ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

ラマン分光法

索引 ラマン分光法

物質に振動数\nu_iの単色光を当てて散乱されると、ラマン効果によってストークス線\nu_sと反ストークス線\nu_aのラマン線が現れる。ラマン線の波長や散乱強度を測定して、物質のエネルギー準位を求めたり、物質の同定や定量を行う分光法をラマン分光法(ラマンぶんこうほう)と呼ぶ。ラマン分光の特徴として、赤外分光法では測定が困難な水溶液のスペクトルが容易に測定でき、しかも微小量の試料でよいことから、水溶液の定性、定量分析に適している。また強誘電体の相転移機構、結晶の格子振動、分子振動などの固体の物性研究にも応用されている。.

18 関係: 単色光吸光光度法強誘電体ラマン効果レーザー分光器分光法エネルギー準位光電子増倍管光検出器光源CCDイメージセンサ結晶相転移赤外分光法格子振動振動準位振動数

単色光

単色光(たんしょくこう)とは、1つの振動数または波長のみからなる光の波のことである。赤なら赤一色、緑なら緑一色の振動数の波しか含まず、プリズムなどの分光器によってこれ以上分解されない。 光は波長で特徴づけられる。異なる色の光は異なる波長を持つ。太陽、白色電球のフィラメントなど、通常の光源から放射される光はさまざまな波長の混合である。プリズムなどで分解することによって、さまざまな波長の光がまざっていることが確認できる。.

新しい!!: ラマン分光法と単色光 · 続きを見る »

吸光光度法

吸光光度法(きゅうこうこうどほう)とは、試料溶液に光をあて、その光が試料を通過する際の、対象となる物質による光の吸収の程度、すなわち吸光度を測定することにより、その物質の濃度を定量的に分析する方法である。吸光光度分析法(きゅうこうこうどぶんせきほう)とも呼ばれる。.

新しい!!: ラマン分光法と吸光光度法 · 続きを見る »

強誘電体

強誘電体(きょうゆうでんたい、Ferroelectrics)とは誘電体の一種で、外部に電場がなくても電気双極子が整列しており、かつ双極子の方向が電場によって変化できる物質を指す。また、このように電気双極子モーメントが自発的に整列した状態を強誘電状態、この性質を強誘電性と呼ぶ。 代表的な物質としてチタン酸バリウム BaTiO3 やチタン酸ジルコン酸鉛 Pb(Zr,Ti)O3 があり、FeRAM(強誘電体メモリ)などに使用されている。また強誘電体は全て圧電効果を有するため、アクチュエータなどとして使用されるものも多い。.

新しい!!: ラマン分光法と強誘電体 · 続きを見る »

ラマン効果

ラマン効果(ラマンこうか)またはラマン散乱は、物質に光を入射したとき、散乱された光の中に入射された光の波長と異なる波長の光が含まれる現象。1928年インドの物理学者チャンドラセカール・ラマンとK・S・クリシュナンが発見した。.

新しい!!: ラマン分光法とラマン効果 · 続きを見る »

レーザー

レーザー(赤色、緑色、青色) クラシックコンサートの演出で用いられた緑色レーザー He-Ne レーザー レーザー(laser)とは、光を増幅して放射するレーザー装置を指す。レーザとも呼ばれる。レーザー光は指向性や収束性に優れており、また、発生する電磁波の波長を一定に保つことができる。レーザーの名は、Light Amplification by Stimulated Emission of Radiation(輻射の誘導放出による光増幅)の頭字語(アクロニム)から名付けられた。 レーザーの発明により非線形光学という学問が生まれた。 レーザー光は可視光領域の電磁波であるとは限らない。紫外線やX線などのより短い波長、また赤外線のようなより長い波長のレーザー光を発生させる装置もある。ミリ波より波長の長い電磁波のものはメーザーと呼ぶ。.

新しい!!: ラマン分光法とレーザー · 続きを見る »

分光器

分光器(ぶんこうき、Spectrometer)は、一般には光の電磁波スペクトルを測定する光学機器の総称である。分光器によって得られるスペクトルは、横軸に電磁波の波長又は光のエネルギーに比例した物理量(例えば波数、周波数、電子ボルト)を用い、縦軸には光の強度や強度から導かれる物理量(偏光度)が用いられる。例えば、分光学において、原子や分子の線スペクトルを測定し、その波長と強度を測定するのに用いられる。 分光器という用語は遠赤外からガンマ線・エックス線といった広範囲に渡って、このような目的で用いられる光学機器一般に用いられる。それぞれのエネルギー領域(X線・紫外・可視・近赤外・赤外・遠赤外)においては異なった技術が用いられるので、一つ一つの分光器には、用いることができる特定の領域がある。 光の領域より長波長(マイクロ波、などの電波領域)においてはスペクトラムアナライザが同様の働きをする。.

新しい!!: ラマン分光法と分光器 · 続きを見る »

分光法

プリズムによる光線の波長分割 分光法(ぶんこうほう、spectroscopy)とは、物理的観測量の強度を周波数、エネルギー、時間などの関数として示すことで、対象物の定性・定量あるいは物性を調べる科学的手法である。 spectroscopy の語は、元々は光をプリズムあるいは回折格子でその波長に応じて展開したものをスペクトル (spectrum) と呼んだことに由来する。18世紀から19世紀の物理学において、スペクトルを研究する分野として分光学が確立し、その原理に基づく測定法も分光法 (spectroscopy) と呼ばれた。 もともとは、可視光の放出あるいは吸収を研究する分野であったが、光(可視光)が電磁波の一種であることが判明した19世紀以降は、ラジオ波からガンマ線(γ線)まで、広く電磁波の放出あるいは吸収を測定する方法を分光法と呼ぶようになった。また、光の発生または吸収スペクトルは、物質固有のパターンと物質量に比例したピーク強度を示すために物質の定性あるいは定量に、分析化学から天文学まで広く応用され利用されている。 また光子の吸収または放出は量子力学に基づいて発現し、スペクトルは離散的なエネルギー状態(エネルギー準位)と対応することが広く知られるようになった。そうすると、本来の意味の「スペクトル」とは全く異なる、「質量スペクトル」や「音響スペクトル」など離散的なエネルギー状態を表現した測定チャートもスペクトルとよばれるようになった。また「質量スペクトル」などは物質の定性に使われることから、今日では広義の分光法は「スペクトル」を使用して物性を測定あるいは物質を同定・定量する技法一般の総称となっている。.

新しい!!: ラマン分光法と分光法 · 続きを見る »

エネルギー準位

ネルギー準位(エネルギーじゅんい、)とは、系のエネルギーの測定値としてあり得る値、つまりその系のハミルトニアンの固有値E_1,E_2,\cdotsを並べたものである。 それぞれのエネルギー準位は、量子数や項記号などで区別される.

新しい!!: ラマン分光法とエネルギー準位 · 続きを見る »

光電子増倍管

'''光電子増倍管''' 上方から光子が入り込む '''光電子増倍管の構造''' 左側から入射した単一の光子が光電陰極に衝突して1つの電子に変換される。この電子が最初のダイノードに衝突すると、多数の電子の放出が起こり、複数のダイノードで電子がなだれのように増幅される。 光電子増倍管(こうでんしぞうばいかん、photomultiplier tube、PMT)は、光電効果を利用して光エネルギーを電気エネルギーに変換する光電管を基本に、電流増幅(=電子増倍)機能を付加した高感度光検出器で、フォトマルまたはPMTと略称されることもある。右の写真のように頭部から光が入射する「ヘッドオン(エンドオン)型」と、側方から光が入射する「サイドオン型」とに大別される。 “光電子倍増管”は誤植である。.

新しい!!: ラマン分光法と光電子増倍管 · 続きを見る »

光検出器

光検出器(ひかりけんしゅつき、Photodetector)とは、光などの電磁気的エネルギーを検出するセンサである。光センサ(Photosensor)とも、受光素子ともいう。.

新しい!!: ラマン分光法と光検出器 · 続きを見る »

光源

光源(こうげん)は、自ら光を発する発光体。ただし、広義には他から光を受けた反射や屈折等により光を放つ物体も光源に含む。.

新しい!!: ラマン分光法と光源 · 続きを見る »

CCDイメージセンサ

CCDイメージセンサ (シーシーディーイメージセンサ、CCD image sensor)は固体撮像素子のひとつで、ビデオカメラ、デジタルカメラ、光検出器などに広く使用されている半導体素子である。単にCCDと呼ばれることも多い神崎 洋治 (著), 西井 美鷹 (著) 「体系的に学ぶデジタルカメラのしくみ 第2版」日経BPソフトプレス; 第2版 (2009/1/29) 安藤 幸司 (著)「らくらく図解 CCD/CMOSカメラの原理と実践 」加藤俊夫 半導体入門講座(Semiconductor JapanのWeb上講義)第16回 イメージセンサ http://www.roper.co.jp/Html/roper/tech_note/html/rp00.htmhttp://www7.ocn.ne.jp/~terl/JTTAS/JTTAS-CMOS.htm。.

新しい!!: ラマン分光法とCCDイメージセンサ · 続きを見る »

結晶

結晶(けっしょう、crystal)とは原子や分子が空間的に繰り返しパターンを持って配列しているような物質である。より厳密に言えば離散的な空間並進対称性をもつ理想的な物質のことである。現実の物質の大きさは有限であるため、そのような理想的な物質は厳密には存在し得ないが、物質を構成する繰り返し要素(単位胞)の数が十分大きければ(アボガドロ定数個程度になれば)結晶と見なせるのである。 この原子の並びは、X線程度の波長の光に対して回折格子として働き、X線回折と呼ばれる現象を引き起こす。このため、固体にX線を当てて回折することを確認できれば、それが結晶していると判断できる。現実に存在する結晶には格子欠陥と呼ばれる原子の配列の乱れが存在し、これによって現実の結晶は理想的な性質から外れた状態となる。格子欠陥は、文字通り「欠陥」として物性を損ねる場合もあるが、逆に物質を特徴付けることもあり、例えば、一般的な金属が比較的小さな力で塑性変形する事は、結晶欠陥の存在によって説明される。 準結晶と呼ばれる構造は、並進対称性を欠くにもかかわらず、X線を回折する高度に規則的な構造を持っている。数学的には高次元結晶の空間への射影として記述される。また、液晶は3次元のうちの一つ以上の方向について対称性が失われた状態である。そして、規則正しい構造をもたない物質をアモルファス(非晶質)と呼び、これは結晶の対義語である。.

新しい!!: ラマン分光法と結晶 · 続きを見る »

相転移

転移(そうてんい、英語:phase transition)とは、ある系の相(phase)が別の相へ変わることを指す。しばしば相変態(そうへんたい、英語:phase transformation)とも呼ばれる。熱力学または統計力学において、相はある特徴を持った系の安定な状態の集合として定義される。一般には物質の三態(固体・固相、液体・液相、気体・気相)の相互変化として理解されるが、同相の物質中の物性変化(結晶構造や密度、磁性など)や基底状態の変化に対しても用いられる。相転移に現れる現象も単に「相転移」と呼ぶことがある。.

新しい!!: ラマン分光法と相転移 · 続きを見る »

赤外分光法

赤外分光法(せきがいぶんこうほう、、 略称IR)とは、測定対象の物質に赤外線を照射し、透過(あるいは反射)光を分光することでスペクトルを得て、対象物の特性を知る方法のことをいう。対象物の分子構造や状態を知るために使用される。.

新しい!!: ラマン分光法と赤外分光法 · 続きを見る »

格子振動

格子振動(こうししんどう、英語:lattice vibration)は、結晶中の原子(格子)の振動のこと。振動の駆動力は熱であるが、絶対零度においても、不確定性原理から原子(格子)は振動している(零点振動)。 格子振動は、熱伝導の原因の一つであり、比熱とも関係が深い(→デバイ比熱)、また格子振動によって電子が散乱される(→電気伝導に影響)。 格子振動は、従来型の超伝導と深く関わっている(→BCS理論)。 量子化された格子振動がフォノン。 振動という意味では、単独の原子や、分子、クラスター、表面などでの各原子も振動していて、これらを量子化したものもフォノンである。.

新しい!!: ラマン分光法と格子振動 · 続きを見る »

振動準位

振動準位(しんどうじゅんい)は分子の重心の移動を伴わず、核の相対的な位置の変位にともなう運動を表す量子状態である。分子内において核は、結合する隣接核と結合エネルギーに相当するポテンシャルの井戸を形成し、お互いバネで結ばれた様な状態にあるために、上記のような運動は振動運動によって記述される(詳細は以下の章を参照)。振動準位間の遷移は振動遷移(しんどうせんい)と呼ばれ、主に赤外分光法またはラマン分光法によって観測される。.

新しい!!: ラマン分光法と振動準位 · 続きを見る »

振動数

振動数(しんどうすう、英語:frequency)は、物理学において等速円運動あるいは単振動などの振動運動や波動が単位時間当たりに繰り返される回数である。振動数は、運動の周期の逆数であり、単位はヘルツ(Hz)原康夫 『物理学通論 I』 第I部3章3.4 単振動、学術図書出版、1988年。 「周波数」も英語では frequency(ラテン語で「“frequentia”」から) であり根本的には同じことであるが、「周波数」がおもに電気振動(電磁波や振動電流)のような電気工学・電波工学または音響工学などで用いられる工学用語であるのに対し、力学的運動など自然科学(理学)における物理現象には「振動数」が用いられることが多い。一般的には記号 f を用いて表されるが、光の振動数などはν(ニュー)の記号を用いられることが多い。 等速円運動においては、振動数は「回転速度(回転数)」と同じ数値になるが、単位は異なる。.

新しい!!: ラマン分光法と振動数 · 続きを見る »

ここにリダイレクトされます:

ラマン分光ラマン活性

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »