ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

ラッチ回路

索引 ラッチ回路

ラッチ回路(ラッチかいろ)は、双安定マルチバイブレータの一種で、1ビットの情報を保持できる状態を有する電子回路である。.

33 関係: 否定寄生容量平衡接続ミーリ・マシンマルチバイブレータバイポーラトランジスタムーア・マシンビットデジタル回路フリップフロップフィードバックアナログ-デジタル変換回路アナログ回路エネイブルカウンタ (電子回路)クロッククロック同期設計コンパレータサンプリングCMOS状態遷移表発振回路Diode-transistor logic論理回路負論理負性抵抗離散数学電子回路集積回路NANDゲートNORゲートTransistor-transistor logic有限オートマトン

否定

数理論理学において否定 (ひてい、Negation) とは、命題の真と偽を反転する論理演算である。否定は英語で Not であるが、Invert とも言われ論理演算ではインバージョン(Inversion)、論理回路では Not回路やインバータ回路(Inverter)とも呼ばれ入力に対して出力が反転する。 命題 P に対する否定を ¬P, P, !P などと書いて、「P でない」とか「P の否定」、「P 以外の場合」などと読む。 ベン図による論理否定(NOT).

新しい!!: ラッチ回路と否定 · 続きを見る »

寄生容量

寄生容量とは、浮遊容量とも呼ばれ、電子部品の内部、あるいは電子回路の中で、それらの物理的な構造に起因する、設計者が意図しない容量成分のことである。 一般的には、ストレーキャパシティ(英 stray capacity)と呼ばれる。 インダクタ、トランジスタ、ダイオード、抵抗などの電子部品は、回路図の上では目的の機能のみを持つ理想的な素子として扱われる。しかし、現実の部品には本来の機能だけではなく、抵抗成分、容量成分、誘導成分などが必然的に現れる。 また、プリント基板上において複数の導線パターンが近接していると、それぞれの導線を電極とする微少な容量成分が寄生容量となる。同じ現象は複数の配線が接近している場合にも発生する。.

新しい!!: ラッチ回路と寄生容量 · 続きを見る »

平衡接続

平衡接続(へいこうせつぞく、balanced line)とは、音響・有線通信回線で、等長、等間隔の2本の電線を利用して電気信号を送る方法で、1本の線に元の信号を、もう1本の線に位相を反転させた(逆位相の)信号を送る(信号が平衡関係にある状態)こと。 差動信号 (differential signaling) ともいう。 2本の電線はどちらも接地されない。耐ノイズ性能が高い伝送方式である。.

新しい!!: ラッチ回路と平衡接続 · 続きを見る »

ミーリ・マシン

ミーリ・マシン(Mealy Machine)は出力が現在状態と入力によって決定される有限オートマトンである。つまり、状態遷移図で描くと遷移エッジには出力信号が付記される。例えば、入力 '0' を受けて状態1から状態2に遷移する際に、'1' が出力される(エッジには 0/1 と表示される)。一方ムーア・マシンの出力は現在状態にのみ左右され、入力には依存しない。ただし、ミーリ・マシンはムーア・マシンと等価と見なすことが出来る。ムーア・マシンの状態は、ミーリ・マシンの現在状態と一つ前の状態の直積で表される。 ミーリ・マシンという名前は提唱者であり状態機械の先駆者である G.H. ミーリ の名からきている。彼はミーリ・マシンを A Method for Synthesizing Sequential Circuitsという論文に記している(Bell System Tech.

新しい!!: ラッチ回路とミーリ・マシン · 続きを見る »

マルチバイブレータ

マルチバイブレータ(multivibrator)は、発振回路、タイマー、ラッチ、フリップフロップなど様々な単純な2状態系を実装するのに使われる電子回路である。2つの増幅用部品(トランジスタ、真空管、その他)を抵抗とコンデンサでたすきがけ形に接続することを特徴とする。最も典型的な形式は無安定または発振型で、矩形波を生成する。矩形波には倍音が多く含まれているため、マルチバイブレータと呼ばれるようになった。最初のマルチバイブレータは真空管を使った回路で、William Eccles と F.W. Jordan が1919年に考案した。 マルチバイブレータ回路は3種類に分類される。; 非安定、無安定 (astable); 単安定 (monostable); 双安定 (bistable) 最も単純なマルチバイブレータ回路は、トランジスタを2個たすきがけに接続し、抵抗器やコンデンサの回路で不安定な状態となる時間を設定することで、様々な種類の安定性を実装できる。マルチバイブレータは、矩形波や一定時間のインターバルが必要とされる様々な用途に応用されている。回路が単純であるほど様々な要因に影響されやすくなり、タイミングが不正確になる傾向があるため、高精度が要求される用途では使われない。 集積回路が低価格化する以前は、複数のマルチバイブレータを接続して分周回路を構成するのに使われていた。基準周波数の1/2から1/10の周波数の非安定マルチバイブレータは、基準周波数と正確に同期する。この技法は初期の電子オルガンで、オクターブの異なる同じ音を正確に調整するのによく用いられた。また、初期のテレビでも、ビデオ信号などのライン周波数とフレーム周波数の同期をパルスで保つのに使われた。.

新しい!!: ラッチ回路とマルチバイブレータ · 続きを見る »

バイポーラトランジスタ

代表的な小信号用バイポーラトランジスタ2SC1815 バイポーラトランジスタ(Bipolar transistor)、またはバイポーラジャンクショントランジスタ(英: Bipolar junction transistor; BJT)は、トランジスタの一種である。N型とP型の半導体がP-N-PまたはN-P-Nの接合構造を持つ3端子の半導体で、電流増幅・スイッチング機能を持つ。電界効果トランジスタなどのユニポーラトランジスタと異なり、正・負両極のキャリアをもつためバイポーラと呼ばれる。 バイポーラトランジスタという呼び名(区分名称)は後に電界効果トランジスタが登場したことによるレトロニムであるが、その経緯通り最初に広く使われたトランジスタであったため、単にトランジスタと言えばバイポーラトランジスタを指すことが多い。.

新しい!!: ラッチ回路とバイポーラトランジスタ · 続きを見る »

ムーア・マシン

ムーア・マシン(Moore Machine)は、出力が(入力によらず)現在の状態によってのみ決定される有限オートマトンである。ムーア・マシンの状態遷移図は各状態の出力信号を含む。一方、ミーリ・マシンはマシンの「遷移」を出力に対応付ける。 ムーア・マシンという名称は提唱者であり状態機械の先駆者エドワード・ムーアの名から来ている。ムーアは Gedanken-experiments on Sequential Machines,(順序機械の思考実験)でムーア・マシンについて記述している(pp 129 – 153, Automata Studies, Annals of Mathematical Studies, no.

新しい!!: ラッチ回路とムーア・マシン · 続きを見る »

ビット

ビット (bit, b) は、ほとんどのデジタルコンピュータが扱うデータの最小単位。英語の binary digit (2進数字)の略であり、2進数の1けたのこと。量子情報科学においては古典ビットと呼ばれる。 1ビットを用いて2通りの状態を表現できる(二元符号)。これらの2状態は一般に"0"、"1"と表記される。 情報理論における選択情報およびエントロピーの単位も「ビット」と呼んでいるが、これらの単位は「シャノン」とも呼ばれる(詳細は情報量を参照)。 省略記法として、バイトの略記である大文字の B と区別するために、小文字の b と表記する。.

新しい!!: ラッチ回路とビット · 続きを見る »

デジタル回路

デジタル回路(デジタルかいろ。英: digital circuit - ディジタル回路)は、2つの不連続な電位範囲を情報の表現に用いる電子回路で、論理回路の実現法のひとつである。電位帯内であれば信号の状態は同じものとして扱われる。信号レベルが公差、減衰、ノイズなどで若干変動したとしても、しきい値の範囲内ならば無視され、いずれかの状態として扱われる。 通常は2つの状態をとり、0Vに近い電圧と、十分にマージンを取った電源電圧より低い5Vや3V、1.2Vといった電圧で表される。これらはそれぞれ「Low」「High」、又は「L」「H」と表現される。一般には Low を0や偽、High を1や真に対応させることが多い(正論理)が、諸事情により逆に対応させる(負論理)こともある。以上はトランジスタベースの現在広く使われている回路の場合で、真空管による回路など、電圧や方式は他にも多種ある。.

新しい!!: ラッチ回路とデジタル回路 · 続きを見る »

フリップフロップ

''R1, R2''.

新しい!!: ラッチ回路とフリップフロップ · 続きを見る »

フィードバック

フィードバック(feedback)とは、もともと「帰還」と訳され、ある系の出力(結果)を入力(原因)側に戻す操作のこと。古くは調速機(ガバナ)の仕組みが、意識的な利用は1927年のw:Harold Stephen Blackによる負帰還増幅回路の発明に始まり、サイバネティックスによって広められた。システムの振る舞いを説明する為の基本原理として、エレクトロニクスの分野で増幅器の特性の改善、発振・演算回路及び自動制御回路などに広く利用されているのみならず、制御システムのような機械分野や生物分野、経済分野などにも広く適用例がある。自己相似を作り出す過程であり、それゆえに予測不可能な結果をもたらす場合もある。.

新しい!!: ラッチ回路とフィードバック · 続きを見る »

アナログ-デジタル変換回路

アナログ-デジタル変換回路(アナログ-デジタルへんかんかいろ、A/D変換回路)は、アナログ電気信号をデジタル電気信号に変換する電子回路である。A/Dコンバーター(ADC(エーディーシー)、)とも言う。 また、アナログ-デジタル変換(アナログ-デジタルへんかん、A/D変換)は、アナログ信号をデジタル信号に変換することをいう。 逆はデジタル-アナログ変換回路である。 変調方式の一種として見た場合は、A/D変換はパルス符号変調である。A/D変換のような操作をデジタイズということがある。 基本的なA/D変換の操作は、まずサンプリング周波数で入力を標本化し、それを量子化することでおこなう。標本化にともなう折り返し雑音は、重要な問題である。また、量子化にともなう量子化誤差による量子化雑音もある。.

新しい!!: ラッチ回路とアナログ-デジタル変換回路 · 続きを見る »

アナログ回路

アナログ回路(アナログかいろ)は、連続的に変化する電気信号を取り扱う電子回路である。これに対してデジタル回路は有限個の信号レベル(通常2つ)しか持たない信号を扱う。「アナログ」という言葉は、信号とその信号を実際に表している電圧や電流が比例関係にあることを意味している。「アナログ」の語源はギリシャ語の ανάλογος (analogos) で、「比例」を意味する。.

新しい!!: ラッチ回路とアナログ回路 · 続きを見る »

エネイブル

ネイブル(英:Enable)は、イギリスの競走馬である。主な勝ち鞍は2017年オークス、愛オークス、キングジョージ6世&クイーンエリザベスステークス、凱旋門賞である。「イネイブル」・「イネーブル」と表記されることもある。 ナサニエルの初年度産駒の一頭である。.

新しい!!: ラッチ回路とエネイブル · 続きを見る »

カウンタ (電子回路)

ウンタ (counter)とは、クロックパルスを数えることにより数値の処理を行うための論理回路(デジタル回路)である。カウンタにより計数された2進数、あるいは2進化10進数を、デコーダを通して7セグメントLEDなどで表示される数字に変換することにより、人間が認識できる情報となる。また、情報をエンコーダにより2進数などに変換することで、カウンタによる計数処理を行うことができる。 水晶振動子を用いた発振回路によって発生された非常に高い周波数(例えば215.

新しい!!: ラッチ回路とカウンタ (電子回路) · 続きを見る »

クロック

ック信号(クロックしんごう、)、クロックパルスあるいはクロックとは、クロック同期設計のデジタル論理回路が動作する時に複数の回路のタイミングを合わせる(同期を取る)ためにメトロノームのように使用される、電圧が高い状態と低い状態を周期的にとる信号である。信号という言葉には様々な意味があるが、ここでは「情報を運ぶことができるエネルギーの流れ」を意味する。信号線のシンボルなどではCLKという略記がしばしば用いられる。 クロック信号はクロック生成回路で作られる。最も典型的なクロック信号はデューティ比50%の矩形波で、一定の周波数を保つ。クロック信号により同期をとる回路は信号の立ち上がりの部分(電圧が低い状態から高い状態に遷移する部分)で動作することが多く、ダブルデータレートの場合は立ち下がりの部分でも動作する。.

新しい!!: ラッチ回路とクロック · 続きを見る »

クロック同期設計

ック同期設計 (クロックどうきせっけい) は、デジタル論理回路の設計技術のひとつである。 クロック信号と呼ばれる一定の周期でHi-Lowを繰り返す信号をフリップフロップに入力すると、データ信号などフリップフロップに入力された他の信号をクロック信号の周期に合わせて遅延させることができる。 これを間に挟むように用いて論理回路を構成すれば、その中の論理回路はそのクロック周期を越えない限り設計者はタイミング設計ではクロック信号からの遅れ要素だけ考慮すれば済む。回路規模がクロック周期を超えることをタイミング・バイオレーションと呼ぶ。このような回路をクロック同期回路と呼ぶ。またそのクロック信号を回路全体に行き渡らせ全ての回路をクロック同期させれば、設計者はタイミング・バイオレーションのみ気を付けることで調和を保った回路を設計することができる。このことをクロック同期設計と呼ぶ。.

新しい!!: ラッチ回路とクロック同期設計 · 続きを見る »

コンパレータ

電子工学における コンパレータ (comparator) とは、二つの電圧または電流を比較し、どちらが大きいかで出力が切り替わる素子である。より一般に、二つのデータを比較する装置にも使われる用語である。 次の図のように、負帰還をかけていない標準的なオペアンプをコンパレータとして使うことができる。 非反転入力 (V+) の電圧が反転入力 (V&minus) よりも高ければ、(オペアンプは高利得なので)出力は正の最大電圧に達する。非反転入力 (V+) が反転入力 (V-) よりも低くなれば、出力は負の最大電圧に達する。出力電圧は供給電圧で制限されるので、バランスの取れている正負電源(±VS)がオペアンプに供給されている場合は、次のような動作になる。 ここで sgn(x) は符号関数である。一般的には、正負の供給電圧 VS の絶対値は異なっていることが多い。 入力値を同じにするのは、実際には非常に難しい。入力が変化してから出力が変化するまでの速度(オペアンプではスルー・レートと呼ばれる)は、通常は 10ns から 100ns 程度だが、数十μs まで遅くなることもある。 専用の電圧コンパレータチップ、たとえば LM393 は、TTL や CMOS のデジタルロジックに直接接続できるように設計されている。出力は2値で、現実世界の信号をデジタル回路に接続するのにも使われる(A/Dコンバータを参照)。LM393 ではオープンコレクタ出力で実現している。反転入力が高いとき、コンパレータの出力は負電源に接続される。非反転入力が高いときは、出力は浮いている(グランドからはハイ・インピーダンス)。電源に 0 と +5V を供給してプルアップ抵抗を使うと出力は 0 か +5V となり、TTL と接続できる。 専用の電圧コンパレータは、汎用オペアンプをコンパレータとして使ったものよりも一般に高速である。また、正確な内部基準電圧や調整可能なヒステリシスなどの機能が付加されていることもある。 現実のコンパレータの入力が絶縁されていないことからわかるように、コンパレータを「差動(バイポーラ)入力とロジック(0/Vcc)出力を持つ素子である」と考えるのは間違っている。これは、電圧の差が出力に影響するだけでなく、それぞれの電圧が電源電圧の範囲を超えてはならないことを意味している(VS− ≤ V+,V− ≤ VS+)。TTL/CMOS 論理出力のコンパレータの場合は、負電圧の入力は許されない(0 ≤ V+,V− ≤ Vcc)。 ノイズの多い信号をしきい値と比較する場合、信号がしきい値をまたぐ時にコンパレータの状態が激しく変化することもある。これが望ましくなければ、入出力にヒステリシスを持たせたヒステリシスコンパレータ(シュミットトリガとも呼ばれる)を構成することにより、きれいな出力信号を得られる。 ---- この記事は w:Federal Standard 1037C(en) に基づく。 こんはれた こんはれた こんはれた.

新しい!!: ラッチ回路とコンパレータ · 続きを見る »

サンプリング

音楽におけるサンプリング(sampling)は、過去の曲や音源の一部を引用し、再構築して新たな楽曲を製作する音楽製作法・表現技法のこと。または楽器音や自然界の音をサンプラーで録音し、楽曲の中に組み入れることである。 サンプリングは元々、ミュジーク・コンクレートとで作業している実験音楽のミュージシャンによって開発されたもので、やレコードを物理的に操作して蓄音機で演奏されていた。1960年代後半までに、テープ・ループ・サンプリングの使用は、ミニマル・ミュージックの発展とサイケデリック・ロックとジャズ・フュージョンのプロデュースに影響を与えた。 ヒップホップ・ミュージックは、2つのターンテーブルとミキシング・コンソールでレコードを操作することを実験した1970年代のDJらから生まれた、サンプリング技術に基づいた最初のポピュラー音楽ジャンルである。1970年代半ばから1980年代初頭の電子音楽とディスコの登場、1980年代のエレクトロニック・ダンス・ミュージックとインダストリアルの発展、1980年代以降のコンテンポラリー・R&Bからインディー・ロックまでのヒップホップの世界的影響である。歴史的には、サンプリングはハードウェアの特殊な部分であるサンプラーで行われていたが、今日ではソフトウェアが一般的に使用されている。しかし、も使用でき、の人々は伝統的な方法でサンプリングを続けている。近代的なデジタル制作方法にサンプリングルーツを組み込むことで、クラシック音楽、ジャズ、様々なフォークソングなど、サンプリングの発明に先立つジャンルだけでなく、多くのポピュラー音楽にサンプリングが導入されるようになった。 多くの場合、「サンプル」は、歌の一部、例えばリズム・によって構成され、それは別の歌のビートを作るのに用いられる。例えば、DJから開発されたヒップホップ・ミュージックは、ブレイクをループする。1960年代後半のソウルとファンクのレコーディングソング「」とアーメンブレイクは、ダンス・ミュージックとヒップホップで使用されている最も一般的なサンプルの1つであり、ブレイクビーツのようないくつかのサブジャンル全体は、主にこれらのサンプルの複雑な並び替えに基づいている。ロック・レコーディングのサンプルも新しい曲の基礎になった。例えば、レッド・ツェッペリンの「レヴィー・ブレイク」のドラムサウンドは、ビースティ・ボーイズ、ドクター・ドレー、エミネム、マイク・オールドフィールド、、、デペッシュ・モード、イレイジャーなどのアーティストによってサンプリングされた。サンプルは、映画、テレビ番組、広告など非音楽メディアで話された単語やフレーズで構成することも可能である。 サンプリングは、既存の録音の使用を必ずしも意味するものではない。多くの作曲家やミュージシャンが、自分で作ったフィールドレコーディングをサンプリングして作品や曲を作ったり、オリジナルのレコーディングをサンプリングするアーティストもいる。例えば、トリップ・ホップバンドのポーティスヘッドは、既存のサンプルを使用しているだけでなく、曲を作る為に元々演奏していた音楽部分をしたり、操作したり、サンプリングしたりしている。 サンプリングの使用は法的にも音楽的にも議論の余地がある。1940年代から1960年代に技術を開発した実験音楽のミュージシャンは、サンプルから楽曲を製作する前に、フィールドレコーディングの被験者や著作権所有者に知らせなかった、または、認可を取らないことがあった。ヒップホップが地元のダンスパーティに限られた1970年代には、関係者に対して録音された音楽をサンプリングするための著作権の手続きをする必要がなかった。ジャンルが1980年のラップを中心としたレコーディングになり、それが主流になると、法的手続きを取る必要が生じた。それは最も成功したDJ以外のDJ、音楽プロデューサー、ラッパーにとっては困難なことだった。その結果、多数のレコーディングアーティストが非認定のサンプル使用で法的問題に直面した一方で、現在のアメリカ合衆国の著作権法の制限や創造性への彼らの世界的な影響も厳しく監視されるようになった。 法的問題の他にも、サンプリングは賛否両論の評価を受けている。今日のヒップホップDJはサンプリングの方法が異なる。いくつかの批評家、特にと見なされる人は、全てのサンプリングが創造性に欠けているとの信念を表明しているが、サンプリングは革新的で革命的な技術である。サンプリングされた作品について、サンプリングの有無に関わらず、その実行に関する幅広い意見が見られる。.

新しい!!: ラッチ回路とサンプリング · 続きを見る »

CMOS

CMOS(シーモス、Complementary MOS; 相補型MOS)とは、P型とN型のMOSFETをディジタル回路(論理回路)の論理ゲート等で相補的に利用する回路方式(論理方式)、およびそのような電子回路やICのことである。また、そこから派生し多義的に多くの用例が観られる(『#その他の用例』参照)。.

新しい!!: ラッチ回路とCMOS · 続きを見る »

状態遷移表

態遷移表(じょうたいせんいひょう、State Transition Table)は、状態機械類(の遷移関数 T(scurrent, e).

新しい!!: ラッチ回路と状態遷移表 · 続きを見る »

発振回路

振回路(はっしんかいろ、electronic oscillator)は、持続した交流を作る電気回路である。その原理により、帰還型(きかんがた)と弛張型(しちょうがた)に分類できる。電波の放射や、ディジタル回路におけるクロックパルス(コンピュータ(またはデジタル回路)が動作する時に、タイミングを取る(同期を取る)ための周期的な信号)の発生が代表的な用途であるが、それ以外にも、電子回路の動作の基準となる重要な回路である。.

新しい!!: ラッチ回路と発振回路 · 続きを見る »

Diode-transistor logic

DTLによる2入力NANDゲートの単純化した回路図 Diode-transistor logic (DTL) はバイポーラトランジスタとダイオードと抵抗器で構成される、ディジタル回路において論理回路を実現する方式の一種である。transistor–transistor logic (TTL) はDTLが発展したものである。ANDゲートなどの論理ゲート機能をダイオードのネットワークで実現し、増幅機能をトランジスタで実現しているため、(RTLやTTLとの対比で)このように呼ばれている。.

新しい!!: ラッチ回路とDiode-transistor logic · 続きを見る »

論理回路

論理回路(ろんりかいろ、logic circuit)は、論理演算を行う電気回路及び電子回路である。真理値の「真」と「偽」、あるいは二進法の「0」と「1」を、電圧の正負や高低、電流の方向や多少、位相の差異、パルスなどの時間の長短、などで表現し、論理素子などで論理演算を実装する。電圧の高低で表現する場合それぞれを「」「」等という。基本的な演算を実装する論理ゲートがあり、それらを組み合わせて複雑な動作をする回路を構成する。状態を持たない組み合わせ回路と状態を持つ順序回路に分けられる。論理演算の結果には、「真」、「偽」の他に「不定」がある。ラッチ回路のdon't care, フリップフロップ回路の禁止が相当する。 ここでの論理は離散(digital)であるためディジタル回路を用いる。論理演算を行うアナログ回路、「アナログ論理」を扱う回路(どちらも「アナログ論理回路」)もある。 多値論理回路も量子コンピュータで注目されている。 電気(電子)的でないもの(たとえば流体素子や光コンピューティングを参照)もある。 以下では離散なデジタル回路を扱う。.

新しい!!: ラッチ回路と論理回路 · 続きを見る »

負論理

負論理とは(ふろんり、Active LowまたはNegative Logic)、その反対の正論理(せいろんり、Active HighまたはPositive Logic)に相対する呼び方である。負論理は論理回路を実装したデジタル回路における手法として正論理とともに用いられる。.

新しい!!: ラッチ回路と負論理 · 続きを見る »

負性抵抗

負性抵抗(ふせい-ていこう)とは、入力インピーダンスを見た際に掛けた電圧に対して 抵抗値が見掛け上マイナスになるような回路ブロックを指す。(詳しい解説は後述する。) 負性抵抗とは見かけ上の物であり、一般的な受動素子では発生しない。 負性抵抗と負性微分抵抗は異なり、 負性微分抵抗は「電圧の増加により、電流が減少する」というような、 オームの法則の抵抗と対極となる電気回路の特性のことを指す。 トンネルダイオード(エサキダイオードともいう)やガン・ダイオードでは、 動作領域の一部で負性微分抵抗の特性を示す。 カルコゲナイド・ガラスや導電性高分子も同様の特性を示す。 以下、負性抵抗の実現法について述べる。負性抵抗はNIC(Negative Impedance Converter:負性インピーダンス変換回路 )を用いて実現される。負性抵抗は、NICを構成するためのオペアンプ、R1、R2、そして負荷抵抗RLから構成される。 接続としては電圧源Vが接続されるのがオペアンプの+入力端子、そして+入力端子とオペアンプの出力端子の間に R1、そして同出力端子と‐入力端子の間にR2が、-入力端子とGNDの間に負荷抵抗RLが接続される。 ここでナレータノレータモデルを使ってオペアンプは‐入力端子と+入力端子の電圧が等しくなるように働くため (そのために‐端子に負帰還がされている。時間のある方はオペアンプの接続を‐端子+端子で入れ替えてみると 出力が発散してしまいうまく動かないことを確認できるでしょう。)、 負荷抵抗RLにはV/RLがGNDに向かって流れる。この電流はオペアンプの入力端子の入力インピーダンスを かなり大きいと見積もれるためそのままオペアンプの出力端電圧Voutから-端子の方向に流れる電流と考える事が出来る。 ここでR1.

新しい!!: ラッチ回路と負性抵抗 · 続きを見る »

離散数学

離散数学(りさんすうがく、英語:discrete mathematics)とは、原則として離散的な(言い換えると連続でない、とびとびの)対象をあつかう数学のことである。有限数学あるいは離散数理と呼ばれることもある。 グラフ理論、組み合わせ理論、最適化問題、計算幾何学、プログラミング、アルゴリズム論が絡む応用分野で、その領域を包括的・抽象的に表現する際に用いられることが多い。またもちろん離散数学には整数論が含まれるが、初等整数論を超えると解析学などとも関係し(解析的整数論)、離散数学の範疇を超える。.

新しい!!: ラッチ回路と離散数学 · 続きを見る »

電子回路

I/Oが1つのチップに集積されている。 プリント基板を使った電子回路 電子回路(でんしかいろ、electronic circuit)は、電気回路の一種であるが、その対象が専ら電子工学的(弱電)であるものを特に指して言う。構成要素は良導体による配線の他、主として電子部品である。組み合わせにより、単純なものから複雑なものまで様々な動作が可能である。信号を増幅したり、計算したり、データを転送したりといったことができる。回路は個々の電子部品を電気伝導体のワイヤで相互接続することで構築できるが、近年では一般にプリント基板にフォトリソグラフィで配線を作り、そこにはんだで電子部品を固定することで回路を構築する。 集積回路では、ケイ素などの半導体でできた基板上に素子と配線を形成する。集積回路も電子回路の一種だが、この記事ではもっぱら集積回路は不可分な一個部品として扱う。集積回路の内部の電子回路については集積回路の記事を参照のこと。 プリント基板は試作には向いていないため、新規設計の評価にはブレッドボード、ユニバーサル基板などを一般に使用する。それらは開発途中で素早く回路に変更を加えることができる。 プリント基板が多用されるようになる以前は、ワイヤラッピング配線や、ラグ板などを利用した空中配線により、電子回路は作られていた。 大きくアナログ回路・デジタル回路(論理回路)・アナログとデジタルの混合信号回路(アナログ-デジタル変換回路、デジタル-アナログ変換回路など)に分けられる。取り扱う周波数により、低周波回路・高周波回路という分け方をする場合もある。.

新しい!!: ラッチ回路と電子回路 · 続きを見る »

集積回路

SOPパッケージに封入された標準ロジックICの例 集積回路(しゅうせきかいろ、integrated circuit, IC)は、主としてシリコン単結晶などによる「半導体チップ」の表面および内部に、不純物の拡散による半導体トランジスタとして動作する構造や、アルミ蒸着とエッチングによる配線などで、複雑な機能を果たす電子回路の多数の素子が作り込まれている電子部品である。多くの場合、複数の端子を持つ比較的小型のパッケージに封入され、内部で端子からチップに配線されモールドされた状態で、部品・製品となっている。.

新しい!!: ラッチ回路と集積回路 · 続きを見る »

NANDゲート

NANDゲートは否定論理積の論理ゲートであり、その(論理的な)動作は全ての入力の論理積(AND)をとったものの反転(NOT)である。つまり、全ての入力がHighの場合のみ出力がLowになり、Lowの入力がひとつでもある場合はHighを出力する。 NAND論理の完全性(:en:Functional completeness)により、いかなる組合せ論理回路の論理もNANDゲートの組合せで実装できる。それを利用して、NANDのみで実装することで同種の回路のみで構成することができるため、結果としてコスト削減になるという主張もある。 汎用ロジックICシリーズにおいて、最も基本的な製品群として大量生産されたのは、完全性という論理的な理由よりも、実装の容易さ等による面が大きい。 全加算器.

新しい!!: ラッチ回路とNANDゲート · 続きを見る »

NORゲート

全加算器の動作概念図 NORゲートは否定論理和の論理ゲートであり、その(論理的な)動作は、否定論理和すなわち、全ての入力の論理和(OR)をとったものの反転(NOT)である。つまり、全ての入力がLowの場合のみ出力がHighになり、Highの入力がひとつでもある場合はLowを出力する。 NANDゲート(否定論理積)と同様 functional complete である(詳細は否定論理積#完全性を参照)。.

新しい!!: ラッチ回路とNORゲート · 続きを見る »

Transistor-transistor logic

Transistor-transistor-logic (TTL) はバイポーラトランジスタと抵抗器で構成されるデジタル回路の一種。論理ゲート段(例えばANDゲート)と増幅段のどちらの機能もトランジスタを使って実装しているので、(RTLやDTLとの対比で)このように呼ばれている。 半導体を用いた論理回路の代表的なもののひとつであり、通常+5V単一電源のモノリシック集積回路 (IC) ファミリとして、コンピュータ、産業用制御機械、測定機器、家電製品、シンセサイザーなど様々な用途で使われている。TTLという略称は、TTL互換の論理レベルの意味で使われることもあり、TTL ICとは直接関係ないところでも使われている。例えば電子機器の入出力のラベルなどに表示することがある。 DTLの改良品であり、さまざまなメーカーによってICが製造されているが、1970年代にテキサス・インスツルメンツ社(以下 TI, Texas Instruments)の汎用ロジックICファミリ(7400シリーズ)が広く普及して業界標準となった。標準シリーズから、高速版、低消費電力版、高速・低消費電力版などのバリエーションを広げ、初期のマイクロプロセッサの応用の広がりとともにさらに普及した。しかし、バイポーラトランジスタを使うため、低消費電力化・高集積化・低電圧化には向かず、CMOS技術の発達に伴いデジタルICの主力の座をCMOSに譲った。.

新しい!!: ラッチ回路とTransistor-transistor logic · 続きを見る »

有限オートマトン

有限オートマトン(finite automaton)または有限状態機械(finite state machine, FSM)とは、有限個の状態と遷移と動作の組み合わせからなる数学的に抽象化された「ふるまいのモデル」である。デジタル回路やプログラムの設計で使われることがあり、ある一連の状態をとったときどのように論理が流れるかを調べることができる。有限個の「状態」のうち1つの状態をとる。ある時点では1つの状態しかとらず、それをその時点の「現在状態」と呼ぶ。何らかのイベントや条件によってある状態から別の状態へと移行し、それを「遷移」と呼ぶ。それぞれの現在状態から遷移しうる状態と、遷移のきっかけとなる条件を列挙することで定義される。 有限オートマトンは様々な問題に応用でき、半導体設計の自動化、通信プロトコル設計、構文解析などの工学面での応用がある。生物学や人工知能研究では状態機械(群)を使って神経系をモデル化し、言語学では自然言語の文法をモデル化したりする。.

新しい!!: ラッチ回路と有限オートマトン · 続きを見る »

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »