ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

光度曲線

索引 光度曲線

光度曲線の一例。食連星(おおぐま座W型変光星)の一つ、きりん座V389星の光度曲線。 光度曲線或いはライトカーブ(light curve)は、天体の明るさを時間の関数として表した図のことである。一般に光度曲線は、縦軸を天体の明るさ(等級など)、横軸を時間としたグラフになる。 光度曲線には、天体の種類によって様々な特徴がみられ、食連星、ケフェイド変光星といった周期性のある変光星や、太陽系外惑星の通過などでできる周期的な曲線もあれば、新星、激変星、超新星、重力マイクロレンズなどによる非周期的な曲線もある。周期性のある光度曲線では、横軸に時刻ではなく変光周期における位相、即ち、光度曲線上のある時点と観測時点との相対的な時間間隔、をとる場合もある。 光度曲線を詳しく分析し、分光観測など他の手法で得たデータと関連付けることで、観測対象となった天体の物理量や、その天体で発生している物理過程に関する情報を得ることが可能となる。.

68 関係: おおぐま座W型変光星半規則型変光星可視光線天体天文学者太陽系外惑星太陽系小天体変光星定金晃三密度小田稔小惑星丸善雄松堂位相佐藤勝彦 (物理学者)彗星ペネローペ (小惑星)ミラ型変光星バンド分光法周期アメリカ変光星観測者協会アメリカ航空宇宙局アルベドアンドロメダ銀河アストロフィジカルジャーナルグラフケフェイド変光星ケフェウス座デルタ星シュテルンベルク天文研究所スペクトル公転国際天文学連合CCDイメージセンサ等級 (天文)線型性衛星食 (天文)食変光星質量超新星軌道離心率関数 (数学)脈動変光星野本憲一重力レンズ自転周期色指数 (天文)通過 (天文)連星...Ia型超新星Ib・Ic型超新星II型超新星掃天観測恒星恒星黒点核 (天体)波長測光 (天文)激変星振幅惑星科学新星日本天文学会時間時間 (単位)10月6日2006年 インデックスを展開 (18 もっと) »

おおぐま座W型変光星

おおぐま座W型変光星(おおぐまざWがたへんこうせい、W Ursae Majoris variable)は、食変光星の一種である。これらの恒星はスペクトル型F、G、Kの連星であり、外層を共有して接触連星となっており、接続部を通して質量やエネルギーが転移している。 おおぐま座W型変光星は現在、宇宙で最も普遍的に存在する変光星であり、約1%の恒星がこの種類である。 この分類は、A型とW型の2つのサブクラスに分類される。A型は太陽よりも熱い2つの恒星から構成され、スペクトル型はA型かF型、周期は0.4日から0.8日である。W型は冷たく、スペクトル型はG型かK型で周期は短く0.22日から0.4日である。表面温度の違いは、数百K以下である。1978年にB型という新しいサブクラスが導入された。B型は表面温度の差が大きい。2004年には、Sz.

新しい!!: 光度曲線とおおぐま座W型変光星 · 続きを見る »

半規則型変光星

半規則型変光星(はんきそくがたへんこうせい、semiregular variable)は、かなり周期的に変光することもある一方時々不規則な光度変化をすることもある渡辺努「OBSERVER'S GUIDE 変光星」、『月刊天文』2002年11月号、地人書館、98頁。、中期から晩期のスペクトル型を持つ巨星または超巨星である。周期は20日から2000日以上であるが、光度曲線の形は様々で一定していない。変光範囲は数百分の数等級から数等級である。 半規則型変光星は、いくつかの細分類に分けられる。従来はSRA・SRB・SRC・SRDの4つに細分類されていたが、2001年に発行されたName List 76で新たな細分類としてSRSが加わった。 球状星団M13は、11.95等から12.25等の数十個の赤色変光星を含み、周期は43日 (V24) から97日 (V43) である。.

新しい!!: 光度曲線と半規則型変光星 · 続きを見る »

可視光線

可視光線(かしこうせん 英:Visible light)とは、電磁波のうち、ヒトの目で見える波長のもの。いわゆる光のこと。JIS Z8120の定義によれば、可視光線に相当する電磁波の波長は下界はおおよそ360-400 nm、上界はおおよそ760-830 nmである。可視光線より波長が短くなっても長くなっても、ヒトの目には見ることができなくなる。可視光線より波長の短いものを紫外線、長いものを赤外線と呼ぶ。可視光線に対し、赤外線と紫外線を指して、不可視光線(ふかしこうせん)と呼ぶ場合もある。 可視光線は、太陽やそのほか様々な照明から発せられる。通常は、様々な波長の可視光線が混ざった状態であり、この場合、光は白に近い色に見える。プリズムなどを用いて、可視光線をその波長によって分離してみると、それぞれの波長の可視光線が、ヒトの目には異なった色を持った光として認識されることがわかる。各波長の可視光線の色は、日本語では波長の短い側から順に、紫、青紫、青、青緑、緑、黄緑、黄、黄赤(橙)、赤で、俗に七色といわれるが、これは連続的な移り変わりであり、文化によって分類の仕方は異なる(虹の色数を参照のこと)。波長ごとに色が順に移り変わること、あるいはその色の並ぶ様を、スペクトルと呼ぶ。 もちろん、可視光線という区分は、あくまでヒトの視覚を主体とした分類である。紫外線領域の視覚を持つ動物は多数ある(一部の昆虫類や鳥類など)。太陽光をスペクトル分解するとその多くは可視光線であるが、これは偶然ではない。太陽光の多くを占める波長域がこの領域だったからこそ、人間の目がこの領域の光を捉えるように進化したと解釈できる。 可視光線は、通常はヒトの体に害はないが、例えば核爆発などの強い可視光線が目に入ると網膜の火傷の危険性がある。.

新しい!!: 光度曲線と可視光線 · 続きを見る »

天体

天体(てんたい、、)とは、宇宙空間にある物体のことである。宇宙に存在する岩石、ガス、塵などの様々な物質が、重力的に束縛されて凝縮状態になっているものを指す呼称として用いられる。.

新しい!!: 光度曲線と天体 · 続きを見る »

天文学者

リレオ・ガリレイはしばしば近代天文学の父と呼ばれる。 天文学者(てんもんがくしゃ)とは、惑星、恒星、銀河等の天体を研究する科学者である。 歴史的に、astronomy では天空で起きる現象の分類や記述に重点を置き、astroplane ではこれらの現象の説明やそれらの間の差異を物理法則を使って説明することを試みてきた。今日では、2つの差はほとんどなくなっている。プロの天文学者は高い教育を受け、通常物理学か天文学の博士号を持っており、研究所や大学に雇用されている。多くの時間を研究に費やすが、教育、施設の建設、天文台の運営の補助等にも携わっている。アメリカ合衆国のプロの天文学者の数は少なく、北米最大の天文学者の組織であるアメリカ天文学会には7,700人が所属している。天文学者の数の中には、物理学、地学、工学等の別の分野出身で天文学に関心を持ち、深く関わっているの者も含まれている。国際天文学連合には、博士課程以上の学生を含めて89カ国から9259人が所属している。 世界中のプロの天文学者の数は小さな町の人口にも満たないが、アマチュア天文学者のコミュニティは数多くある。多くの市に、定期的に会合を開催しているアマチュア天文学者のクラブがある。太平洋天文協会は、70カ国以上からプロやアマチュアの天文学者、教育者が参加する世界最大の組織である。他の趣味と同様に、自身をアマチュア天文学者だと考える多くの人々は、月に数時間を天体観測や最新の研究成果を読むことに費やす。しかし、アマチュアは、いわゆる「アームチェア天文学者」と呼ばれる人々から、自身の天体望遠鏡を所持して野望を持ち、新しい発見をしたりプロの天文学者の研究を助けたりする者まで、幅広く存在する。.

新しい!!: 光度曲線と天文学者 · 続きを見る »

太陽系外惑星

太陽系外惑星(たいようけいがいわくせい、Extrasolar planet, Exoplanet)とは、太陽系にとっての系外惑星、つまり、太陽系の外にある惑星である。 多くは(太陽以外の)恒星の周りを公転するが、白色矮星や中性子星(パルサー)、褐色矮星などを回るものも見つかっており、他にもさまざまな星を回るものが想定される。自由浮遊惑星(いかなる天体も回らない惑星大の天体)を惑星に含めるかどうかは議論があるが、発見法が異なることなどから、系外惑星についての話題の中では自由浮遊惑星は別扱いすることが多い。 観測能力の限界から実際に発見されずにきたが、1990年代以降、多くの系外惑星が実際に発見されている。 ドップラー法.

新しい!!: 光度曲線と太陽系外惑星 · 続きを見る »

太陽系小天体

太陽系小天体(たいようけいしょうてんたい)とは、太陽の周りをまわる天体のうち、惑星と準惑星を除くすべての天体のことである。太陽系外縁天体(冥王星型天体を除く)や従来の小惑星、彗星、惑星間塵などが該当する。.

新しい!!: 光度曲線と太陽系小天体 · 続きを見る »

変光星

変光星(へんこうせい)は、天体の一種で、明るさ(等級)が変化するもののことである。大まかに爆発型変光星、脈動変光星、回転変光星、激変星、食変光星(食連星)、X線変光星の6種類に分類される。.

新しい!!: 光度曲線と変光星 · 続きを見る »

定金晃三

定金 晃三(さだかね こうぞう、1947年 - )は日本の天文学者。大阪教育大学教育学部教授。専門は、恒星物理学、高分散分光観測。特に、恒星大気の化学組成の研究で世界的な成果を多数収めている。近年は、惑星を持つ恒星系の化学組成研究に活発に取り組んでいる。.

新しい!!: 光度曲線と定金晃三 · 続きを見る »

密度

密度(みつど)は、広義には、対象とする何かの混み合いの程度を示す。ただし、科学において、単に密度といえば、単位体積あたりの質量である。より厳密には、ある量(物理量など)が、空間(3 次元)あるいは面上(2 次元)、線上(1 次元)に分布していたとして、これらの空間、面、線の微小部分上に存在する当該量と、それぞれ対応する体積、面積、長さに対する比のことを(それぞれ、体積密度、面密度、線密度と言う)言う。微小部分は通常、単位体積、単位面積、単位長さ当たりに相当する場合が多い。勿論、4 次元以上の仮想的な場合でも、この関係は成立し、密度を定義することができる。 その他の密度としては、状態密度、電荷密度、磁束密度、電流密度、数密度など様々な量(物理量)に対応する密度が存在する(あるいは定義できる)。物理量以外でも人口密度、個体群密度、確率密度、などの値が様々なところで用いられている。密度効果という語もある。.

新しい!!: 光度曲線と密度 · 続きを見る »

小田稔

小田 稔(おだ みのる、1923年2月24日 - 2001年3月1日)は、日本の天文学者、宇宙物理学者。東京大学名誉教授。.

新しい!!: 光度曲線と小田稔 · 続きを見る »

小惑星

光分(左)と天文単位(右)。 ケレス(右)、そして火星(下)。小さな物ほど不規則な形状になっている。 メインベルト小惑星の分布。縦軸は軌道傾斜角。 軌道長半径 6 AU までの小惑星の分布。縦軸は軌道傾斜角。赤い点はメインベルト小惑星。 小惑星(しょうわくせい、独: 英: Asteroid)は、太陽系小天体のうち、星像に拡散成分がないものの総称。拡散成分(コマやそこから流出した尾)があるものは彗星と呼ばれる。.

新しい!!: 光度曲線と小惑星 · 続きを見る »

丸善雄松堂

丸善雄松堂株式会社(まるぜんゆうしょうどう、)は、日本の大手書店、出版社、専門商社。文化施設の建築・内装、図書館業務のアウトソーシング等も行い、幅広い業務を手がけている。大日本印刷の子会社である丸善CHIホールディングスの完全子会社である。 なお、かつての丸善石油(後のコスモ石油)、「チーかま」など珍味メーカーの丸善、業務用厨房機器メーカーのマルゼン、エアソフトガンメーカーのマルゼンとは無関係である。 本店は東京都中央区日本橋二丁目に、本社事務所は港区海岸一丁目にある。.

新しい!!: 光度曲線と丸善雄松堂 · 続きを見る »

位相

位相(いそう、)は、波動などの周期的な現象において、ひとつの周期中の位置を示す無次元量で、通常は角度(単位は「度」または「ラジアン」)で表される。 たとえば、時間領域における正弦波を とすると、(ωt + &alpha) のことを位相と言う。特に t.

新しい!!: 光度曲線と位相 · 続きを見る »

佐藤勝彦 (物理学者)

佐藤 勝彦(さとう かつひこ、1945年8月30日 - )は、日本の宇宙物理学者。専門は、宇宙論。インフレーション宇宙論の提唱者として知られる。東京大学名誉教授、大学共同利用機関法人自然科学研究機構長、明星大学理工学部客員教授。日本学士院会員。 香川県坂出市出身。香川大学教育学部附属坂出中学校、香川県立丸亀高等学校を卒業後京都大学理学部に入学し、物理学科及び大学院理学研究科物理学第2専攻天体核物理学研究室で林忠四郎に師事した。.

新しい!!: 光度曲線と佐藤勝彦 (物理学者) · 続きを見る »

彗星

アメリカ合衆国アリゾナ州のカタリナ天文台で1974年11月1日に撮影されたコホーテク彗星 クロアチアのパジンで1997年3月29日に撮影されたヘール・ボップ彗星 彗星(すいせい、comet)は、太陽系小天体のうち主に氷や塵などでできており、太陽に近づいて一時的な大気であるコマや、コマの物質が流出した尾(テイル)を生じるものを指す。.

新しい!!: 光度曲線と彗星 · 続きを見る »

ペネローペ (小惑星)

ペネローペ (201 Penelope) は、小惑星帯に位置する小惑星の一つでM型小惑星に分類される。 1879年8月7日にオーストリアの天文学者、ヨハン・パリサがポーラ(現クロアチア領プーラ)で発見し、彼が発見した17個目の小惑星となった。 ホメロスの『オデュッセイア』に登場するオデュッセウスの妻ペネロペ(ペーネロペー)にちなんで命名された。 2000年3月25日に関東地方で掩蔽が観測された。.

新しい!!: 光度曲線とペネローペ (小惑星) · 続きを見る »

ミラ型変光星

ミラ型変光星(みらがたへんこうせい、Mira variable)、ミラ型星 (Mira star)は、脈動変光星の1種である。くじら座のミラから名づけられた。非常に赤く、脈動周期は100日より長く、変光範囲が可視光で2.5等級より大きい(赤外線では1等級より大きい)という特徴を持つ。恒星の進化の最終段階の赤色巨星であり、数百万年の間に、外層を惑星状星雲として吹き飛ばし、白色矮星になる。 ミラ型変光星は、太陽質量の2倍よりも小さいと考えられるが、外層が膨張して非常に大きくなっているため、太陽の数千倍も明るくなりうる。恒星全体が膨張、収縮することで脈動していると考えられている。これにより半径とともに温度が変化し、光度の変化を引き起こす。脈動の周期は、恒星の質量と半径の関数になる。ミラ型変光星の当初のモデルでは、この過程によって球対称は保たれると考えられていたが、近年の調査で、IOTA(Infrared Optical Telescope Array)で観測されるミラ型変光星の75%は球対称ではないことが明らかとなった。この結果は、以前の各々のミラ型変光星の観測結果と一致し、これにより現在ではスーパーコンピューターでミラ型変光星の3次元モデルが得られている。 ほとんどのミラ型変光星は、その挙動や性質に共通性を持つが、実際には、年齢、質量、脈動周期、化学組成等に多様性を持つ異質な恒星が集まった分類である。例えば、うさぎ座R星は炭素のスペクトルを持ち、核を構成する物質が表面に移送されていることを示している。この物質は、しばしば恒星の周囲に塵の覆いを作り、周期的な明るさの変化をもたらす。ミラ型変光星の中には、自然のメーザー源になっているものもある。 また、ミラ型変光星の中には、時間が経つに従って、数十年から数世紀の単位で、脈動の周期が大きく変わるものもある。これは、核の近くのヘリウムの殻が一時的に密度が高くなって熱せられ、核融合が起こるためだと考えられている。この過程は全てのミラ型変光星で起こると予測されるが、恒星の生涯に比べると比較的この期間が短く、既知の数千個のミラ型変光星のうち、うみへび座R星等の数個でしか観測できていない。 ミラ型変光星は、明るさが大きく変化するため、アマチュア天文学者の観測のターゲットとして人気がある。ミラを含むいくつかのミラ型変光星は、信頼性のある観測データを数世紀も遡って得ることができる。 ミラ型変光星は比較的金属量が豊富な環境で生まれると考えられてきたが、非常に金属量が枯渇したろくぶんぎ座矮小楕円体銀河(~-2)でミラ型変光星が発見された。.

新しい!!: 光度曲線とミラ型変光星 · 続きを見る »

バンド

バンド (band).

新しい!!: 光度曲線とバンド · 続きを見る »

分光法

プリズムによる光線の波長分割 分光法(ぶんこうほう、spectroscopy)とは、物理的観測量の強度を周波数、エネルギー、時間などの関数として示すことで、対象物の定性・定量あるいは物性を調べる科学的手法である。 spectroscopy の語は、元々は光をプリズムあるいは回折格子でその波長に応じて展開したものをスペクトル (spectrum) と呼んだことに由来する。18世紀から19世紀の物理学において、スペクトルを研究する分野として分光学が確立し、その原理に基づく測定法も分光法 (spectroscopy) と呼ばれた。 もともとは、可視光の放出あるいは吸収を研究する分野であったが、光(可視光)が電磁波の一種であることが判明した19世紀以降は、ラジオ波からガンマ線(γ線)まで、広く電磁波の放出あるいは吸収を測定する方法を分光法と呼ぶようになった。また、光の発生または吸収スペクトルは、物質固有のパターンと物質量に比例したピーク強度を示すために物質の定性あるいは定量に、分析化学から天文学まで広く応用され利用されている。 また光子の吸収または放出は量子力学に基づいて発現し、スペクトルは離散的なエネルギー状態(エネルギー準位)と対応することが広く知られるようになった。そうすると、本来の意味の「スペクトル」とは全く異なる、「質量スペクトル」や「音響スペクトル」など離散的なエネルギー状態を表現した測定チャートもスペクトルとよばれるようになった。また「質量スペクトル」などは物質の定性に使われることから、今日では広義の分光法は「スペクトル」を使用して物性を測定あるいは物質を同定・定量する技法一般の総称となっている。.

新しい!!: 光度曲線と分光法 · 続きを見る »

周期

周期(しゅうき)は、定期的に同じことが繰り返される事象において、任意のある時点の状態に一度循環して戻るまでの期間(時間)または段数のことである。 周期を数える場合は、事象1回の循環を1周期と表す。「2周期」、「3周期」、「半周期」というような使い方をする。.

新しい!!: 光度曲線と周期 · 続きを見る »

アメリカ変光星観測者協会

アメリカ変光星観測者協会(アメリカへんこうせいかんそくしゃきょうかい American Association of Variable Star Observers 略称 AAVSO)は1911年にアメリカ合衆国で設立された天文学の国際非営利団体。おもにアマチュア天文家による変光星の観測を組織し、観測結果を収集し、評価分析し、天文学者、研究者、教育者に提供するための組織である。長期にわたる変光星の光度の変化が記録されている。 専門の研究者が多くの変光星を監視することは不可能なので、天文学の分野はアマチュア天文家が科学に貢献できる数少ない分野のひとつである。AAVSOの国際データベースには、100年間にわたる、1200万以上の観測結果が蓄積されている。約2000人のプロとアマチュア観測者から毎年、5万件の観測結果をうけとっている。 AAVSOは教育や公共教育の分野でも活発に活動し、定期的に市民のための教育ワークショップを開き、アマチュアを共同執筆者とする論文の出版を行っている。専門研究者に対してアマチュア天文家が観測結果を提供するだけという古い学問スタイルではなく、アマチュアと研究者が対等の関係で研究する新しい学問のスタイルの先駆けとなっている。 1973年から2004年に没するまでジャネット・アクユズ・マッテイが長年会長を務めていた。マッティの死後は、アーン・ヘンデン (en:Arne Henden) が会長の座を引き継いでいる。 同協会は1911年から1956年まで、マサチューセッツ州ケンブリッジのハーバード大学天文台に設置され、その後も同市内を転々とし1985年に初めて建物を購入、クリントン・B・フォード天文データ研究センター (Clinton B. Ford Astronomical Data and Research Center) に入居した。2007年には約30メートル離れた近所のスカイ発行社 (Sky Publishing) 移転後のビルを購入して移転した。.

新しい!!: 光度曲線とアメリカ変光星観測者協会 · 続きを見る »

アメリカ航空宇宙局

アメリカ航空宇宙局(アメリカこうくううちゅうきょく、National Aeronautics and Space Administration, NASA)は、アメリカ合衆国政府内における宇宙開発に関わる計画を担当する連邦機関である。1958年7月29日、国家航空宇宙法 (National Aeronautics and Space Act) に基づき、先行の国家航空宇宙諮問委員会 (National Advisory Committee for Aeronautics, NACA) を発展的に解消する形で設立された。正式に活動を始めたのは同年10月1日のことであった。 NASAはアメリカの宇宙開発における国家的努力をそれ以前よりもさらに充実させ、アポロ計画における人類初の月面着陸、スカイラブ計画における長期宇宙滞在、さらに宇宙往還機スペースシャトルなどを実現させた。現在は国際宇宙ステーション (International Space Station, ISS) の運用支援、オリオン宇宙船、スペース・ローンチ・システム、商業乗員輸送などの開発と監督を行なっている。 宇宙開発に加えてNASAが帯びている重要な任務は、宇宙空間の平和目的あるいは軍事目的における長期間の探査である。人工衛星を使用した地球自体への探査、無人探査機を使用した太陽系の探査、進行中の冥王星探査機ニュー・ホライズンズ (New Horizons) のような太陽系外縁部の探査、さらにはハッブル宇宙望遠鏡などを使用した、ビッグ・バンを初めとする宇宙全体への探査などが主な役割となっている。2006年2月に発表されたNASAの到達目標は、「宇宙空間の開拓、科学的発見、そして最新鋭機の開発において、常に先駆者たれ」であった。.

新しい!!: 光度曲線とアメリカ航空宇宙局 · 続きを見る »

アルベド

アルベド(albedo)とは、天体の外部からの入射光に対する、反射光の比である。反射能(はんしゃのう)とも言う。アルベードとも表記する。 0以上、1前後以下(1を超えることもある)の無次元量であり、0 – 1の数値そのままか、0 % – 100 %の百分率で表す。.

新しい!!: 光度曲線とアルベド · 続きを見る »

アンドロメダ銀河

アンドロメダ銀河(アンドロメダぎんが、Andromeda Galaxy、M31、NGC 224)は、アンドロメダ座に位置する地球から目視可能な渦巻銀河である。さんかく座銀河 (M33) 、銀河系(天の川銀河)、大マゼラン雲、小マゼラン雲などとともに局部銀河群を構成する。.

新しい!!: 光度曲線とアンドロメダ銀河 · 続きを見る »

アストロフィジカルジャーナル

『アストロフィジカルジャーナル』(The Astrophysical Journal)とは、天文学と天体物理学を扱う査読制度付き学術雑誌である。1893年にアメリカ合衆国の天文学者ジョージ・E・ヘールとジェームズ・エドワード・キーラーによって創刊された。500ページの厚さの号を一か月に3冊ほど発行している。 1953年以降は、アストロフィジカルジャーナル本体の補足として『アストロフィジカルジャーナル・サプリメントシリーズ』(- Supplement Series)が出版されている。これは2ヶ月に1巻のペースで刊行され、それぞれの巻は280ページの厚さの号2つから成り立っている。この他に、研究者の間で迅速な意見交換を行うために、『アストロフィジカルジャーナル・レターズ』(- Letters)が発行されている。 出版は英国物理学会出版局がアメリカ天文学会に代わって行っている。かつてはシカゴ大学出版局から刊行されていたが、2009年1月に現在の出版局に移された。2008年には同学会の別の学術雑誌アストロノミカルジャーナルが英国物理学会出版局に移されており、アストロフィジカルジャーナルの移管はこれに続くものだった。.

新しい!!: 光度曲線とアストロフィジカルジャーナル · 続きを見る »

グラフ

ラフ; graph.

新しい!!: 光度曲線とグラフ · 続きを見る »

ケフェイド変光星

フェイド変光星(ケフェイドへんこうせい、Cepheid variable)は、HR図上でケフェイド不安定帯に属する脈動変光星。セフェイド変光星、セファイド変光星、ケファイド変光星とも表記。.

新しい!!: 光度曲線とケフェイド変光星 · 続きを見る »

ケフェウス座デルタ星

フェウス座δ星(ケフェウスざデルタせい、δ Cephei、δ Cep)は、ケフェウス座の恒星で地球から約797光年離れた位置にある連星系である。この距離では、視線上のガスや塵によるのため、視等級が0.23等暗くなる。 ケフェウス座δ星の主星は、比較的短い周期で明るさが変化する脈動変光星、セファイド変光星の典型である。更に細分化した場合、古典的セファイドまたはケフェウス座δ型に分類され(もう一つの分類はおとめ座W型)、その典型でもある。.

新しい!!: 光度曲線とケフェウス座デルタ星 · 続きを見る »

シュテルンベルク天文研究所

ュテルンベルク天文研究所(Sternberg Astronomical Institute、ロシア語表記:Государственный астрономический институт имени Штернберга、略称:GAISh:ГАИШ)はモスクワ大学の天文研究所である。1831年に設立された天文台の場所に1931年に設立された。名前は、ソビエトの天文学者パーヴェル・シュテルンベルク (Пáвел Кáрлович Штéрнберг) の名前から命名された。 小惑星 (14789) GAISHの命名の由来となっている。.

新しい!!: 光度曲線とシュテルンベルク天文研究所 · 続きを見る »

スペクトル

ペクトル()とは、複雑な情報や信号をその成分に分解し、成分ごとの大小に従って配列したもののことである。2次元以上で図示されることが多く、その図自体のことをスペクトルと呼ぶこともある。 様々な領域で用いられる用語で、様々な意味を持つ。現代的な意味のスペクトルは、分光スペクトルか、それから派生した意味のものが多い。.

新しい!!: 光度曲線とスペクトル · 続きを見る »

公転

質量の差が'''大きい'''2つの天体の公転の様子。 質量の差が'''小さい'''2つの天体の公転の様子。 公転(こうてん、revolution)とは、ある物体が別の物体を中心にした円又は楕円の軌道に沿って回る運動の呼び名である。 地球は太陽を中心に公転している。太陽と地球の質量比は約330000:1なので図の上の場合に当たる(ただし実際の太陽系では、最も重力が大きい木星の影響を太陽系の惑星が受けている)。.

新しい!!: 光度曲線と公転 · 続きを見る »

国際天文学連合

国際天文学連合(こくさいてんもんがくれんごう、英:International Astronomical Union:IAU)は、世界の天文学者で構成されている国際組織である。国際科学会議 (ICSU) の下部組織となっている。恒星、惑星、小惑星、その他の天体に対する命名権を取り扱っている。その命名規則のために専門作業部会が設けられている。 IAUは天文電報の発行業務にも関わっており、スミソニアン天体物理観測所が運営している天文電報中央局 (Central Bureau for Astronomical Telegrams; CBAT) について支援している。 IAUは1919年に多くの団体を統合して設立された。最初の会長にはフランスのバンジャマン・バイヨーが選出された。 2009年現在、会員として、10,145人の天文学者などの個人会員と64の国家会員が所属している。 Headquarter(本部)の事務局は、フランスのパリのBd Arago(アラゴ通り)にある。総会はさまざまな国において開催されている。→#総会.

新しい!!: 光度曲線と国際天文学連合 · 続きを見る »

CCDイメージセンサ

CCDイメージセンサ (シーシーディーイメージセンサ、CCD image sensor)は固体撮像素子のひとつで、ビデオカメラ、デジタルカメラ、光検出器などに広く使用されている半導体素子である。単にCCDと呼ばれることも多い神崎 洋治 (著), 西井 美鷹 (著) 「体系的に学ぶデジタルカメラのしくみ 第2版」日経BPソフトプレス; 第2版 (2009/1/29) 安藤 幸司 (著)「らくらく図解 CCD/CMOSカメラの原理と実践 」加藤俊夫 半導体入門講座(Semiconductor JapanのWeb上講義)第16回 イメージセンサ http://www.roper.co.jp/Html/roper/tech_note/html/rp00.htmhttp://www7.ocn.ne.jp/~terl/JTTAS/JTTAS-CMOS.htm。.

新しい!!: 光度曲線とCCDイメージセンサ · 続きを見る »

等級 (天文)

天文学において等級(とうきゅう、magnitude)とは、天体の明るさを表す尺度である。整数または小数を用いて「1.2等級」あるいは省略して「1.2等」などと表す。恒星の明るさを表す場合には「2等星」などと呼ぶ場合もある。等級の値が小さいほど明るい天体であることを示す。また、0等級よりも明るい天体の場合の明るさを表すには負の数を用いる。 等級が1等級変わると明るさは100の5乗根倍、すなわち約2.512倍変化する。よって等級差が5等級の場合に明るさの差が正確に100倍となる。言い換えれば等級とは天体の明るさを対数スケールで表現したものである。.

新しい!!: 光度曲線と等級 (天文) · 続きを見る »

線型性

線型性(せんけいせい、英語: linearity)あるいは線型、線形、線状、リニア(せんけい、英語: linear、ラテン語: linearis)とは、直線そのもの、または直線のようにまっすぐな図形やそれに似た性質をもつ対象および、そのような性質を保つ変換などを指して用いられている術語である。対義語は非線型性(英語:Non-Linearity)である。 英語の数学用語のlinear にあてる日本語訳としては、線型が本来の表記であると指摘されることもあるが、他にも線形、線状などといった表記もしばしば用いられている。また一次という表記・表現もしばしば用いられている。というのはlinearは、(多変数の)斉一次函数を指していると考えて間違っていない場合も多いためである。.

新しい!!: 光度曲線と線型性 · 続きを見る »

衛星

主要な衛星の大きさ比較 衛星(えいせい、natural satellite)は、惑星や準惑星・小惑星の周りを公転する天然の天体。ただし、惑星の環などを構成する氷や岩石などの小天体は、普通は衛星とは呼ばれない。.

新しい!!: 光度曲線と衛星 · 続きを見る »

食 (天文)

食(しょく、eclipse、ギリシア語 εκλειπσισ「力を失う」に由来)とは、ある天体が別の天体の動きによって隠される天文現象である。 蝕と表記する場合がある。 食は移動する天体の動きに従う光量の変化として観測される。観測者が、光源天体からの光を隠す天体を見ているのか、光を隠している天体が別の天体表面に投射した影(像、写像)を見ているのかによって区別できるが、どちらも食と呼ばれている。 区別されるときは、前者は「掩蔽」(例:日食)といい、後者は影による食(例:月食)という。掩蔽のうち、隠す天体が隠される天体に比べ極端に視直径が小さい場合を通過といい、隠されるほうの天体が太陽の場合を特に太陽面通過という。 食を説明するときは、概ね観測者を地球に置くことが多かったが、探査機の開発により、地球外での観測も可能となっている。地球上で日食が起きているとき、これを月面から見るとすると地球上に「影による食」が見える。また、地球上から月食が見られているとき、これを月面上の「影による食」の部分で日食が起きている。 「食」は食物を囓った痕が歯型により残った湾曲した形に因むが、日食・月食以外にはその意はほとんどない。日食や月食が起きるしくみが知られていなかった時代には、インドなどではラーフやケートゥなどの見えない星が食の原因と説明されていたことがあった。 英語「エクリプス」は天文以外の他分野でも用語として用いられている。.

新しい!!: 光度曲線と食 (天文) · 続きを見る »

食変光星

アルゴル型食変光星の変光の原理(動画)。実際は、青白い主星の方が、赤色がかった伴星より半径が小さい場合がほとんどである。動画の例では、食が皆既食・金環食なので、実際の光度曲線は食の中央が平坦になる。 食変光星(しょくへんこうせい)(eclipsing variable (star))とは、共通重心の周りを回る2つの星が互いの光を覆い隠し合うことによって、みかけの明るさ(2星の合成光度)が変わるタイプの変光星である。そのため、食変光星は必ず連星系を形成している。また、地球から見てこの連星系が食変光星に見えるためには、2つの星の軌道面が、地球と連星系とを結んだ直線を含む平面の近くに存在する必要がある。一般的に、恒星自身の明るさは変わらず、規則的に変光するのが特徴である(ただし、後述するカシオペヤ座RZ星のように、連星系の一方が脈動変光星の場合はこの限りではない)。なお、「食変光星」は変光星としての分類であり、連星の分類として食連星(しょくれんせい)(eclipsing binary)と呼ばれることもある。.

新しい!!: 光度曲線と食変光星 · 続きを見る »

質量

質量(しつりょう、massa、μᾶζα、Masse、mass)とは、物体の動かしにくさの度合いを表す量のこと。.

新しい!!: 光度曲線と質量 · 続きを見る »

超新星

プラーの超新星 (SN 1604) の超新星残骸。スピッツァー宇宙望遠鏡、ハッブル宇宙望遠鏡およびチャンドラX線天文台による画像の合成画像。 超新星(ちょうしんせい、)は、大質量の恒星が、その一生を終えるときに起こす大規模な爆発現象である。.

新しい!!: 光度曲線と超新星 · 続きを見る »

軌道離心率

軌道離心率(きどうりしんりつ、英語:orbital eccentricity)は、天体の軌道の絶対的な形を決める重要なパラメータである。軌道離心率は、この形がどれだけ円から離れているかを表す値であると言う事ができる。 標準的な条件下で、軌道離心率の値により、円、楕円、放物線、双曲線が定義できる。.

新しい!!: 光度曲線と軌道離心率 · 続きを見る »

関数 (数学)

数学における関数(かんすう、、、、、函数とも)とは、かつては、ある変数に依存して決まる値あるいはその対応を表す式の事であった。この言葉はライプニッツによって導入された。その後定義が一般化されて行き、現代的には数の集合に値をとる写像の一種であると理解される。.

新しい!!: 光度曲線と関数 (数学) · 続きを見る »

脈動変光星

脈動変光星(みゃくどうへんこうせい、pulsating variable)は、膨張と収縮を繰り返すことにより、または星の形状が変化すること(非動径脈動)により明るさが変化する変光星のこと。変光星総合カタログ (GCVS) では、その変光周期及び規則性により以下のように分類している。.

新しい!!: 光度曲線と脈動変光星 · 続きを見る »

野本憲一

野本 憲一(のもと けんいち、1946年12月1日 - )は、日本の天文学者。専門は、恒星進化論、とりわけ超新星の理論及び中性子星の進化、宇宙化学、とりわけ銀河の化学的力学的進化と宇宙の元素の起源。 東京大学特任教授、カブリ数物連携宇宙研究機構特任教授・主任研究員。 2014年、長年の業績を認められカブリ数物連携宇宙研究機構の「宇宙のダークサイド(浜松ホトニクス)寄付研究部門」の「浜松プロフェッサー」に着任する。 理学博士。東京都出身。妻はサイエンスライターの野本陽代。.

新しい!!: 光度曲線と野本憲一 · 続きを見る »

重力レンズ

銀河団Abell 1689によって作られた重力レンズ。遠方の多数の銀河の像が円弧状に引き伸ばされて見えている 重力レンズ効果 重力レンズ(じゅうりょくレンズ、)とは、恒星や銀河などが発する光が、途中にある天体などの重力によって曲げられたり、その結果として複数の経路を通過する光が集まるために明るく見えたりする現象。光源と重力源との位置関係によっては、複数の像が見えたり、弓状に変形した像が見えたりする。重力レンズ効果とも言われる。また、リング状の像のものはアインシュタインリングと言われる。.

新しい!!: 光度曲線と重力レンズ · 続きを見る »

自転周期

自転周期(じてんしゅうき、Rotation period)とは、自転する天体(主として惑星)が自転軸の周りを一周するのに要する時間である。 背景の恒星に対して一周する時間は恒星時と呼ばれ、太陽に対して一周する時間は太陽時と呼ばれる。.

新しい!!: 光度曲線と自転周期 · 続きを見る »

色指数 (天文)

色指数(いろしすう、color index)とは天文学で天体の色を表す指標である。特に恒星の場合は色指数はその星の表面温度の目安ともなる。 色指数は天体の等級を2種類の異なる色フィルターを用いて測定し、その等級の差をとることによって得られる。この測光には特定の波長域の光のみを透過するバンドパスフィルターが用いられる。代表的なフィルターには、紫外域の光を透過する U バンドフィルター、青色を透過する B バンドフィルター、緑色から黄色の波長域を透過する V バンドフィルターなどがある。この U,B,V 3色の波長域を用いる測光方法をUBV測光系と呼び、U バンドと B バンド、B バンドと V バンドの等級の差をそれぞれ U-B 色指数、B-V 色指数などと呼ぶ。 色指数は通常、波長が短いバンドでの等級から波長の長いバンドでの等級を差し引いた値を用いるため、色指数の値が小さいほどその天体は青い(または温度が高い)ことを示す。逆に色指数の値が大きいほどその天体は赤い(または温度が低い)。例として、黄色い恒星として知られている太陽の色指数は B-V.

新しい!!: 光度曲線と色指数 (天文) · 続きを見る »

通過 (天文)

フォボスの太陽面通過 通過(つうか、)は、天文学において、以下の2つの意味を持つ。.

新しい!!: 光度曲線と通過 (天文) · 続きを見る »

連星

連星(れんせい、)とは2つの恒星が両者の重心の周りを軌道運動している天体である。双子星(ふたごぼし)とも呼ばれる。連星は、地球から遠距離にあると、一つの恒星と思われ、その後に連星である事が判明する場合もある。この2世紀間の観測で、肉眼で見える恒星の半数以上が連星である可能性が示唆されている。通常は明るい方の星を主星、暗い方を伴星と呼ぶ。また、3つ以上の星が互いに重力的に束縛されて軌道運動している系もあり、そのような場合にはn連星またはn重連星などと呼ばれる。 また、二重星という言葉も連星を示す場合が多い。しかし、実際には、複数の恒星が地球から見て、同じ方向に位置しており、「見かけ上、連星のように見える」場合を表す。それぞれの恒星の、地球からの距離は全く異なり、物理的にも何の関連性も無い。二重星は、距離が異なるので、光度の差から、年周視差や視線速度を正確に求める事が出来る。しかし、中にはアルビレオのように、二重星か真の連星かが分かっていないものもある。.

新しい!!: 光度曲線と連星 · 続きを見る »

Ia型超新星

Ia型超新星(Type Ia supernova)は、超新星、激変星のサブカテゴリーの1つである。白色矮星の激しい爆発の結果生じる。白色矮星は、核融合を終え、寿命が尽きた恒星の残骸である。しかし、炭素と酸素に富む白色矮星は、温度が十分に高いと、莫大なエネルギーを放出してさらに核融合を進めることができる。 物理学的に、自転速度の遅い白色矮星は、太陽質量のおよそ1.38倍のチャンドラセカール限界よりも小さい質量に限定される 。これは、電子縮退圧によって支えることのできる最大の質量である。この限界を超えると、白色矮星は崩壊を始める。伴星から白色矮星に徐々に質量転移が起こり、物質が降着すると、核が炭素燃焼過程を開始する温度に達する。非常に稀ではあるが、白色矮星が別の恒星と融合すると、瞬間的に限界を超えて崩壊を始め、核融合が開始される温度を超える。核融合開始後、数秒の間に、白色矮星を構成する物質のかなりの部分が熱暴走を起こし、1-2×1044J ものエネルギーを放出して、超新星爆発を起こす。 この種類の超新星は、白色矮星の質量が均一であるため、ピークの明るさが一定している。この安定性により、Ia型超新星は、視等級の大きさが距離に依存するため、それが含まれる銀河までの距離を測定する標準光源として用いることができる。.

新しい!!: 光度曲線とIa型超新星 · 続きを見る »

Ib・Ic型超新星

accessdate.

新しい!!: 光度曲線とIb・Ic型超新星 · 続きを見る »

II型超新星

拡大するII-P型超新星SN 1987Aの超新星残骸 II型超新星(Type II supernova)は、大質量の恒星が急速に崩壊して起こす、激しい爆発である。この型の超新星となる恒星の質量は、太陽質量の少なくとも8倍で、40から50倍を超えない範囲である。他の型の超新星とは、スペクトル中の水素の存在で区別される。II型超新星は主に銀河の渦状腕やHII領域で見られるが、楕円銀河では見られない。 恒星は、元素の核融合によってエネルギーを生み出す。太陽と異なり、大質量の恒星は、水素やヘリウムよりも重い元素を使う核融合もでき、温度と圧力がさらに高くなるのと引き換えに寿命は短くなる。元素の縮退圧と融合反応により産み出されるエネルギーは、重力に打ち勝つほど強く、恒星を崩壊させずに平衡を維持している。恒星は水素やヘリウムから始まって、核で鉄やニッケルが作られるまで、徐々に重い元素を融合させるようになる。鉄やニッケルの核融合は正味のエネルギーを生み出さず、そのため融合はこれ以上進行しないため、内部には鉄-ニッケル核が残る。外向きの圧力となるエネルギー放出がなくなるため、平衡は破れる。 核の質量が約1.4太陽質量のチャンドラセカール限界を超えると、電子の縮退圧力だけでは重力に打ち勝つことができず、平衡を維持することができない。数秒以内に激しい爆縮が発生し、外核は光速の23%で内部に落ち込み、内核は1000億Kの温度に達する。逆ベータ崩壊によって中性子とニュートリノが生じ、10秒間の爆発で約1046Jのエネルギーが放出される。崩壊は、中性子縮退によって止まり、反動で外向きの爆発が起こる。この衝撃波のエネルギーは、恒星の周囲の物質を脱出速度以上に加速して超新星爆発が発生し、衝撃波に加え非常に高い温度と圧力によって短時間の間、鉄以上の重さの元素生成が可能となる(宇宙の元素合成)。 II型超新星は、爆発後の光度曲線に基づいていくつかのカテゴリーに分類される。II-L型超新星は爆発後の光度が線形(line)に減少し、II-P型超新星はしばらくは光度の減少が緩やか(plateau)である。Ib・Ic型超新星は、水素(とヘリウム)の外層を失った大質量恒星による核崩壊型の超新星である。.

新しい!!: 光度曲線とII型超新星 · 続きを見る »

掃天観測

掃天観測(そうてんかんそく、astronomical survey、スカイサーベイとも)は、望遠鏡を用いて一定範囲の夜空を観測することをいう。特定の天体を観測する指向観測と対をなす概念である。過去の掃天観測においては、可視光や電波などある特定の波長域あるいはある種の粒子(宇宙線)を観測し、天体カタログを作製することが主な目的であった。近年、観測技術の進展と天文学全体への理解の進展により、ある領域に対して様々な波長の電磁波で観測するなどの手法がとられるようになってきた。特に銀河天文学や観測的宇宙論のためのサーベイでは、これが標準的な手法になりつつある。また、地球に接近する彗星や小惑星などの小天体を発見するための掃天観測や、全天を短期間でサーベイし続けることで位置や明るさが変動するあらゆる天体を網羅的に発見しようとする大規模掃天観測も構想されている。.

新しい!!: 光度曲線と掃天観測 · 続きを見る »

恒星

恒星 恒星(こうせい)は、自ら光を発し、その質量がもたらす重力による収縮に反する圧力を内部に持ち支える、ガス体の天体の総称である。人類が住む地球から一番近い恒星は、太陽系唯一の恒星である太陽である。.

新しい!!: 光度曲線と恒星 · 続きを見る »

恒星黒点

恒星黒点(こうせいこくてん、Starspot)は、太陽以外の恒星に存在する、太陽の黒点に相当する構造である。太陽の黒点程度の大きさのものは、明るさのゆらぎが小さすぎて検出できないが、太陽の黒点の約100倍、恒星表面の30%に達するほど大きなものは検出することができる。.

新しい!!: 光度曲線と恒星黒点 · 続きを見る »

核 (天体)

核(かく)は、天体の中心部分の構造。中心核(ちゅうしんかく)文部省『学術用語集 地学編』 日本学術振興会、1984年、ISBN 4-8181-8401-2。とも。惑星・衛星・恒星などの核はコア (core) とも言う(彗星・活動銀河の核は英語ではnucleusであるため、コアとは言わない)。.

新しい!!: 光度曲線と核 (天体) · 続きを見る »

波長

波長(はちょう、Wellenlänge、wavelength)とは、空間を伝わる波(波動)の持つ周期的な長さのこと。空間は3次元と限る必要はない。 正弦波を考えると(つまり波形が時間や、空間の位置によって変わらない状態)、波長λには、 の関係がある。 \begin k \end は波数、 \begin \omega \end は角振動数、 \begin v \end は波の位相速度、 \begin f \end は振動数(周波数)である。波数 \begin k \end は k.

新しい!!: 光度曲線と波長 · 続きを見る »

測光 (天文)

測光(そっこう、photometry)とは、天体の明るさを測定するための観測手法である。通常、特定の波長域の電磁波だけを透過するフィルターを通して観測を行い、多くの場合、複数のフィルターを使用して、明るさに加えて色の情報を得て、天体の大まかな性質を調べることを目的としている。多数の波長域で観測すれば、スペクトルエネルギー分布(SED)を推定することもでき、そのような観測手法は分光測光とも言われる。 eso0528。各フィルターの波長感度特性が重ねて描かれている。 測光を意味する単語"photometry"は、ギリシャ語で「光」を意味する"photos"と「測定」を意味する"metron"からできている。.

新しい!!: 光度曲線と測光 (天文) · 続きを見る »

激変星

赤い恒星(左)のガスが白色矮星に流れ込み降着円盤を形成している様子(想像図) 激変星(げきへんせい)(cataclysmic variable)は、変光星の大きな分類の一つ。激変変光星、激変型変光星ともいう。 短期間(長くて数日)に極度に増光し、その後緩やかに減光する。それを1度きり起こすか、不規則な周期で繰り返す。 超新星以外は白色矮星を含む近接連星系であり、Ia型超新星も中性子星を含む近接連星系である。多くの場合、降着円盤が変光に関わっている。.

新しい!!: 光度曲線と激変星 · 続きを見る »

振幅

振幅(しんぷく、英語:amplitude)とは、波動の振動の大きさを表す非負のスカラー量である。波の1周期間での媒質内における最大変位量の絶対値で表される。 時としてこの距離は「最大振幅」と呼ばれ、他の振幅の概念とは区別される。特に電気工学で使用される二乗平均平方根 (RMS) 振幅がそれにあたる。最大振幅は、正弦波、矩形波、三角波といった相対的、周期的なはっきりした波動に使用される。1方向への周期的なパルスといった非相対的な波動では、最大振幅は曖昧になる。 非対称な波(一方向への周期的パルスなど)の場合には最大振幅は多義的となる。なぜなら、最大値と平均値との差をとるか、平均値と最小値との差をとるか、最大値と最小値との差の半分をとるか、によって得られる値が変わるためである。 複雑な波、特にノイズのように繰り返しのない信号の場合には、RMS振幅が一般に用いられる。一意に求まり、物理的意味を持つ量だからである。例えば、音や電磁波や電気信号として伝えられる仕事率の平均は、RMS振幅の2乗に比例する(最大振幅の平方根には一般的には比例しない)。 振幅を形式化するいくつかの方法が存在する。 簡単な波動方程式の場合 この場合、Aが波動の振幅である。 振幅の構成単位は波動の種類によって異なる。 弦の振動 (en:vibrating string) による波や、水などの媒質を伝わる波の場合、振幅とは変位である。 音波や音響信号では、振幅は便宜上音圧を指す。ただし粒子の移動(空気やスピーカーの振動板の動き)の振幅を指すこともある。振幅の常用対数を取ったものはデシベル (dB) と呼ばれ、振幅0の場合には -∞ dB となる。:en:Loudnessは振幅に関連があり、通常の音はindependently of amplitudeとして認識されるものの強度は音に関する最も分かり易い量である。 電磁放射では、振幅は波動の電場と対応する。振幅の2乗は波動の強度に比例する。 振幅は、連続波 (en:continuous wave) の場合は一定であり、一般には時刻と位置によって変化する。振幅の変化の形はエンベロープ (en:Envelope (waves)) と呼ばれる。.

新しい!!: 光度曲線と振幅 · 続きを見る »

惑星科学

惑星科学(わくせいかがく、planetary science)は、惑星について研究する学問である。地球科学と天文学をつなぐ学問であるといえるが、天文学が中学校・高等学校においては地学分野に、大学では物理学の一分野として位置づけられているのに対し、惑星科学は中学・高校・大学のいずれでも地学=地球科学の一分野とされている。それは惑星科学が地球科学の他惑星への応用という一面を持っているからである。 なお、惑星科学のうち特に物理学的手法を用いるものを惑星物理学と呼ぶ。.

新しい!!: 光度曲線と惑星科学 · 続きを見る »

新星

新星(しんせい)は、激変星の一種である。恒星(白色矮星)の表面に一時的に強い爆発が起こり、それまでの光度の数百倍から数百万倍も増光する現象を言う。英語やヨーロッパの言語の多くではノヴァ (nova、複数形 novae) と呼び、変光星の分類としてはN型と言う。他の類似の激変星と区別するために古典新星 (classical nova) と言うこともある。 超新星と名前が似ており、大きく分類すれば同じ激変星であるが、発生原因や増光の原理は大きく異なる。また、「新しい星」が生まれる現象でもない。.

新しい!!: 光度曲線と新星 · 続きを見る »

日本天文学会

公益社団法人日本天文学会(にほんてんもんがっかい)は、日本の天文学研究者を中心とする学会である。天文学の進歩及び普及を目的とする。事務局は東京都三鷹市の国立天文台三鷹キャンパス内にある。.

新しい!!: 光度曲線と日本天文学会 · 続きを見る »

時間

人類にとって、もともとは太陽や月の動きが時間そのものであった。 アイ・ハヌム(紀元前4世紀~紀元前1世紀の古代都市)で使われていた日時計。人々は日時計の時間で生きていた。 砂時計で砂の流れを利用して時間を計ることも行われるようになった。また砂時計は、現在というものが未来と過去の間にあることを象徴している。くびれた部分(現在)を見つめる。すると時間というのは上(未来)から流れてきて下(過去)へと流れてゆく流れ、と感じられることになる。 時間(じかん)は、出来事や変化を認識するための基礎的な概念である。芸術、哲学、自然科学、心理学などの重要なテーマとなっている。それぞれの分野で異なった定義がなされる。.

新しい!!: 光度曲線と時間 · 続きを見る »

時間 (単位)

時間(じかん)又は時(じ、記号:h)は、時間の単位の一つである。「国際単位系(SI)と併用されるがSIに属さない単位」(SI併用単位)である。なお、SIや日本の計量法では、単位の名称は「時」のみである。 日本語では、時刻については時(じ)の呼称が用いられ、時間間隔を言うときは通常「時間」の呼称を用いる。また同じ漢字で時(とき)と読む言葉は、昔の日本の時法における単位である。以下の不定時法の節を参照されたい。 1時間は、歴史的には地球における1日(より正確には1平均太陽日)の24分の1の時間間隔として定義されてきた。現在は、秒が時間の基本単位であるので、1時間は「秒の3600倍」と定義される。1時間は60分である。 単位記号の h は、1948年の第9回国際度量衡総会(CGPM)の決議7によって定められたものである。他に hr などが用いられることがあるが、国際単位系(SI)及び日本の計量法体系では、記号「h」のみが認められており、それ以外の記号は用いてはならない。.

新しい!!: 光度曲線と時間 (単位) · 続きを見る »

10月6日

10月6日(じゅうがつむいか)はグレゴリオ暦で年始から279日目(閏年では280日目)にあたり、年末まであと86日ある。.

新しい!!: 光度曲線と10月6日 · 続きを見る »

2006年

この項目では、国際的な視点に基づいた2006年について記載する。.

新しい!!: 光度曲線と2006年 · 続きを見る »

ここにリダイレクトされます:

ライトカーブ

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »