ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

モル体積

索引 モル体積

モル体積とは単位物質量(1 mol)の原子または分子が標準状態で占める体積である。モル質量÷密度でも求められる。 気体分子のモル体積は気体の状態方程式で議論され、1 molの気体分子の体積は、気体の種類によらずほぼ一定である。気体の種類による違いは実在気体の状態方程式(ファンデルワールスの状態方程式など)の係数の違いになる。理想気体のモル体積Vm はその状態方程式より、種類によらず V_\mathrm&.

20 関係: 原子原子量単体実在気体密度体積圧力モルモル質量ファンデルワールスの状態方程式分子分子構造状態方程式 (熱力学)理想気体理想気体の状態方程式結晶構造物質量標準状態気体定数温度

原子

原子(げんし、άτομο、atom)という言葉には以下の3つの異なった意味がある。.

新しい!!: モル体積と原子 · 続きを見る »

原子量

原子量(げんしりょう、英: atomic weight)または相対原子質量(そうたいげんししつりょう、英:relative atomic mass)とは、「一定の基準によって定めた原子の質量」原子量、『理化学事典』、第5版、岩波書店。ISBN 978-4000800907。である。 その基準は歴史的変遷を経ており、現在のIUPACの定義によれば1個の原子の質量の原子質量単位に対する比であり、Eを原子や元素を表す記号として Ar(E) という記号で表される。すなわち12C原子1個の質量に対する比の12倍である。元素に同位体が存在する場合は核種が異なるそれぞれの同位体ごとに原子の質量が異なるが、ほとんどの元素において同位体存在比は一定なので、原子量は存在比で補正された元素ごとの平均値として示される。同位体存在比の精度が変動するため、公示されている原子量の値や精度も変動する。 質量と質量との比なので比重と同様に無次元量だが、その数値は定義上、1個の原子の質量を原子質量単位で表した値に等しい。また物質量が1molの原子の質量をg単位で表した数値、すなわちg·mol−1単位で表した原子のモル質量をモル質量定数 1 g·mol−1 で除して単位を除去した数値にも等しい。 同位体存在比は、精度を高めると試料の由来(たとえば産地、地質学的年代)によって厳密には異なる。測定精度の向上と各試料の全天然存在量予測の変動により、同位体存在比の精度が変動する。そのことによりIUPACの下部組織である (CIAAW) により定期的に「原子量表」の改訂が発表され、これが「標準原子量」と呼ばれている。その改訂は隔年で行われ、奇数年に発表されている。日本化学会原子量小委員会はこの表をもとに原子量表を作成し、日本化学会会誌「化学と工業」4月号で毎年発表している。 原子量表の改定や試料間の原子量の差異があるとは言え、有効数字3桁程度では大部分の元素の原子量は十分に安定している(主な例外: リチウム、水素)。そのため、化学反応等においては、実用上は問題を生じない。一方、精密分析や公示文書の値を計算する場合は、最新の原子量表の値を使うべきである。 1961年まで、物理学では16Oの質量を、化学では天然同位体比の酸素の質量を基準としていた。.

新しい!!: モル体積と原子量 · 続きを見る »

単体

単体(たんたい、simple substance)とは、単一の元素からできている純物質のことである。 水素 (H2)、酸素 (O2) などの等核二原子分子や、ナトリウム (Na)、金 (Au) などの純金属が含まれる。 これに対して、水 (H2O) など2種類以上の元素からできている純物質は化合物という。 酸素 (O2) とオゾン (O3)、あるいは赤リンと黄リンのように、同じ元素からできた単体であっても、異なる性質を示す場合がある。 このような単体同士の関係を同素体という。 たとえば、ダイヤモンドとグラファイトを混ぜ合わせた物質は、単一の炭素原子からできているが、密度・融点・沸点などの物理的性質が一定にさだまらないので純物質ではなく(したがって単体でもなく)、2種類の単体(炭素の同素体)の混合物である。.

新しい!!: モル体積と単体 · 続きを見る »

実在気体

実在気体(じつざいきたい、)とは、現実に存在する気体のことで、不完全気体と呼ぶことがある 。理想気体と対比するときに用いる語である。.

新しい!!: モル体積と実在気体 · 続きを見る »

密度

密度(みつど)は、広義には、対象とする何かの混み合いの程度を示す。ただし、科学において、単に密度といえば、単位体積あたりの質量である。より厳密には、ある量(物理量など)が、空間(3 次元)あるいは面上(2 次元)、線上(1 次元)に分布していたとして、これらの空間、面、線の微小部分上に存在する当該量と、それぞれ対応する体積、面積、長さに対する比のことを(それぞれ、体積密度、面密度、線密度と言う)言う。微小部分は通常、単位体積、単位面積、単位長さ当たりに相当する場合が多い。勿論、4 次元以上の仮想的な場合でも、この関係は成立し、密度を定義することができる。 その他の密度としては、状態密度、電荷密度、磁束密度、電流密度、数密度など様々な量(物理量)に対応する密度が存在する(あるいは定義できる)。物理量以外でも人口密度、個体群密度、確率密度、などの値が様々なところで用いられている。密度効果という語もある。.

新しい!!: モル体積と密度 · 続きを見る »

体積

体積(たいせき)とは、ある物体が 3 次元の空間でどれだけの場所を占めるかを表す度合いである。和語では嵩(かさ)という。.

新しい!!: モル体積と体積 · 続きを見る »

圧力

圧力(あつりょく、pressure)とは、.

新しい!!: モル体積と圧力 · 続きを見る »

モル

モル(mole, Mol, 記号: mol)は国際単位系 (SI) における物質量の単位である。SI基本単位の一つである。 名前はドイツ語の(英語では 。ともに 「分子」 の意)に由来する。モルを表す記号 mol はドイツ人の化学者ヴィルヘルム・オストヴァルトによって導入された。.

新しい!!: モル体積とモル · 続きを見る »

モル質量

。--> 物質のモル質量(モルしつりょう、molar mass)とは、その物質の単位物質量当たりの質量である。物質の質量をその物質の物質量で割ったものに等しいグリーンブック (2009) p. 57.

新しい!!: モル体積とモル質量 · 続きを見る »

ファンデルワールスの状態方程式

ファン・デル・ワールスの状態方程式(van der Waals equation)とは、実在気体を表現する状態方程式の一つである。1873年にファン・デル・ワールスにより提案された。 ファン・デル・ワールスの状態方程式は、実在気体の理想気体からのずれを二つのパラメータを導入することで表現している。二つのパラメータを導入する簡単な補正ではあるが、ジュール=トムソン効果や気相-液相の相転移について期待される振る舞いを再現できる上、解析的扱いが易しいため頻繁に用いられる。ただし、あくまで一つの理論モデルであり、厳密に実在気体の振る舞いを表現できる訳ではない。また、二つのパラメータだけで理想気体からのずれを表現しているため、ビリアル方程式のように系統的に近似の精度を上げていく事が出来ない欠点もある。.

新しい!!: モル体積とファンデルワールスの状態方程式 · 続きを見る »

分子

分子(ぶんし)とは、2つ以上の原子から構成される電荷的に中性な物質を指すIUPAC.

新しい!!: モル体積と分子 · 続きを見る »

分子構造

分子構造(ぶんしこうぞう、molecular structure、molecular geometry)とは、分子の幾何学的構造をいい、例えば原子間距離や配向などをさす。分子構造を調べるには、主に回折法と分光法が用いられる。.

新しい!!: モル体積と分子構造 · 続きを見る »

状態方程式 (熱力学)

態方程式(じょうたいほうていしき、)とは、熱力学において、状態量の間の関係式のことをいう。巨視的な系の熱力学的性質を反映しており、系によって式の形は変化する田崎『熱力学』 pp.51-52。状態方程式の具体的な形は実験的に決定されるか、統計力学に基づいて計算され、熱力学からは与えられない。 広義には、全ての状態量の間の関係式のことであるが、特に、流体の圧力を温度、体積と物質量で表す式を指す場合が多い。 流体だけでなく固体に対しても、その熱力学的性質を表現する状態方程式を考えることが出来る。磁性体や誘電体でも状態方程式を考える場合もある。主に熱平衡における系の温度と他の状態量との関係を表す関係式を指すが、必ずしも温度との関係を表すとは限らない。温度依存性を考えない形の関係式は構成方程式と呼ばれることもある。.

新しい!!: モル体積と状態方程式 (熱力学) · 続きを見る »

理想気体

想気体(りそうきたい、ideal gas)または完全気体(かんぜんきたい、)は、圧力が温度と密度に比例し、内部エネルギーが密度に依らない気体である。気体の最も基本的な理論モデルであり、より現実的な他の気体の理論モデルはすべて、低密度で理想気体に漸近する。統計力学および気体分子運動論においては、気体を構成する個々の粒子分子や原子など。の体積が無視できるほど小さく、構成粒子間には引力が働かない系である。 実際にはどんな気体分子気体を構成する個々の粒子のこと。気体分子運動論では、構成粒子が原子であってもこれを分子と呼ぶことが多い。にも体積があり、分子間力も働いているので理想気体とは若干異なる性質を持つ。そのような理想気体でない気体は実在気体または不完全気体と呼ばれる。実在気体も、低圧で高温の状態では理想気体に近い振る舞いをする。常温・常圧では実在気体を理想気体とみなせる場合が多い。.

新しい!!: モル体積と理想気体 · 続きを見る »

理想気体の状態方程式

想気体の状態方程式(りそうきたいのじょうたいほうていしき、)とは、気体の振る舞いを理想化した状態方程式である。なお、理想気体はこの状態方程式に従うが、その振る舞いは状態方程式だけでは決まらず、比熱容量の定数性が要求される。 熱力学温度 、圧力 の下で、物質量 の理想気体が占める体積 が で与えられる。ここで係数 はモル気体定数である。 この式が理想気体の状態方程式であり、ボイルの法則、シャルルの法則と体積の示量性から導かれる。 実在気体の場合は、気体は近似的にこの方程式に従い、式の有効性は気体の密度が0に近づき(低圧になり)、かつ高温になるにつれて高まる。密度が0に近付けば、分子の運動に際し、お互いがぶつからずに、分子自身の体積が無視できるようになる。また、 高温になることによって、分子の運動が高速になり、分子間力(ファンデルワールス力)が無視出来るようになるからである。.

新しい!!: モル体積と理想気体の状態方程式 · 続きを見る »

結晶構造

結晶構造(けっしょうこうぞう) とは、結晶中の原子の配置構造のことをいう。.

新しい!!: モル体積と結晶構造 · 続きを見る »

物質量

物質量(ぶっしつりょう、)は、物質の量を表す物理量のひとつ体積、質量、分子数、原子数などでも物質の量を表すことができる。である。物質を構成する要素粒子の個数をアボガドロ定数 (約 6.022×1023 mol-1) で割ったものに等しい。要素粒子()は物質の化学式で表される。普通は、分子性物質の場合は分子が要素粒子であり、イオン結晶であれば組成式で書かれるものが要素粒子であり、金属では原子が要素粒子である。 物質量は1971年に国際単位系 (SI) の7番目の基本量に定められた。表記する場合は、量記号はイタリック体の 、量の次元の記号はサンセリフ立体の N が推奨されている。物質量のSI単位はモルであり、モルの単位記号は mol である。熱力学的な状態量として見れば示量性状態量に分類される。.

新しい!!: モル体積と物質量 · 続きを見る »

標準状態

標準状態(ひょうじゅんじょうたい)とは、物理学、化学や工学などの分野で、測定する平衡状態に依存する熱力学的な状態量を比較するときに基準とする状態である。標準状態をどのように設定するかは完全に人為的なものであり、理論的な裏付けはないが、歴史的には人間の自然認識に立脚する。 一般的には気体の標準状態のことを指すことが多く、圧力と温度を指定することで示される。科学の分野により、また学会、国際規格団体によって、その定義は様々であり混乱が見られる。このため、日本熱測定学会は統一した値として、地球の大気の標準的な圧力である標準大気圧()を用いるべきであると主張し啓蒙活動を展開している日本熱測定学会 ICCT2008で発表したポスター。.

新しい!!: モル体積と標準状態 · 続きを見る »

気体定数

気体定数(きたいていすう、)は、理想気体の状態方程式における係数として導入される物理定数であるアトキンス『物理化学』 p.20。理想気体だけでなく、実在気体や液体における量を表すときにも用いられる。 気体定数の測定法としては、低圧の領域で状態方程式から計算する方法もあるが、低圧で音速測定を行い、そこから求めるほうが正確に得られる。 モル気体定数(モルきたいていすう、)の値は である(2014CODATA推奨値)。 気体定数は、ボルツマン定数 のアボガドロ定数 倍である。したがって、2019年5月20日に施行予定の国際単位系(SI)の改定(新しいSIの定義)によって、ボルツマン定数もアボガドロ定数も定義定数となるので、気体定数も定義定数となり となる。.

新しい!!: モル体積と気体定数 · 続きを見る »

温度

温度(おんど、temperature)とは、温冷の度合いを表す指標である。二つの物体の温度の高低は熱的な接触により熱が移動する方向によって定義される。すなわち温度とは熱が自然に移動していく方向を示す指標であるといえる。標準的には、接触により熱が流出する側の温度が高く、熱が流入する側の温度が低いように定められる。接触させても熱の移動が起こらない場合は二つの物体の温度が等しい。 統計力学によれば、温度とは物質を構成する分子がもつエネルギーの統計値である。熱力学温度の零点(0ケルビン)は絶対零度と呼ばれ、分子の運動が静止する状態に相当する。ただし絶対零度は極限的な状態であり、有限の操作で物質が絶対零度となることはない。また、量子的な不確定性からも分子運動が止まることはない。 温度はそれを構成する粒子の運動であるから、化学反応に直結し、それを元にするあらゆる現象における強い影響力を持つ。生物にはそれぞれ至適温度があり、ごく狭い範囲の温度の元でしか生存できない。なお、日常では単に温度といった場合、往々にして気温のことを指す場合がある。.

新しい!!: モル体積と温度 · 続きを見る »

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »