ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
ダウンロード
ブラウザよりも高速アクセス!
 

ラプラス作用素

索引 ラプラス作用素

数学におけるラプラス作用素(ラプラスさようそ、Laplace operator)あるいはラプラシアン(Laplacian)は、ユークリッド空間上の函数の勾配の発散として与えられる微分作用素である。記号では,, あるいは で表されるのが普通である。函数 の点 におけるラプラシアン は(次元に依存する定数の違いを除いて)点 を中心とする球面を半径が増大するように動かすときの から得られる平均値になっている。直交座標系においては、ラプラシアンは各独立変数に関する函数の二階(非混合)偏導函数の和として与えられ、またほかに円筒座標系や球座標系などの座興系においても有用な表示を持つ。 ラプラス作用素の名称は、天体力学の研究に同作用素を最初に用いたフランス人数学者のピエール=シモン・ド・ラプラス (1749–1827) に因んでいる。同作用素は与えられた重力ポテンシャルに適用すると質量密度の定数倍を与える。現在ではラプラス方程式と呼ばれる方程式 の解は調和函数と呼ばれ、自由空間において可能な重力場を表現するものである。 微分方程式においてラプラス作用素は電気ポテンシャル、重力ポテンシャル、熱や流体の拡散方程式、波の伝搬、量子力学といった、多くの物理現象を記述するのに現れる。ラプラシアンは、函数の勾配フローの流束密度を表す。.

70 関係: 偏微分単位球面天体力学外微分実数値関数微分形式微分作用素微分法微分方程式ミンコフスキー空間ポアンカレ不等式ポアソン方程式ユークリッド空間ラプラス方程式リーマン多様体ヘルムホルツ方程式ヘッセ行列ヒルベルト空間ピエール=シモン・ラプラステンソル場ディリクレエネルギーディリクレ固有値フランス人ファインマン物理学ホッジ双対ダランベール演算子アインシュタインの縮約記法エルミート作用素ガウスの法則クライン–ゴルドン方程式コンパクト作用素スペクトル定理スペクトル理論円柱座標変換勾配 (ベクトル解析)球面座標系球面調和関数熱伝導物理学直交座標系発散 (ベクトル解析)発散定理違いを除いて非ユークリッド幾何学計量テンソル調和関数超球面跡 (線型代数学)関数 (数学)開集合...重力ポテンシャル量子力学自然単位系電位電荷密度Lp空間極座標系極値楕円型作用素正規直交基底波動方程式滑らかな関数流体力学流束斉次函数擬リーマン多様体数学数式拡散拡散方程式 インデックスを展開 (20 もっと) »

偏微分

数学の多変数微分積分学における偏微分(へんびぶん、partial derivative)は、多変数関数に対して一つの変数のみに関する(それ以外の変数は)微分である(全微分では全ての変数を動かしたままにするのと対照的である)。偏微分はベクトル解析や微分幾何学などで用いられる。 函数 の変数 に関する偏微分は など様々な表し方がある。一般に函数の偏微分はもとの函数と同じ引数を持つ函数であり、このことを のように記法に明示的に含めてしまうこともある。偏微分記号 ∂ が数学において用いられた最初の例の一つは、1770年以降マルキ・ド・コンドルセによるものだが、それは偏差分の意味で用いられたものである。現代的な偏微分記法はアドリアン=マリ・ルジャンドル が導入しているが、後が続かなかった。これを1841年に再導入するのがカール・グスタフ・ヤコブ・ヤコビである。 偏微分は方向微分の特別の場合である。また無限次元の場合にこれらはガトー微分に一般化される。.

新しい!!: ラプラス作用素と偏微分 · 続きを見る »

単位球面

様々な単位球面 単位球面(たんいきゅうめん、英: unit sphere)とは、中心点からの距離が1の点の集合である。なお、ここでの距離とは一般的な距離の概念である。一方、単位球(たんいきゅう、英: unit ball)は、中心点からの距離が1以下の点の集合(閉単位球 (closed unit ball))、あるいは1未満の点の集合(開単位球 (open unit ball))である。通常、特に断らない限り、対象とする空間の原点を中心点とする。したがって英語で何の前置きもなく "the" をつけて書かれている場合は、原点を中心点とする単位球面や単位球を指す。 単純に言い換えれば、単位球面は半径が1の球面であり、単位球は半径が1の球である。任意の球面は平行移動と拡大・縮小によって単位球面に変換でき、この点が重要である。したがって、球面の研究は一般に単位球面を研究することに還元できる。.

新しい!!: ラプラス作用素と単位球面 · 続きを見る »

天体力学

天体力学(てんたいりきがく、Celestial mechanics または Astrodynamics)は天文学の一分野であり、ニュートンの運動の法則や万有引力の法則に基づいて天体の運動と力学を研究する学問である。.

新しい!!: ラプラス作用素と天体力学 · 続きを見る »

外微分

可微分多様体上、外微分(がいびぶん、exterior derivative)は関数の微分の概念を高次の微分形式に拡張する。外微分はエリ・カルタンによって最初に現在の形式で記述された。それによってベクトル解析のストークスの定理、ガウスの定理、グリーンの定理の自然な、距離に依存しない一般化ができる。 形式を無限小 次元平行面体を通る流量を測るものと考えれば、その外微分を -平行面体の境界を通る正味の流れを測るものと考えることができる。.

新しい!!: ラプラス作用素と外微分 · 続きを見る »

実数値関数

実数値関数(じっすうちかんすう、real-valued function)、あるいは実関数(じつかんすう、real function)とは、値として実数を与える関数をいう。つまり、定義域のそれぞれの元に対し実数を割り当てる関数のことである。 多くの重要な関数空間が、いくつかの実数値関数からなるものとして定義されている。.

新しい!!: ラプラス作用素と実数値関数 · 続きを見る »

微分形式

数学における微分形式(びぶんけいしき、differential form)とは、微分可能多様体上に定義される共変テンソル場である。微分形式によって多様体上の局所的な座標の取り方によらない関数の微分が表現され、また多様体の内在的な構造のみによる積分は微分形式に対して定義される。微分多様体上の微分形式は共変テンソルとしての座標変換性によって、あるいは接ベクトル空間上の線型形式の連続的な分布として定式化される。また、代数幾何学・数論幾何学や非可換幾何学などさまざまな幾何学の分野でそれぞれ、この類推として得られる微分形式の概念が定式化されている。.

新しい!!: ラプラス作用素と微分形式 · 続きを見る »

微分作用素

数学における微分作用素(differential operator)は、微分演算 の函数として定義された作用素である。ひとまずは表記法の問題として、微分演算を(計算機科学における高階函数と同じ仕方で)入力函数を別の函数を返す抽象的な演算と考えるのが有効である。 本項では、最もよく扱われる種類である線型作用素を主に扱う。しかし、のような非線型微分作用素も存在する。.

新しい!!: ラプラス作用素と微分作用素 · 続きを見る »

微分法

数学における微分法(びぶんほう、differential calculus; 微分学)は微分積分学の分科で、量の変化に注目して研究を行う。微分法は積分法と並び、微分積分学を二分する歴史的な分野である。 微分法における第一の研究対象は函数の微分(微分商、微分係数)、および無限小などの関連概念やその応用である。函数の選択された入力における微分商は入力値の近傍での函数の変化率を記述するものである。微分商を求める過程もまた、微分 (differentiation) と呼ばれる。幾何学的にはグラフ上の一点における微分係数は、それが存在してその点において定義されるならば、その点における函数のグラフの接線の傾きである。一変数の実数値函数に対しては、一点における函数の微分は一般にその点における函数の最適線型近似を定める。 微分法と積分法を繋ぐのが微分積分学の基本定理であり、これは積分が微分の逆を行う過程であることを述べるものである。 微分は量を扱うほとんど全ての分野に応用を持つ。たとえば物理学において、動く物体の変位の時間に関する導函数はその物体の速度であり、速度の時間に関する導函数は加速度である。物体の運動量の導函数はその物体に及ぼされた力に等しい(この微分に関する言及を整理すればニュートンの第二法則に結び付けられる有名な方程式 が導かれる)。化学反応の反応速度も導函数である。オペレーションズ・リサーチにおいて導函数は物資転送や工場設計の最適な応報の決定に用いられる。 導函数は函数の最大値・最小値を求めるのに頻繁に用いられる。導函数を含む方程式は微分方程式と呼ばれ、自然現象の記述において基本的である。微分およびその一般化は数学の多くの分野に現れ、例えば複素解析、函数解析学、微分幾何学、測度論および抽象代数学などを挙げることができる。.

新しい!!: ラプラス作用素と微分法 · 続きを見る »

微分方程式

微分方程式(びぶんほうていしき、differential equation)とは未知関数とその導関数の関係式として書かれている関数方程式である長倉三郎ほか編、『 』、岩波書店、1998年、項目「微分方程式」より。ISBN 4-00-080090-6。 物理法則を記述する基礎方程式は多くが時間微分、空間微分を含む微分方程式であり、物理学からの要請もあり微分方程式の解法には多くの関心が注がれてきた。微分方程式論は解析学の中心的な分野で、フーリエ変換、ラプラス変換等はもともと微分方程式を解くために開発された手法である。また物理学における微分方程式の主要な問題は境界値問題、固有値問題である。 線型微分方程式の研究は歴史が長く。それに比して、非線型微分方程式の研究は歴史が浅く比較的簡単な方程式しか解析できていない。例えばナビエ-ストークス方程式は、流体の支配方程式として重要であるが、その解の存在性は未解決問題でありミレニアム懸賞問題にも選ばれている。 その他有名な微分方程式については:Category:微分方程式を参照。.

新しい!!: ラプラス作用素と微分方程式 · 続きを見る »

ミンコフスキー空間

ミンコフスキー空間(ミンコフスキーくうかん、Minkowski space)とは、非退化で対称な双線型形式を持つ実ベクトル空間である。ドイツの数学者のヘルマン・ミンコフスキーに因んで名付けられている。アルベルト・アインシュタインによる特殊相対性理論を定式化する枠組みとして用いられる。この特定の設定の下では空間に時間を組み合わせた時空を表現するため、物理学の文脈ではミンコフスキー時空とも呼ばれる。.

新しい!!: ラプラス作用素とミンコフスキー空間 · 続きを見る »

ポアンカレ不等式

数学において、ポアンカレ不等式(ポアンカレふとうしき、)は、フランスの数学者アンリ・ポアンカレの名にちなむ、ソボレフ空間の理論に関する一結果である。この不等式では、ある函数の評価を得るために、導函数の評価と定義域の幾何を利用することになる。そのような評価は近年の、変分法における直接解法において非常に重要なものとなっている。非常に密接な結果の一つに、フリードリヒの不等式がある。.

新しい!!: ラプラス作用素とポアンカレ不等式 · 続きを見る »

ポアソン方程式

ポアソン方程式(ポアソンほうていしき、Poisson's equation)は、2階の楕円型偏微分方程式。方程式の名はフランスの数学者・物理学者シメオン・ドニ・ポアソンに因む。.

新しい!!: ラプラス作用素とポアソン方程式 · 続きを見る »

ユークリッド空間

数学におけるユークリッド空間(ユークリッドくうかん、Euclidean space)は、エウクレイデス(ユークリッド)が研究したような幾何学(ユークリッド幾何学)の場となる平面や空間、およびその高次元への一般化である。エウクレイデスが研究した平面や空間はそれぞれ、2次元ユークリッド空間、3次元ユークリッド空間に当たり、これらは通常、ユークリッド平面、ユークリッド空間などとも呼ばれる。「ユークリッド的」という修飾辞は、これらの空間が非ユークリッド幾何やアインシュタインの相対性理論に出てくるような曲がった空間ではないことを示唆している。 古典的なギリシャ数学では、ユークリッド平面や(三次元)ユークリッド空間は所定の公準によって定義され、そこからほかの性質が定理として演繹されるものであった。現代数学では、デカルト座標と解析幾何学の考え方にしたがってユークリッド空間を定義するほうが普通である。そうすれば、幾何学の問題に代数学や解析学の道具を持ち込んで調べることができるようになるし、三次元以上のユークリッド空間への一般化も容易になるといった利点が生まれる。 現代的な観点では、ユークリッド空間は各次元に本質的に一つだけ存在すると考えられる。たとえば一次元なら実数直線、二次元ならデカルト平面、より高次の場合は実数の組を座標にもつ実座標空間である。つまり、ユークリッド空間の「点」は実数からなる組であり、二点間の距離は二点間の距離の公式に従うものとして定まる。n-次元ユークリッド空間は、(標準的なモデルを与えるものという意味で)しばしば とかかれるが、(余分な構造を想起させない)ユークリッド空間固有の性質を備えたものということを強調する意味で と書かれることもある。ふつう、ユークリッド空間といえば有限次元であるものをいう。.

新しい!!: ラプラス作用素とユークリッド空間 · 続きを見る »

ラプラス方程式

ラプラス方程式(ラプラスほうていしき、Laplace's equation)は、2階線型の楕円型偏微分方程式 である。ここで、 はラプラシアン(ラプラス作用素、ラプラスの演算子)である。なお、∇ についてはナブラを参照。ラプラス方程式は、発見者であるピエール=シモン・ラプラスから名づけられた。ラプラス方程式の解は、電磁気学、天文学、流体力学など自然科学の多くの分野で重要である。ラプラス方程式の解についての一般理論はポテンシャル理論という一つの分野となっている。 の場合に標準座標を用いてラプラス方程式を書くと次のようになる: \phi(x,y,z) + \phi(x,y,z) + \phi(x,y,z).

新しい!!: ラプラス作用素とラプラス方程式 · 続きを見る »

リーマン多様体

微分幾何学におけるリーマン多様体(リーマンたようたい、Riemannian manifold)とは、可微分多様体 で 上の各点に基本計量テンソル が与えられているものを言う。ベルンハルト・リーマンによって導入された。.

新しい!!: ラプラス作用素とリーマン多様体 · 続きを見る »

ヘルムホルツ方程式

ヘルムホルツ方程式(ヘルムホルツほうていしき、Helmholtz equation)は、ヘルマン・フォン・ヘルムホルツの名にちなむ方程式で、 という楕円型の偏微分方程式である。 ここで\nabla^2はラプラシアン、k は定数、A.

新しい!!: ラプラス作用素とヘルムホルツ方程式 · 続きを見る »

ヘッセ行列

数学におけるヘッセ行列(ヘッセ-ぎょうれつ、Hessian matrix)は、多変数スカラー値関数の二階偏導関数全体が作る正方行列である。実数値関数の極値判定に用いられる。ヘッセ行列は、ジェームス・ジョセフ・シルベスターが、ドイツの数学者ルートヴィヒ・オットー・ヘッセに由来して名づけた。.

新しい!!: ラプラス作用素とヘッセ行列 · 続きを見る »

ヒルベルト空間

数学におけるヒルベルト空間(ヒルベルトくうかん、Hilbert space)は、ダフィット・ヒルベルトにその名を因む、ユークリッド空間の概念を一般化したものである。これにより、二次元のユークリッド平面や三次元のユークリッド空間における線型代数学や微分積分学の方法論を、任意の有限または無限次元の空間へ拡張して持ち込むことができる。ヒルベルト空間は、内積の構造を備えた抽象ベクトル空間(内積空間)になっており、そこでは角度や長さを測るということが可能である。ヒルベルト空間は、さらに完備距離空間の構造を備えている(極限が十分に存在することが保証されている)ので、その中で微分積分学がきちんと展開できる。 ヒルベルト空間は、典型的には無限次元の関数空間として、数学、物理学、工学などの各所に自然に現れる。そういった意味でのヒルベルト空間の研究は、20世紀冒頭10年の間にヒルベルト、シュミット、リースらによって始められた。ヒルベルト空間の概念は、偏微分方程式論、量子力学、フーリエ解析(信号処理や熱伝導などへの応用も含む)、熱力学の研究の数学的基礎を成すエルゴード理論などの理論において欠くべからざる道具になっている。これら種々の応用の多くの根底にある抽象概念を「ヒルベルト空間」と名付けたのは、フォン・ノイマンである。ヒルベルト空間を用いる方法の成功は、関数解析学の実りある時代のさきがけとなった。古典的なユークリッド空間はさておき、ヒルベルト空間の例としては、自乗可積分関数の空間 、自乗総和可能数列の空間 、超関数からなるソボレフ空間 、正則関数の成すハーディ空間 などが挙げられる。 ヒルベルト空間論の多くの場面で、幾何学的直観は重要である。例えば、三平方の定理や中線定理(の厳密な類似対応物)は、ヒルベルト空間においても成り立つ。より深いところでは、部分空間への直交射影(例えば、三角形に対してその「高さを潰す」操作の類似対応物)は、ヒルベルト空間論における最適化問題やその周辺で重要である。ヒルベルト空間の各元は、平面上の点がそのデカルト座標(直交座標)によって特定できるのと同様に、座標軸の集合(正規直交基底)に関する座標によって一意的に特定することができる。このことは、座標軸の集合が可算無限であるときには、ヒルベルト空間を自乗総和可能な無限列の集合と看做すことも有用であることを意味する。ヒルベルト空間上の線型作用素は、ほぼ具体的な対象として扱うことができる。条件がよければ、空間を互いに直交するいくつかの異なる要素に分解してやると、線型作用素はそれぞれの要素の上では単に拡大縮小するだけの変換になる(これはまさに線型作用素のスペクトルを調べるということである)。.

新しい!!: ラプラス作用素とヒルベルト空間 · 続きを見る »

ピエール=シモン・ラプラス

ピエール=シモン・ラプラス(Pierre-Simon Laplace, 1749年3月23日 - 1827年3月5日)は、フランスの数学者、物理学者、天文学者。「天体力学概論」(traité intitulé Mécanique Céleste)と「確率論の解析理論」という名著を残した。 1789年にロンドン王立協会フェローに選出された。.

新しい!!: ラプラス作用素とピエール=シモン・ラプラス · 続きを見る »

テンソル場

数学、物理学および工学におけるテンソル場(テンソルば、tensor field)は、数学的な空間(典型的にはユークリッド空間や多様体)の各点にテンソルを割り当てるものである。テンソル場は微分幾何学、代数幾何学、一般相対論において用いられ、物質の応力および歪みの解析やその他物理科学および工学における様々な応用に供される。テンソルがスカラー(長さのような値を表す数値)やベクトル(空間内の幾何学的な矢印)の一般化であるのと同様に、テンソル場はスカラー場およびベクトル場(それぞれ空間の各点にスカラーおよびベクトルを割り当てる)の一般化になっている。 一口に「テンソル」と呼ばれている概念でも、実際の数学的構造は「テンソル場」であるという場合も多い。例えばリーマン曲率テンソルなど。.

新しい!!: ラプラス作用素とテンソル場 · 続きを見る »

ディリクレエネルギー

数学におけるディリクレエネルギー()は、函数がどのように変化するかを測るための概念である。より抽象的に、そのようなエネルギーはソボレフ空間 上の二次汎函数である。ディリクレエネルギーはラプラス方程式と密接に関連するもので、ドイツの数学者ペーター・グスタフ・ディリクレの名にちなむ。.

新しい!!: ラプラス作用素とディリクレエネルギー · 続きを見る »

ディリクレ固有値

数学において、ディリクレ固有値(ディリクレこゆうち、)は、ある与えられた形の理想的な太鼓の基本固有振動である。ここでの問題は、、である。すなわち、ディリクレ固有値が与えられたとき、その太鼓の形のどのような特徴を推測することが出来るか、ということである。ここでの「太鼓」とは、境界が固定された平面領域として表される、伸縮自在の膜 Ω のことをいう。ディリクレ固有値は、未知函数 u ≠ 0 と固有値 λ に対して次の問題を解くことで得られる。 ここで Δ は、xy-座標において次で与えられるラプラシアンである。 境界値問題 は、もちろんヘルムホルツ方程式に対するディリクレ問題であり、したがって λ は Ω に対するディリクレ固有値として知られる。ディリクレ固有値は、対応するノイマン問題に対する固有値であるノイマン固有値とは比較される。() に現れるラプラス作用素 Δ は、ディリクレ境界条件を満たす函数 u に対してのみ考えられるとき、しばしばディリクレラプラシアンと呼ばれる。より一般に、においては、() は境界を持つ多様体 Ω 上で考えられる。このとき Δ は、ディリクレ境界条件に対して、となる。 コンパクト自己共役作用素に対するスペクトル定理を用いることで、固有空間が有限次元であり、ディリクレ固有値 λ が実かつ正であり、集積点を持たないことが示される。したがって、それらを大きさの順番に並べることが出来る: ここで各固有値は、その幾何学的重複度にしたがって数えられる。その固有空間は、自乗可積分函数の空間において直交し、滑らかな函数からなる。実際、ディリクレラプラシアンは、ソボレフ空間 H^2_0(\Omega) から L^2(\Omega) への作用素への連続的な拡張を持つ。この作用素は可逆であり、その逆はコンパクトかつ自己共役であるため、通常のスペクトル定理は Δ の固有空間とその固有値の逆数 1/λ を得るために利用することができる。 ディリクレ固有値の研究における基本的な道具の一つに、次の最大値最小値原理がある:第一固有値 λ1 はディリクレエネルギーを最小化する。すなわち は、Ω において恒等的にゼロとはならないコンパクトな台を持つすべての u に関する下限である。この下限はゼロでない u\in H_0^1(\Omega) に関する下限となる。さらにラックス=ミルグラムの定理と同様の変分法の結果を使うことで、H_0^1(\Omega) 内に最小点が存在することを証明できる。より一般に が成り立つ。ここで上限はすべての (k−1)-タプル \phi_1,\dots,\phi_\in H^1_0(\Omega) について取られ、下限は φi に直交するすべての u について取られる。.

新しい!!: ラプラス作用素とディリクレ固有値 · 続きを見る »

フランス人

フランス人(フランスじん、peuple français)は、フランス(フランス共和国、フランス王国、フランス帝国など)の国籍を有する人々を指し、2004年時点で約6200万人を数える。.

新しい!!: ラプラス作用素とフランス人 · 続きを見る »

ファインマン物理学

『ファインマン物理学』(ふぁいんまんぶつりがく、The Feynman Lectures on Physics)は1963年、1964年、1965年に出版されたリチャード・P・ファインマンとロバート・B・レイトン、マシュー・サンズ(en)による3巻構成の物理学の教科書である。ファインマンが1961年から1963年にかけてカリフォルニア工科大学(California Institute of Technology, 略称: Caltech, カルテック)で学部1、2年生を対象に行った講義が基になっている。2013年からはカルテックのサイトでも無料で公開されている。日本語訳は1967年に岩波書店から刊行された。.

新しい!!: ラプラス作用素とファインマン物理学 · 続きを見る »

ホッジ双対

数学において、ホッジスター作用素(ホッジスターさようそ、Hodge star operator)、もしくは、ホッジ双対(ホッジそうつい、Hodge dual)は、(Hodge)により導入された線型写像である。ホッジ双対は、有限次元の向き付けられた内積空間の外積代数の上で定義される -ベクトルのなす空間から-ベクトルのなす空間への線形同型である。 他のベクトル空間に対する多くの構成と同様に、ホッジスター作用素は多様体の上のベクトルバンドルへの作用に拡張することができる。 たとえば余接束の外積代数(すなわち、多様体上の微分形式の空間)に対して、ホッジスター作用素を用いてラプラス=ド・ラーム作用素を定義し、コンパクトなリーマン多様体上の微分形式のホッジ分解を導くことができる。.

新しい!!: ラプラス作用素とホッジ双対 · 続きを見る »

ダランベール演算子

ダランベール演算子 (ダランベールえんざんし、d'Alembert operator) とは、物理学の特殊相対性理論、電磁気学、波動論で用いられる演算子(作用素)であり、ラプラス演算子をミンコフスキー空間に適用したものである。ダランベール作用素、ダランベルシアン (d'Alembertian) あるいは wave operator(波動演算子)と呼ばれることもあり、一般に四角い箱のような記号 で表される。この名称はフランスの数学者・物理学者ジャン・ル・ロン・ダランベール (Jean Le Rond d'Alembert) の名に由来する。.

新しい!!: ラプラス作用素とダランベール演算子 · 続きを見る »

アインシュタインの縮約記法

アインシュタインの縮約記法(アインシュタインのしゅくやくきほう、Einstein summation convention)またはアインシュタインの記法(アインシュタインのきほう、Einstein notation)は、アインシュタインが 1916 年に用いた添字 の和の記法である 。アインシュタインの規約(アインシュタインのきやく、Einstein convention)とも呼ばれる。 同じ項で添字が重なる場合は、その添字について和を取る、というルールである。この重なる指標を擬標(またはダミーの添字、)、重ならない指標を自由標(またはフリーの添字、)と呼ぶ。 このルールは一般相対性理論、量子力学、連続体力学、有限要素法などで重宝する。 アインシュタインはこの記法を自分の「数学における最大の発見」と(冗談めかして)言ったという。.

新しい!!: ラプラス作用素とアインシュタインの縮約記法 · 続きを見る »

エルミート作用素

ルミート作用素(エルミートさようそ、Hermitian operator, Hermitian)または自己共役作用素(じこきょうやくさようそ、self adjoint operator)は、複素ヒルベルト空間上の線形作用素で、その共役作用素が自分自身に一致するようなもののことである。物理学ではエルミート演算子とも呼ばれる。エルミートという名称は、フランス人数学者シャルル・エルミートに因む。.

新しい!!: ラプラス作用素とエルミート作用素 · 続きを見る »

ガウスの法則

ウスの法則とは(ガウスのほうそく、)とは、カール・フリードリヒ・ガウスが1835年に発見し、1867年に発表した電荷と電場の関係をあらわす方程式である。この式はジェームズ・クラーク・マクスウェルにより数学的に整備され、マクスウェルの方程式の1つとなった。電気におけるアンペールの法則とみなすこともできる。 ちなみに、単位のガウスは磁束密度の単位であり、電場を扱うこの法則とは全く関係がない。.

新しい!!: ラプラス作用素とガウスの法則 · 続きを見る »

クライン–ゴルドン方程式

ライン–ゴルドン方程式 (クライン–ゴルドンほうていしき、Klein–Gordon equation) は、スピン0の相対論的な自由粒子を表す場(クライン–ゴルドン場)が満たす方程式である。スウェーデン人物理学者オスカル・クラインとドイツ人物理学者ヴァルター・ゴルドンにちなんで名づけられた。.

新しい!!: ラプラス作用素とクライン–ゴルドン方程式 · 続きを見る »

コンパクト作用素

数学の一分野函数解析学においてコンパクト作用素(コンパクトさようそ、compact operator)とは、バナッハ空間 X から別のバナッハ空間 Y への線型作用素 L であって、X の任意の有界集合を Y の相対コンパクト集合へ写すようなもののことを言う。このような作用素は有界作用素、つまり連続写像でなければならない。 有界作用素 L で階数が有限なものは全てコンパクト作用素である。実際、無限次元空間上のコンパクト作用素のクラスは階数有限な作用素のクラスの自然な一般化である。X.

新しい!!: ラプラス作用素とコンパクト作用素 · 続きを見る »

スペクトル定理

数学の、特に線型代数学や函数解析学の分野において、スペクトル定理(スペクトルていり、)とは、線型作用素あるいは行列に関する多くの結果である。大雑把に言うと、スペクトル定理は、作用素あるいは行列が対角化可能(すなわち、ある基底において対角行列として表現可能)となる条件を与えるものである。この対角化の概念は、有限次元空間上の作用素については比較的直ちに従うものであるが、無限次元空間上の作用素についてはいくつかの修正が必要となる。一般にスペクトル定理は、乗算作用素によって出来る限り簡単にモデル化される線型作用素のクラスを明らかにするものである。より抽象的に、スペクトル定理は可換なC*-環に関して述べたものである。その歴史的観点については、スペクトル理論を参照されたい。 スペクトル定理が適用できる作用素の例として、自己共役作用素や、より一般のヒルベルト空間上の正規作用素などがある。 スペクトル定理はまた、スペクトル分解(spectral decomposition)や固有値分解(eigenvalue decomposition)、(eigendecomposition)と呼ばれるような、作用素の定義されるベクトル空間のを与えるものである。 オーギュスタン=ルイ・コーシーは、自己随伴行列に関するスペクトル定理を証明した。すなわち、すべての実対称行列は対角化可能であることを証明した。その定理のジョン・フォン・ノイマンによる一般化は、今日の作用素論におけるもっとも重要な結果となっている。またコーシーは、行列式に関する系統的な理論を構築した第一人者である。 この記事では主に、ヒルベルト空間上の自己共役作用素に関する、最も簡単な種類のスペクトル定理について述べる。しかし、上記のように、スペクトル定理はヒルベルト空間上の正規作用素についても成立するものである。.

新しい!!: ラプラス作用素とスペクトル定理 · 続きを見る »

スペクトル理論

数学において、スペクトル理論(スペクトルりろん、spectral theory)とは、正方行列の固有ベクトル、固有値に関する理論の無限次元への拡張を指す。 スペクトル理論の名称は、ダフィット・ヒルベルトが自身のヒルベルト空間論の定式化に際して、“無限個の変数を持つ二次形式”に対応する固有値をスペクトルと呼んだことに由来する。スペクトル定理は、楕円体の主軸に関する定理の無限次元への拡張として考えられた。量子力学において、離散スペクトルの特徴をスペクトル理論を用いて説明できることが思いがけず知られるようになるが、それは後の時代の話である。.

新しい!!: ラプラス作用素とスペクトル理論 · 続きを見る »

円柱座標変換

円柱座標変換(えんちゅうざひょうへんかん)とは、3次元ユークリッド空間 (数ベクトル空間)の、非線形な座標変換の一つである。円柱座標変換の逆写像厳密には、円柱座標系は大域的には逆写像を持たない。ただ、特異点上を除き、その近傍においては、局所的な逆写像を持つ(円柱座標系と円柱座標変換、逆写像定理の項目を参照のこと)。のことを、円柱座標系という。円柱座標系は、極座標系の一種である極座標系は、直交曲線座標系の一種であるから、円柱座標系は直交曲線座標系であり、直交曲線座標系は直交座標系の一種なので、円柱座標系は直交座標系の一種である。。 円柱座標変換は、電子レンズなど、軸対称な系の計算によく用いられる軸対称でない系に対しても適用可能である。また、本稿でも、特に注意をしない場合には軸対称でない系を除外していない。しかし、軸対称でない系に対してはあまり威力のない手法である。。.

新しい!!: ラプラス作用素と円柱座標変換 · 続きを見る »

勾配 (ベクトル解析)

ベクトル解析におけるスカラー場の勾配(こうばい、gradient; グラディエント)は、各点においてそのスカラー場の変化率が最大となる方向への変化率の値を大きさにもつベクトルを対応させるベクトル場である。簡単に言えば、任意の量の空間における変位を、傾きとして表現(例えば図示)することができるが、そこで勾配はこの傾きの向きや傾きのきつさを表している。 ユークリッド空間上の関数の勾配を、別なユークリッド空間に値を持つ写像に対して一般化したものは、ヤコビ行列で与えられる。さらに一般化して、バナッハ空間から別のバナッハ空間への写像の勾配をフレシェ微分を通じて定義することができる。.

新しい!!: ラプラス作用素と勾配 (ベクトル解析) · 続きを見る »

球面座標系

球面座標系(きゅうめんざひょうけい、)とは、3次元ユークリッド空間に定まる座標系の一つで、一つの動径座標と二つの角度座標で表される極座標系である。第一の角度はある軸(通常は -軸を選ぶ)と動径がなす角度で、第二の角度は、その軸に垂直な平面にある別の軸(通常は -軸を選ぶ)とこの平面への動径の射影がなす角度である。通常は動径座標に記号 を用い、第一の角度座標には を、第二の角度座標には を用いて表される。動径座標は で与えられる。第二の角度座標を で与えられる。ここで は符号関数 である。-軸上 において特異性があり、分母がゼロとなるため が定まらない。さらに原点 においては も定まらない。 球面座標 から直交直線座標 への変換の式を微分すれば が得られて、ヤコビ行列とヤコビ行列式は となる。従って球面座標で表した体積素は となる。また、線素の二乗は となる。交叉項が現れないため、球座標は各点において動径が増減する方向と二つの角度が増減する方向がそれぞれに直交している直交座標系である。.

新しい!!: ラプラス作用素と球面座標系 · 続きを見る »

球面調和関数

球面調和関数(きゅうめんちょうわかんすう、)あるいは球関数(きゅうかんすう、)は以下のいずれかを意味する関数である:.

新しい!!: ラプラス作用素と球面調和関数 · 続きを見る »

熱伝導

熱伝導(ねつでんどう、英語: thermal conduction)は、物質の移動を伴わずに高温側から低温側へ熱が伝わる移動現象のひとつである。固体中では、熱伝導は原子の振動及びが担う。特に、金属においては、.

新しい!!: ラプラス作用素と熱伝導 · 続きを見る »

物理学

物理学(ぶつりがく, )は、自然科学の一分野である。自然界に見られる現象には、人間の恣意的な解釈に依らない普遍的な法則があると考え、自然界の現象とその性質を、物質とその間に働く相互作用によって理解すること(力学的理解)、および物質をより基本的な要素に還元して理解すること(原子論的理解)を目的とする。化学、生物学、地学などほかの自然科学に比べ数学との親和性が非常に強い。 古代ギリシアの自然学 にその源があり, という言葉も、元々は自然についての一般的な知識の追求を意味しており、天体現象から生物現象までを含む幅広い概念だった。現在の物理現象のみを追求する として自然哲学から独立した意味を持つようになったのは19世紀からである。 物理学の古典的な研究分野は、物体の運動、光と色彩、音響、電気と磁気、熱、波動、天体の諸現象(物理現象)である。.

新しい!!: ラプラス作用素と物理学 · 続きを見る »

直交座標系

数学における直交座標系(ちょっこうざひょうけい、, )とは、互いに直交している座標軸を指定することによって定まる座標系のことである。平面上の直交座標系ではそれぞれの点に対して一意に定まる二つの実数の組によって点の位置が指定される。同様にして空間上の直交座標系では三つの実数の組によって座標が与えられる。 1637年に発表された『方法序説』において平面上の座標の概念を確立したルネ・デカルトの名を採ってデカルト座標系 (Cartesian coordinate system) とも呼ぶ。.

新しい!!: ラプラス作用素と直交座標系 · 続きを見る »

発散 (ベクトル解析)

ベクトル解析における発散(はっさん、divergence)は、各点においてベクトル場のの大きさを符号付きスカラーの形で測るベクトル作用素である。より技術的に言えば、発散が表すのは与えられた点の無限小近傍領域から出る流束の体積密度である。例えば、空気を熱したり冷ましたりするものとして考えると、各点において空気の移動速度を与えるベクトル場を例にとることができる。領域内で空気を熱すれば空気は全方向へ膨張していくから、速度場は領域の外側をさしていることになり、従って速度場の発散はこの領域で正の値をとり、この領域は流入(あるいは湧き出し、湧出、source)域であることが示される。空気を冷まして収縮させるなら、発散の値は負となり、この領域は流出(あるいは沈み込み、排出、sink)域と呼ばれる。.

新しい!!: ラプラス作用素と発散 (ベクトル解析) · 続きを見る »

発散定理

散定理(はっさんていり、divergence theorem)は、ベクトル場の発散を、その場によって定義される流れの面積分に結び付けるものである。ガウスの定理(Gauss' theorem)とも呼ばれる。1762年にラグランジュによって発見され、その後ガウス(1813年)、グリーン(1825年)、オストログラツキー(1831年)によってそれぞれ独立に再発見された 。オストログラツキーはまたこの定理に最初の証明を与えた人物でもある。.

新しい!!: ラプラス作用素と発散定理 · 続きを見る »

違いを除いて

数学の文脈における「—(の違い)を除いて…」 (… "up to" &mdash) という語句は、「— に関する差異を無視する」ことを意味する専門用語である。この言い回しの意味するところは、「適当な目的のもとでは、あるひとつの同値類に属する元全体を、何か単一の実体を表すものとみなせる」ということである。"—" の部分には、何らかの性質や、同じ同値類に属する元(つまり一方は他方に同値となるような元)の間の変換の過程を記述する内容が入る。 たとえば不定積分を計算するとき、その結果は「定数項の違いを除いて」 f(x) であるというように言うことができる。その意味は、f(x) 以外に不定積分 g(x) があったとしても g(x).

新しい!!: ラプラス作用素と違いを除いて · 続きを見る »

非ユークリッド幾何学

非ユークリッド幾何学(ひユークリッドきかがく、non-Euclidean geometry)は、ユークリッド幾何学の平行線公準が成り立たないとして成立する幾何学の総称。非ユークリッドな幾何学の公理系を満たすモデルは様々に構成されるが、計量をもつ幾何学モデルの曲率を一つの目安としたときの両極端の場合として、至る所で負の曲率をもつ双曲幾何学と至る所で正の曲率を持つ楕円幾何学(殊に球面幾何学)が知られている。 ユークリッドの幾何学は、至る所曲率0の世界の幾何であることから、双曲・楕円に対して放物幾何学と呼ぶことがある。大雑把に言えば「平面上の幾何学」であるユークリッド幾何学に対して、「曲面上の幾何学」が非ユークリッド幾何学である。.

新しい!!: ラプラス作用素と非ユークリッド幾何学 · 続きを見る »

計量テンソル

計量テンソル(けいりょうテンソル、metric tensor)は、リーマン幾何学において、空間内の距離と角度を定義する、階数()が2のテンソルである。多様体が与えられたとき、多様体の接空間で、滑らかに変化する非負の2次関数を選ぶことができる場合、その多様体をリーマン多様体と呼ぶ。そのため、計量テンソルは、リーマン計量()と呼ばれることもある。 ひとたび、ある座標系 が選ばれると、計量テンソルは行列形式で定義される。通常、 として表記され、各成分は と表される。以下では、添え字の和に関してアインシュタインの縮約記法を用いる。 点 から までの曲線の長さは、 をパラメータとして、 と定義される。2つの接ベクトル()U.

新しい!!: ラプラス作用素と計量テンソル · 続きを見る »

調和関数

帯上で定義された調和関数 数学における調和関数(ちょうわかんすう、harmonic function)は、ラプラス方程式を満足する二回連続的微分可能な関数のことをいう。 調和関数に関する重要な問題はディリクレ問題である。ディリクレ問題の解決方法にはいくつかあるが、その中でも重要な一般的方法はディリクレの原理である。 20世紀には、、、小平邦彦らが調和積分論の発展の中心的な役割を果たした。.

新しい!!: ラプラス作用素と調和関数 · 続きを見る »

超球面

数学において、 次元球面(-じげんきゅうめん、n-sphere, n 球面)は普通の球面の ''n'' 次元空間への一般化である。任意の自然数 n に対して、半径 r の n 次元球面は中心点から距離 r にある (n + 1) 次元ユークリッド空間における点の集合として定義される。ここで半径 r は任意の正の実数でよい。したがって、原点を中心とする n 次元球面は によって定義される。これは (n + 1) 次元ユークリッド空間内に存在する n 次元多様体である。 特に:.

新しい!!: ラプラス作用素と超球面 · 続きを見る »

跡 (線型代数学)

数学、特に線型代数学における行列の跡(せき、trace; トレース、Spur; シュプール)あるいは対角和(たいかくわ)は行列の主対角成分の総和である。それは基底変換に関して不変であり、また固有値の総和(固有値和)に等しい。即ち、行列の跡は行列の相似を除いて定まり、したがって一般に行列に対応する線型写像の跡として定義することができる。 行列の跡は、正方行列に対してのみ定義されることに注意せよ。この語は(この同じ数学的対象を意味する)ドイツ語のSpurからの翻訳借用である。.

新しい!!: ラプラス作用素と跡 (線型代数学) · 続きを見る »

関数 (数学)

数学における関数(かんすう、、、、、函数とも)とは、かつては、ある変数に依存して決まる値あるいはその対応を表す式の事であった。この言葉はライプニッツによって導入された。その後定義が一般化されて行き、現代的には数の集合に値をとる写像の一種であると理解される。.

新しい!!: ラプラス作用素と関数 (数学) · 続きを見る »

開集合

開集合(かいしゅうごう、open set)は、実数直線の開区間の考えを一般化した抽象的な概念である。最も簡単な例は距離空間におけるものであり、開集合をその任意の点に対しそれを(元として)含む開球を(部分集合として)含むような集合(あるいは同じことだが境界点を全く含まないような集合)として定義できる。例えば、数直線上で不等式 2 < x < 5 によって定まる開区間は開集合である。この場合の境界とは数直線上の点 2 と 5 であって、不等式を 2 ≤ x ≤ 5 としたものや 2 ≤ x < 5 としたものは、境界を含んでいるので開集合ではない。また、 2 < x < 5 によって定まる開区間内のどの点に対しても、その点の開近傍として十分小さなものを選べば、それがもとの開区間に含まれるようにできる。 しかしながら、開集合は一般にはとても抽象的になりうる(詳しくは位相空間の項を参照されたい)。開集合とは全体集合を形成する基本要素達のようなものであり、位相の特殊な定義の仕方によっては、例えば実数において(普通の意味での)境界上を含む集合が“開集合”と呼ばれることになる場合もある。極端な例では、すべての部分集合を開集合としたり(離散位相)、開集合は空集合と空間全体だけとしたり(密着位相)することもできる。.

新しい!!: ラプラス作用素と開集合 · 続きを見る »

重力ポテンシャル

重力ポテンシャル()とは、ニュートン力学において、重力による質量あたりの位置エネルギーである。すなわち、空間内の位置へ質点を動かす際に重力が質点に行う質量あたりの仕事の符号を変えたものに等しい。 静電ポテンシャルとの類推で電荷の役割を質量が果たす。通常は無限の遠方を重力ポテンシャルの基準点(重力ポテンシャルが0となる点)として選び、有限の距離では重力ポテンシャルは常に負値をとる。 数学では、重力ポテンシャルはとも呼ばれ、ポテンシャル論の研究において基本的である。.

新しい!!: ラプラス作用素と重力ポテンシャル · 続きを見る »

量子力学

量子力学(りょうしりきがく、quantum mechanics)は、一般相対性理論と同じく現代物理学の根幹を成す理論として知られ、主として分子や原子、あるいはそれを構成する電子など、微視的な物理現象を記述する力学である。 量子力学自身は前述のミクロな系における力学を記述する理論だが、取り扱う系をそうしたミクロな系の集まりとして解析することによって、ニュートン力学に代表される古典論では説明が困難であった巨視的な現象についても記述することができる。たとえば量子統計力学はそのような応用例の一つである。従って、生物や宇宙のようなあらゆる自然現象もその記述の対象となり得る。 代表的な量子力学の理論として、エルヴィン・シュレーディンガーによって創始された、シュレーディンガー方程式を基礎に置く波動力学と、ヴェルナー・ハイゼンベルク、マックス・ボルン、パスクアル・ヨルダンらによって構成された、ハイゼンベルクの運動方程式を基礎に置く行列力学がある。ただしこの二つは数学的に等価である。 基礎科学として重要で、現代の様々な科学や技術に必須な分野である。 たとえば科学分野について、太陽表面の黒点が磁石になっている現象は、量子力学によって初めて解明された。 技術分野について、半導体を利用する電子機器の設計など、微細な領域に関するテクノロジーのほとんどは量子力学を基礎として成り立っている。そのため量子力学の適用範囲の広さと現代生活への影響の大きさは非常に大きなものとなっている。一例として、パソコンや携帯電話、レーザーの発振器などは量子力学の応用で開発されている。工学において、電子工学や超伝導は量子力学を基礎として展開している。.

新しい!!: ラプラス作用素と量子力学 · 続きを見る »

自然単位系

自然単位系(しぜんたんいけい)とは、普遍的な物理定数のみに基づいて定義される単位系である。自然単位系では、特定の物理定数を1とおき、その物理定数を基本単位として他の単位を組み立て、単位系が構築されている。どの物理定数を選択するかによって各種の自然単位系が存在する。代表的なものがマックス・プランクによって提唱されたプランク単位系で、。.

新しい!!: ラプラス作用素と自然単位系 · 続きを見る »

電位

電位(でんい、electric potential)は電気的なポテンシャルエネルギーに係る概念であり、 電磁気学とその応用分野である電気工学で用いられる。 点P における電位と点Q における電位の差は、P とQ の電位差 と呼ばれる。 電気工学では電位差は電圧 とも呼ばれる。 電位の単位にはV (ボルト)が用いられる。.

新しい!!: ラプラス作用素と電位 · 続きを見る »

電荷密度

電荷密度(でんかみつど、charge density)は、単位体積当たりの電荷の分布量(体積密度)。電荷を担うものとしては電子や原子核、イオンのような粒子(素粒子や正孔などを含む)であったり、仮想的に一様に分布する電荷のような場合(→参照:ジェリウムモデル)もある。 金属や半導体では、電荷密度は0と近似できる。 実験的にはX線回折実験による構造解析から得られた結果を最大エントロピー法などを使って実空間での電子の電荷分布(→電子密度に相当)が求まる。また中性子回折実験の結果から同様な手法により原子核の密度が求まる。.

新しい!!: ラプラス作用素と電荷密度 · 続きを見る »

Lp空間

数学の分野における Lp 空間(エルピーくうかん、Lp space)とは、有限次元ベクトル空間に対する p-ノルムの自然な一般化を用いることで定義される関数空間である。アンリ・ルベーグの名にちなんでルベーグ空間としばしば呼ばれる が、 によると初めて導入されたのは とされている。Lp 空間は関数解析学におけるバナッハ空間や、線型位相空間の重要なクラスを形成する。物理学や統計学、金融、工学など様々な分野で応用されている。.

新しい!!: ラプラス作用素とLp空間 · 続きを見る »

極座標系

極座標系(きょくざひょうけい、polar coordinates system)とは、n 次元ユークリッド空間 R 上で定義され、1 個の動径 r と n − 1 個の偏角 θ, …, θ からなる座標系のことである。点 S(0, 0, x, …,x) を除く直交座標は、局所的に一意的な極座標に座標変換できるが、S においてはヤコビアン が 0 となってしまうから、一意的な極座標表現は不可能である。それは、S に於ける偏角が定義できないことからも明らかである。.

新しい!!: ラプラス作用素と極座標系 · 続きを見る »

極値

数学において、関数の局所的な(つまり、ある点の近傍における)最大値または最小値のことをそれぞれ極大値(きょくだいち、maximal, local maximum)、極小値(きょくしょうち、minimal, local minimum)といい、これらを併せて極値(きょくち)と総称する。 極値は局所的な概念であるため、ある点で極値をとってもその点が全域的な最大・最小値を取るとは限らないが、極値自体が適当な区間における最大・最小値の候補と考えることができるため、関数の振る舞いを知る上で重要である。極値を調べる方法としては、微分を利用することで極値をとるための必要条件を求めることができる。.

新しい!!: ラプラス作用素と極値 · 続きを見る »

楕円型作用素

数学の偏微分方程式の理論において、楕円型作用素(だえんがたさようそ、)とは、ラプラス作用素を一般化した微分作用素のことを言う。最高次の微分の係数が正であるという条件によって定義され、このことは主表象が可逆であるか、または同値であるが、実の特性方向が存在しないという重要な性質を意味する。 楕円型作用素は、ポテンシャル論において典型的に現れるものであり、静電気学や連続体力学において頻繁に用いられる。楕円型正則性は、解が(作用素の係数が滑らかであれば)滑らかな函数になる傾向にあることを意味する。双曲型偏微分方程式や放物型偏微分方程式の定常解は一般に楕円型方程式によって解かれる。.

新しい!!: ラプラス作用素と楕円型作用素 · 続きを見る »

正規直交基底

数学において、特に線型代数学において、有限次元内積空間 V の正規直交基底(せいきちょっこうきてい、orthonormal basis)とは、正規直交系を成すような V の基底をいう。例えば、ユークリッド空間 Rn の標準基底は、ベクトルの点乗積を内積としての正規直交基底である。また、標準基底の回転や鏡映(一般に任意の直交変換)による像もまた正規直交基底であり、なおかつ Rn の任意の正規直交基底はこの方法で得られる。 一般の内積空間 V に対して、その正規直交基底は V 上の正規化された直交座標系を定めるのに利用できる。そのような座標系のもとでは内積をベクトルの点乗積と同一視することができるから、正規直交基底の存在については(一般の有限次元内積空間を調べるのではなくて)点乗積を伴う Rn の場合を調べれば十分である。従って任意の有限次元内積空間は正規直交基底を持つが、実際にこれを得るには任意の基底にグラム・シュミットの正規直交化法を用いればよい。 函数解析学では、正規直交基底の概念を一般の(必ずしも有限次元でない)内積空間(前ヒルベルト空間)に対しても定義することができる。前ヒルベルト空間 H が与えられたとき、H の正規直交基底とは、H の正規直交系であって、H を位相的に生成するものをいう。即ち、H の各ベクトルが、基底に属するベクトルの''無限''線型結合として一意に表される。この場合の正規直交基底を、H のヒルベルト基底と呼ぶこともある。この意味での正規直交基底は、無限線型結合を用いることから、一般にはベクトル空間としての基底(ハメル基底)でないことに注意すべきである。よりはっきり述べれば、正規直交基底によって張られる部分空間(正規直交基底に属するベクトルの有限線型結合全体)は全空間 H において稠密ではあるが、全空間 H に一致するとは限らない。.

新しい!!: ラプラス作用素と正規直交基底 · 続きを見る »

波動方程式

波動方程式(はどうほうていしき、wave equation)とは、 で表される定数係数二階線型偏微分方程式の事を言う。 は波動の位相速度 (phase velocity) を表す係数である。波動方程式は振動、音、光、電磁波など振動・波動現象を記述するにあたって基本となる方程式である。.

新しい!!: ラプラス作用素と波動方程式 · 続きを見る »

滑らかな関数

数学において、関数の滑らかさ(なめらかさ、smoothness)は、その関数に対して微分可能性を考えることで測られる。より高い階数の導関数を持つ関数ほど滑らかさの度合いが強いと考えられる。.

新しい!!: ラプラス作用素と滑らかな関数 · 続きを見る »

流体力学

流体力学(りゅうたいりきがく、fluid dynamics / fluid mechanics)とは、流体の静止状態や運動状態での性質、また流体中での物体の運動を研究する、力学の一分野。.

新しい!!: ラプラス作用素と流体力学 · 続きを見る »

流束

流束(りゅうそく、flux)とは、流れの場、あるいはベクトル場の強さを表す量である。 英語のままフラックスとも呼ばれる。 様々なベクトル場に対応した流束が用いられる。流束は流体の理論からの類推であるが、何らかの実体が流れているとは限らない。 なお、面積あたりの流束である流束密度()を指して単に流束と呼ばれることも多い。.

新しい!!: ラプラス作用素と流束 · 続きを見る »

斉次函数

数学における斉次函数(せいじかんすう、homogeneous function)は、拡大縮小に関して「引数に因数が掛かれば値にその因子の適当な冪が掛かる」という乗法的な振る舞いをする函数をいう。よりはっきり書けば、体 F 上の二つのベクトル空間 V, W の間の写像 と整数 k に対して、写像 ƒ が斉 k-次(斉次次数 k)であるまたは k-次の斉次性を持つとは、 を任意の零でないスカラー とベクトル に対して満たすことをいう。扱うベクトル空間が実係数の場合には、斉次性をもう少し一般にして、任意の α > 0 に対して上式を満たすことのみを仮定する場合も多い。 斉次函数はベクトル空間から原点を取り去ったものの上で定義することもでき、この事実は代数幾何学において射影空間上の層の定義において用いられている。より一般に、S ⊂ V が体の元によるスカラー乗法で不変な部分空間(「錐」)であるとき、S から W への斉次函数がやはり同じ式で定義できる。.

新しい!!: ラプラス作用素と斉次函数 · 続きを見る »

擬リーマン多様体

微分幾何学において、擬リーマン多様体 (pseudo-Riemannian manifold)(また、半リーマン多様体 (semi-Riemannian manifold) ともいう)は、リーマン多様体の一般化であり、そこでは計量テンソルが必ずしもでないこともある。代わって、非退化というより弱い条件が、計量テンソルへ導入される。 一般相対論で極めて重要な多様体として、ローレンツ多様体 (Lorentzian manifold) があり、そこでは、一つの次元が他の次元とは反対の符号を持っている。このことは、接ベクトルが時間的、光的、空間的へと分類される。時空は 4次元ローレンツ多様体としてモデル化される。.

新しい!!: ラプラス作用素と擬リーマン多様体 · 続きを見る »

数学

数学(すうがく、μαθηματικά, mathematica, math)は、量(数)、構造、空間、変化について研究する学問である。数学の範囲と定義については、数学者や哲学者の間で様々な見解がある。.

新しい!!: ラプラス作用素と数学 · 続きを見る »

数式

数式(すうしき、)は、数・演算記号・不定元などの数学的な文字・記号(および約物)が一定の規則にのっとって結合された、文字列である。 一般に数式には、その値 が定められており、数式はその値を表現すると考えられている。数式の値の評価 は、その数式に用いられる記号の定義あるいは値によって決まる。すなわち、数式はそれが現れる文脈に完全に依存した形で決まる。.

新しい!!: ラプラス作用素と数式 · 続きを見る »

拡散

拡散(かくさん、独、英、仏: Diffusion) とは、粒子、熱、運動量などが自発的に散らばり広がる物理現象である。この現象は着色した水を無色の水に滴下したとき、煙が空気中に広がるときなど、日常よく見られる。これらは、化学反応や外力ではなく、流体の乱雑な運動の結果として起こるものである。.

新しい!!: ラプラス作用素と拡散 · 続きを見る »

拡散方程式

拡散方程式(かくさんほうていしき、diffusion equation)は拡散が生じている物質あるいは物理量(本稿では拡散物質と記述)の密度のゆらぎを記述する偏微分方程式である。集団遺伝学における対立遺伝子の拡散のように、拡散と同様の振る舞いをする現象を記述するのにも用いられる。伝熱の分野で熱伝導を記述する方程式は熱伝導方程式(Heat equation)と呼ばれる。 方程式は一般に以下のように書かれる。 ただし、\vecは位置、tは時刻、\, \phi(\vec,t) は拡散物質の 密度、 D(\phi,\vec,t) は拡散係数(2階のテンソル量)、ナブラ \, \nabla は空間微分作用素である。拡散係数D が定数ならば、方程式は以下の線形方程式に帰着される。 D が他の変数に依存する場合方程式は非線形となる。さらに、D が正定値対称行列であれば方程式は異方的拡散となる。.

新しい!!: ラプラス作用素と拡散方程式 · 続きを見る »

ここにリダイレクトされます:

ラプラシアンラプラスの演算子ラプラス演算子

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »