、S においてはヤコビアン が 0 となってしまうから、一意的な極座標表現は不可能である。それは、S に於ける偏角が定義できないことからも明らかである。.

新しい!!: ランベルトのW関数と極座標系 · 続きを見る »

極限

数学においては、数列など、ある種の数学的対象をひとまとまりに並べて考えたものについての極限(きょくげん、limit)がしばしば考察される。数の列がある値に限りなく近づくとき、その値のことを数列の極限あるいは極限値といい、この数列は収束するという。収束しない場合は、発散するという。 極限を表す記号として、次のような lim (英語:limit, リミット、ラテン語:limes)という記号が一般的に用いられる。.

新しい!!: ランベルトのW関数と極限 · 続きを見る »

正則関数

複素解析において、正則関数(せいそくかんすう、regular analytic function)あるいは整型函数(せいけいかんすう、holomorphic function)とは、ガウス平面あるいはリーマン面上のある領域の全ての点で微分可能であるような複素変数のことである。.

新しい!!: ランベルトのW関数と正則関数 · 続きを見る »

水素分子イオン

水素分子イオン(すいそぶんしイオン、Hydrogen molecular ion)は、H2+で表される最も単純な分子イオンである。正電荷を持つ2つの陽子と負電荷を持つ1つの電子から構成され、中性水素分子のイオン化によって形成される。1つの電子しか持たないことから電子相関がなく、シュレディンガー方程式が比較的直接的に解けるため、理論的に興味を持たれてきた。エネルギー固有値の解析解は、ランベルトのW関数の一般化である。そのため、固定核の場合は、数式処理システムを用いた実験数学手法で完全に解析することができる。そのため、多くの量子化学の教科書に例として掲載されている。 H2+の最初の量子力学的取扱は、デンマークの物理学者Øyvind Burrauによって、エルヴィン・シュレーディンガーが波動方程式を発表した翌年の1927年に発表された。前期量子論を用いた初期の研究は、1922年にカレル・ニーセンとヴォルフガング・パウリ、1925年にハロルド・ユーリーによって発表された。1928年にはライナス・ポーリングがBurrauの研究とヴァルター・ハイトラー、フリッツ・ロンドンによる水素分子の研究をまとめた総説を発表した。 H2+の結合は、結合次数が1.5の一電子共有結合として記述される。 このイオンは、分子雲の中でも見られ、星間物質の化学においても重要である。.

新しい!!: ランベルトのW関数と水素分子イオン · 続きを見る »

木 (数学)

数学、特にグラフ理論の分野における木(き、tree)とは、連結で閉路を持たない(無向)グラフである。有向グラフについての木(有向木)についても論じられるが、当記事では専ら無向木を扱う。 閉路を持たない(連結であるとは限らない)無向グラフを森(もり、forest)という。木は明らかに森である。 なお、閉路を持たない有向グラフは有向非巡回グラフである。有向木は有向非巡回グラフでもあるが、有向非巡回グラフは必ずしも有向木とは限らない。 コンピュータ上での木の扱いについては、木構造 (データ構造) を参照。 画像:Tree-sample1.png.

新しい!!: ランベルトのW関数と木 (数学) · 続きを見る »

指数関数

実解析における指数関数(しすうかんすう、exponential function)は、冪における指数 を変数として、その定義域を主に実数の全体へ拡張して定義される初等超越関数の一種である。対数関数の逆関数であるため、逆対数 と呼ばれることもある。自然科学において、指数関数は量の増加度に関する数学的な記述を与えるものとして用いられる(や指数関数的減衰の項を参照)。 一般に、 かつ なる定数 に関して、(主に実数の上を亙る)変数 を へ送る関数は、「a を'''底'''とする指数函数」と呼ばれる。「指数関数」との名称は、与えられた底に関して冪指数を変数とする関数であることを示唆するものであり、冪指数を固定して底を独立変数とする冪関数とは対照的である。 しばしば、より狭義の関数を意図して単に「指数関数」と呼ぶこともある。そのような標準的な (the) 指数関数(あるいはより明示的に「自然指数関数」)はネイピア数 を底とする関数 である。これを のようにも書く。この関数は、導関数が自分自身に一致するなど、他の指数関数と比べて著しい性質を持つ。底 を他の底 に取り換えるには自然対数 を用いて、等式 を適用すればよいから、以下本項では主に自然指数関数について記述し、多くの場合「指数関数」は自然指数関数の意味で用いる。.

新しい!!: ランベルトのW関数と指数関数 · 続きを見る »

数学

数学(すうがく、μαθηματικά, mathematica, math)は、量(数)、構造、空間、変化について研究する学問である。数学の範囲と定義については、数学者や哲学者の間で様々な見解がある。.

新しい!!: ランベルトのW関数と数学 · 続きを見る »

ここにリダイレクトされます:

W関数ランベルトのW函数ランベルトのオメガ函数オメガ関数対数積

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »