ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
インストール
ブラウザよりも高速アクセス!
 

ラセミ体

索引 ラセミ体

ラセミ体(—たい) (racemate) とは、立体化学の用語で、キラル化合物の2種類の鏡像異性体(エナンチオマー)が等量存在することにより旋光性を示さなくなった状態の化合物のこと。日本語の「ラセミ体」は、ラセミ混合物 (racemic mixture) を表す場合と、ラセミ化合物 (racemic compound) を表す場合とがある。 キラル化合物の2つのエナンチオマーをそれぞれR体およびS体とすると、ラセミ混合物とはR体とS体とを等モル量混合したもののことであり、ラセミ化合物とはR体とS体の分子が、分子間力や水素結合などの分子間相互作用により 1:1、あるいは n:n の数比でつくった会合体のことである。ラセミ体では各分子の旋光性が互いに打ち消し合い、観測されなくなる。 エナンチオマーの旋光度が小さすぎて観測できなければ旋光度測定によるラセミ体の判定はできないが、その場合でもR体とS体を混合すれば融点の変化は観測できる。旋光分散 (ORD)、円二色性 (CD) の測定により光学活性が明らかになることもある。 ラセミ混合物を結晶化すると、R体またはS体のみの結晶よりも、両者が1:1で対を形成したラセミ結晶が析出しやすい。これは、R体とS体が相補的に充填されるため、より高密度で安定な結晶となるためであり、この現象はオットー・ヴァラッハにちなみヴァラッハ則 (Wallach's rule) と呼ばれる。.

18 関係: 偏光塩基不斉触媒ヘリセンホモキラリティー分子間力アミノ酸オットー・ヴァラッハキラリティー円偏光二色性光学異性体立体化学立体障害結晶化酸と塩基水素イオン水素結合旋光

偏光

偏光(へんこう、polarization)は、電場および磁場が特定の(振動方向が規則的な)方向にのみ振動する光のこと。電磁波の場合は偏波(へんぱ)と呼ぶ。光波の偏光に規則性がなく、直交している電界成分の位相関係がでたらめな場合を非偏光あるいは自然光と呼ぶ。 光電界の振幅は直交する2方向の振動成分に分解できることが分かっている。普通の光は、あらゆる方向に振動している光が混合しており、偏光と自然光の中間の状態(部分偏光)にある。このような光は一部の結晶や光学フィルターを通すことによって偏光を得ることができる。.

新しい!!: ラセミ体と偏光 · 続きを見る »

塩基

塩基(えんき、base)は化学において、酸と対になってはたらく物質のこと。一般に、プロトン (H+) を受け取る、または電子対を与える化学種。歴史の中で、概念の拡大をともないながら定義が考え直されてきたことで、何種類かの塩基の定義が存在する。 塩基としてはたらく性質を塩基性(えんきせい)、またそのような水溶液を特にアルカリ性という。酸や塩基の定義は相対的な概念であるため、ある系で塩基である物質が、別の系では酸としてはたらくことも珍しくはない。例えば水は、塩化水素に対しては、プロトンを受け取るブレンステッド塩基として振る舞うが、アンモニアに対しては、プロトンを与えるブレンステッド酸として作用する。塩基性の強い塩基を強塩基(強アルカリ)、弱い塩基を弱塩基(弱アルカリ)と呼ぶ。また、核酸が持つ核酸塩基のことを、単に塩基と呼ぶことがある。.

新しい!!: ラセミ体と塩基 · 続きを見る »

不斉触媒

不斉触媒(ふせいしょくばい)とは有機化学において、不斉合成に用いられる触媒のことである。.

新しい!!: ラセミ体と不斉触媒 · 続きを見る »

ヘリセン

right ヘリセン (helicene) とは、複数の芳香環が辺を共有しながららせん状につながった(縮環した)化合物の総称である。単に「ヘリセン」と言う場合では、特に光学活性なものを指すことが多い。英語で「らせん」を意味する "helice" から命名された。つながったベンゼン環単位の数を 内に入れて、ヘリセンと書き表す。 ヘリセンは1955年、「ニューマン投影図」の考案者として有名なメルヴィン・ニューマンらによって初めて合成された。不斉炭素を持たなくとも、芳香環の混み具合によってキラリティを発現することを示した歴史的業績とされる。その後さらに長いヘリセンが合成され、現在最長のものは1975年に合成されたヘリセンである。これらは多くの場合スチルベン型前駆体を光で異性化させ、ヨウ素などで脱水素芳香化して合成される。また最近ではビナフチル骨格からオレフィンメタセシスによってヘリセン骨格を合成する方法も報告されている。 ベンゼン環のみから成るヘリセンのうち、室温でもらせん構造のキラリティーを安定に保持し、かつ最も環の数が少ないものはヘリセン(別名ヘキサヘリセン)である。末端の芳香環同士の立体障害により、右巻きと左巻きのらせん型の異性体は入れ替わることができず、これら二つは互いにエナンチオマー(光学異性体)の関係にある。なお、環が一つ短いヘリセンもらせん型をとるが、これは室温において徐々にラセミ化する。 ヘリセンには、比旋光度が高いものが多く知られ、ヘリセンのDは 3640°にも達する。ヘリセンの最初の光学分割は、その結晶をピンセットで選り分け、旋光度を測ることで行われた。.

新しい!!: ラセミ体とヘリセン · 続きを見る »

ホモキラリティー

ホモキラリティー (homochirality) はキラル分子において片側のエナンチオマー(鏡像異性体)だけが存在している(偏っている)ことを示すのに使う化学用語である。また、一種類の分子についてだけでなく、ある化合物群において立体化学が偏っていることを表すときにも使う。たとえば、生体内に於いて、ほとんど全てのアミノ酸は D体と L体のエナンチオマーのうち L体のみが存在する。糖質も、天然ではほとんどのものが D体のみ存在する。これらのように立体化学が偏って存在している現象がホモキラリティーである。なぜ生体分子においてこのようなホモキラリティーがあるのかについてはまだ解っておらず、研究が進められている段階である。 一般に、ホモキラリティー状態が生成するには3つの段階があると考えられている。.

新しい!!: ラセミ体とホモキラリティー · 続きを見る »

分子間力

分子間力(ぶんしかんりょく、intermolecular force)は、分子同士や高分子内の離れた部分の間に働く電磁気学的な力である。力の強い順に並べると、次のようになる。.

新しい!!: ラセミ体と分子間力 · 続きを見る »

アミノ酸

リシンの構造式。最も構造が単純なアミノ酸 トリプトファンの構造式。最も構造が複雑なアミノ酸の1つ。 アミノ酸(アミノさん、amino acid)とは、広義には(特に化学の分野では)、アミノ基とカルボキシル基の両方の官能基を持つ有機化合物の総称である。一方、狭義には(特に生化学の分野やその他より一般的な場合には)、生体のタンパク質の構成ユニットとなる「α-アミノ酸」を指す。分子生物学など、生体分子をあつかう生命科学分野においては、遺伝暗号表に含まれるプロリン(イミノ酸に分類される)を、便宜上アミノ酸に含めることが多い。 タンパク質を構成するアミノ酸のうち、動物が体内で合成できないアミノ酸を、その種にとっての必須アミノ酸と呼ぶ。必須アミノ酸は動物種によって異なる。.

新しい!!: ラセミ体とアミノ酸 · 続きを見る »

オットー・ヴァラッハ

ットー・ヴァラッハ(Otto Wallach, 1847年3月27日 – 1931年2月26日)は、ドイツの化学者。1910年、脂環式化合物の先駆的研究の功績によってノーベル化学賞を受賞。.

新しい!!: ラセミ体とオットー・ヴァラッハ · 続きを見る »

キラリティー

ラリティー (chirality) は、3次元の図形や物体や現象が、その鏡像と重ね合わすことができない性質。掌性。 キラリティがあることをキラル (chiral) という。英語風の発音でカイラリティ、カイラルともいう。これらの語はギリシャ語で「手」を意味するχειρ (cheir) が語源である。手はキラルなものの一例で、右手とその鏡像である左手は互いに重ね合わせられない(右手の掌と左手の甲を向かい合わせたときに重なり合わないということである)。一方でキラリティがない、つまり鏡像と重ね合わせられることをアキラル (achiral) という。キラルな図形とその鏡像を互いに(たとえば右手に対する左手を)enantiomorphsと言い、ギリシャ語で「反対」を意味するεναντιος (enantios) が語源である。 対掌性(たいしょうせい)ともいう。対掌とは右と左の手のひらの対を意味している。対称性と紛らわしいが、キラリティとは鏡像対称性の欠如であり、むしろ逆の意味になる。 幾何学的な図形のほか、分子、結晶、スピン構造などについて使われる。以下では分子のキラリティを中心に述べる。.

新しい!!: ラセミ体とキラリティー · 続きを見る »

円偏光二色性

円偏光二色性(えんへんこうにしょくせい、英: circular dichroism)とは、物質が円偏光を吸収する際に左円偏光と右円偏光に対して吸光度に差が生じる現象のことである。物質がキラリティーを持つ場合に見られる。円二色性(えんにしょくせい)あるいはCD() とも呼ばれている。.

新しい!!: ラセミ体と円偏光二色性 · 続きを見る »

光学異性体

光学異性体(こうがくいせいたい)は、主に有機化学で用いられる用語である。"optical isomer" の訳語で、立体異性体の種類を表すが、IUPACでは使用が推奨されておらず、代わりに「エナンチオマー」や「ジアステレオマー」を使うことが推奨されている。関連する光学的な現象の詳細については、「キラリティー」および「旋光」(光学活性)の項を参照されたい。 生化学や天然物化学、また薬学では、有機化合物の光学異性体の区別が重要になる。生体を構成する物質に異性体が多かったり、異性体の違いにより生理活性が異なるためである。.

新しい!!: ラセミ体と光学異性体 · 続きを見る »

立体化学

立体化学(りったいかがく、英語:stereochemistry)とは、分子の3次元的な構造のこと、あるいはそれを明らかにするための方法論や、それに由来する物性論などを含めた学問領域をいう。 化学物質の立体的な構造は、その物性に極めて大きな影響を及ぼす。したがって、立体化学は化学のなかでも最も基本的かつ重要な項目である。基本的な分野であるため、講義科目や教科書名で多用される用語である。.

新しい!!: ラセミ体と立体化学 · 続きを見る »

立体障害

立体障害(りったいしょうがい, steric effects)とは分子内および分子間で分子を構成する各部分がぶつかることによる回転などの制限のこと。 立体障害は化学では非常に大きな意味を持ち、(有機化学の試験で基質の反応性が違う理由の多くは立体障害、ほかには電子状態、溶媒効果、各種相互作用など)非常に重要である。一般の置換反応や付加反応における分子の反応中心への接近、LDAに代表される求核剤と塩基、アトロプ異性などのような結合周りの回転の制限や、不安定化合物の安定化、不斉合成における配位子設計など多くの場面に関わっている。 立体障害の大きな置換基としてはイソプロピル基、tert-ブチル基、メシチル基などが挙げられる。分子模型としてよく用いられている球棒モデル(原子を表す球と原子間の結合を表す棒からなる模型、右図右)ではあまり実感がわかないが、CPKモデル(右図左)を用いると立体障害がいかに大きな意味を持つかがよく分かる。.

新しい!!: ラセミ体と立体障害 · 続きを見る »

結晶化

木の枝の上にできた霜の結晶 結晶化(けっしょうか、)は、均一な溶液から固体の結晶が生成する、自然、または人為的な過程である。化学では、固体と液体を分離する技術のひとつ。.

新しい!!: ラセミ体と結晶化 · 続きを見る »

酸と塩基

酸と塩基(さんとえんき)は化学反応における性質である。化学の初期には水溶液における化学反応を水素イオンと水酸化物イオンから説明するものとして酸と塩基を定義付けていたが(アレニウスの定義)、化学の発展とともにその定義は拡張され、今日では水溶液に限定しない一般の化学反応における電子対の授受により酸と塩基は定義付けられている(ルイスの定義)。.

新しい!!: ラセミ体と酸と塩基 · 続きを見る »

水素イオン

水素イオン (hydrogen ion) という用語は、国際純正・応用化学連合によって、水素及びその同位体の全てのイオンを表す一般名として勧告されている。イオンの電荷に依って、陽イオンと陰イオンの2つの異なる分類に分けることができる。.

新しい!!: ラセミ体と水素イオン · 続きを見る »

水素結合

doi.

新しい!!: ラセミ体と水素結合 · 続きを見る »

旋光

旋光(せんこう、optical rotation)とは、直線偏光がある物質中を通過した際に回転する現象である。この性質を示す物質や化合物は旋光性あるいは光学活性を持つ、と言われる。不斉な分子(糖など)の溶液や、偏極面を持つ結晶(水晶)などの固体、偏極したスピンをもつ気体原子・分子で起こる。糖化学ではシロップの濃度を求めるのに、光学では偏光の操作に、化学では溶液中の基質の性質を検討するのに、医学においては糖尿病患者の血中糖濃度を測定するのに用いられる。.

新しい!!: ラセミ体と旋光 · 続きを見る »

ここにリダイレクトされます:

ラセミ化合物ラセミ混合物

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »