ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
インストール
ブラウザよりも高速アクセス!
 

メモ化

索引 メモ化

メモ化(Memoization)とは、プログラムの高速化のための最適化技法の一種であり、サブルーチン呼び出しの結果を後で再利用するために保持し、そのサブルーチン(関数)の呼び出し毎の再計算を防ぐ手法である。メモ化は構文解析などでも使われる(必ずしも高速化のためだけとは限らない)。キャッシュはより広範な用語であり、メモ化はキャッシュの限定的な形態を指す用語である。.

51 関係: 参照透過性同根語不変条件人工知能形式言語形式文法バックトラッキングラテン語ルックアップテーブルトレードオフトップダウン構文解析プログラミング言語プログラマプログラム (コンピュータ)パックラット構文解析ピーター・ノーヴィグドナルド・ミッキーアルゴリズムアーリー法キャッシュ (コンピュータシステム)クロージャコンパイラ最適化コールスタックサブルーチン再帰再帰下降構文解析C++Common Lisp第一級オブジェクト階乗遅延評価項書き換え複雑性計算複雑性理論記憶装置連想配列LuaPerlPythonRuby構文解析構文解析器構文木演算子強度低減最適化 (情報工学)文字列擬似コード整数1968年1991年...1995年 インデックスを展開 (1 もっと) »

参照透過性

参照透過性(さんしょうとうかせい、Referential transparency)は、計算機言語の概念の一種である。ある式が参照透過であるとは、その式をその式の値に置き換えてもプログラムの振る舞いが変わらない(言い換えれば、同じ入力に対して同じ作用と同じ出力とを持つプログラムになる)ことを言う。具体的には変数の値は最初に定義した値と常に同じであり、関数は同じ変数を引数として与えられれば同じ値を返すということになる。当然変数に値を割り当てなおす演算である代入 (Assignment) を行う式は存在しない。このように参照透過性が成り立っている場合、ある式の値、例えば関数値、変数値についてどこに記憶されている値を参照しているかということは考慮する必要がない、即ち参照について透過的であるといえる。 参照透過性が成り立つ言語は式の値がプログラムのテキストから定まるという特徴から宣言型言語 (Declarative language) と呼ばれたり、関数の数学的性質が保たれるという特徴から純粋関数型言語 (Pure functional language) と呼ばれたりする。一方変数の値の変更が認められているような参照透過的でない言語を手続き型言語と呼ぶ。ただ、手続き型言語は機械語プログラミングとの繋がりという歴史的な事情により手続きが式でなく命令列で表現されたことから命令型言語と呼ばれることもあり、そのような場合との対比で単に式(例えば関数や変数の組み合わせ)でプログラムが表現されているだけの言語、あるいは高階関数の仕組みを備えた言語をひっくるめて、代入が可能であるかないかを問わず、関数型言語と呼ぶことも多い。結局現状では単に関数型言語という場合は参照透過的な言語(即ち純粋関数型言語)とそうでない関数型言語を両方とも含むということになっている。 また以上に関連して分散処理を記述する場合に、あるデータがどのノード上にあるかを意識せず透過的にアクセスできるという性質も参照透過性と呼ばれる。.

新しい!!: メモ化と参照透過性 · 続きを見る »

同根語

同根語(どうこんご)(cognate)とは、言語学において、共通の起源を持つ単語をいう。 それは、同じ言語の中で発生する場合がある。 例えば、2つの英単語「shirt」(シャツ)と「skirt」(スカート)は、ともにインド・ヨーロッパ祖語の単語「sker-(「刈ること」という意味)に由来している。 それはまた、複数語の言語にわたって発生する場合もある。 例えば英単語の「night」とドイツ語単語の「Nacht」は、いずれもインド・ヨーロッパ祖語の単語「nokt-」から派生した、「夜」を意味する単語である。 語「cognate」は、ラテン語の「cognatus」に由来している。 単語は文字通り「由来によって関連があるか、共通の祖先を持っているか、類似した性質や特性や役目によって関連がある」ということを意味している。.

新しい!!: メモ化と同根語 · 続きを見る »

不変条件

不変条件(英: invariant)とは、コンピュータプログラムの理論における用語で、ある処理の間、その真理値が真のまま変化しない述語 (predicate) であり、その処理シーケンスに対して不変であるという。.

新しい!!: メモ化と不変条件 · 続きを見る »

人工知能

250px 人工知能(じんこうちのう、artificial intelligence、AI)とは、「計算機(コンピュータ)による知的な情報処理システムの設計や実現に関する研究分野」を指す。.

新しい!!: メモ化と人工知能 · 続きを見る »

形式言語

形式言語(けいしきげんご、formal language)は、その文法(構文、統語論)が、場合によっては意味(意味論)も、形式的に与えられている(形式体系を参照)言語である。形式的でないために、しばしば曖昧さが曖昧なまま残されたり、話者集団という不特定多数によってうつろいゆくような自然言語のそれに対して、一部の人工言語や、いわゆる機械可読な(機械可読目録を参照)ドキュメント類などは形式言語である。この記事では形式的な統語論すなわち構文の形式的な定義と形式文法について述べる。形式的な意味論については形式意味論の記事を参照。.

新しい!!: メモ化と形式言語 · 続きを見る »

形式文法

形式文法(けいしきぶんぽう、Formal Grammar)は、形式的に与えられた(形式体系を参照)文法である。「言語」をその言語における文の集合として与えるものとして、ここでは、(有限の)文字群上の有限長の文字列の(通常無限な)集合が、形式的に記述される。 形式文法にはふたつの捉えかたがある。それは「生成」と「分析」である。#チョムスキー階層の節および単独記事に詳細があるが、両者は対応するので、ある意味では同じものをそれぞれ逆の側から見たものにすぎない。 以下で「文法の規則(構文規則)の集まり」と呼んでいるのは、具体的には、句構造規則#基本モデルにあるようなものである。また終端記号と非終端記号の記事も参照のこと。.

新しい!!: メモ化と形式文法 · 続きを見る »

バックトラッキング

バックトラッキング (backtracking)は、制約充足問題の解を探索する戦略の一種で、力まかせ探索を改良したもの。「バックトラック」という用語は、アメリカの数学者デリック・ヘンリー・リーマー (Derrick Henry Lehmer)が1950年代に作った造語である。.

新しい!!: メモ化とバックトラッキング · 続きを見る »

ラテン語

ラテン語(ラテンご、lingua latina リングア・ラティーナ)は、インド・ヨーロッパ語族のイタリック語派の言語の一つ。ラテン・ファリスク語群。漢字表記は拉丁語・羅甸語で、拉語・羅語と略される。.

新しい!!: メモ化とラテン語 · 続きを見る »

ルックアップテーブル

計算機科学におけるルックアップテーブル(Lookup table)とは、複雑な計算処理を単純な配列の参照処理で置き換えて効率化を図るために作られた、配列や連想配列などのデータ構造のことをいう。例えば大きな負担がかかる処理をコンピュータに行わせる場合、あらかじめ先に計算できるデータは計算しておき、その値を配列(ルックアップテーブル)に保存しておく。コンピュータはその都度計算を行う代わりに配列から目的のデータを取り出すことによって、計算の負担を軽減し効率よく処理を行うことができる。高価な計算処理や入出力処理をテーブルルックアップで置き換えた場合、処理時間を大きく削減することができる。他にも、あるキーワードを基にあるデータを取り出すとき、その対応を表としてまとめたものもルックアップテーブルといえる。テーブルの作成方法には、コンパイル前に計算したものを静的に確保したメモリに格納しておく方法や、プログラムの初期化処理中に計算(メモ化)やプリフェッチを行っておく方法がある。また、入力された値がルックアップテーブルにあるか調べることで入力値のチェックを行ったり、プログラミング言語によっては、ルックアップテーブルに関数ポインタ(あるいはラベルへのオフセット)を格納しておいて入力に応じた処理を行ったりするといった応用的な使い方をされることもある。.

新しい!!: メモ化とルックアップテーブル · 続きを見る »

トレードオフ

トレードオフ()とは、一方を追求すれば他方を犠牲にせざるを得ないという状態・関係のことである。トレードオフのある状況では具体的な選択肢の長所と短所をすべて考慮したうえで決定を行うことが求められる。.

新しい!!: メモ化とトレードオフ · 続きを見る »

トップダウン構文解析

トップダウン構文解析(トップダウンこうぶんかいせき、Top-down parsing)は、構文解析において、構文木を、最上位の非終端記号から始めて、それを順次右辺の記号列へと書き換えていくような手順によって導出する構文解析の戦略である。逆はボトムアップ構文解析。.

新しい!!: メモ化とトップダウン構文解析 · 続きを見る »

プログラミング言語

プログラミング言語(プログラミングげんご、programming language)とは、コンピュータプログラムを記述するための形式言語である。なお、コンピュータ以外にもプログラマブルなものがあることを考慮するならば、この記事で扱っている内容については、「コンピュータプログラミング言語」(computer programming language)に限定されている。.

新しい!!: メモ化とプログラミング言語 · 続きを見る »

プログラマ

プログラマ(Programmer)とは、コンピューターのプログラムを作成する人全般を指す。プログラマーとも表記される(#プログラマに対する呼称参照)。.

新しい!!: メモ化とプログラマ · 続きを見る »

プログラム (コンピュータ)

ンピュータプログラム(英:computer programs)とは、コンピュータに対する命令(処理)を記述したものである。コンピュータが機能を実現するためには、CPUで実行するプログラムの命令が必要である。 コンピュータが、高度な処理を人間の手によらず遂行できているように見える場合でも、コンピュータは設計者の意図であるプログラムに従い、忠実に処理を行っている。実際には、外部からの割り込み、ノイズなどにより、設計者の意図しない動作をすることがある。また設計者が、外部からの割り込みの種類を網羅的に確認していない場合もある。.

新しい!!: メモ化とプログラム (コンピュータ) · 続きを見る »

パックラット構文解析

パックラット構文解析(英:Packrat Parsing)とは、PEGにより構文解析を行うアルゴリズムである。"packrat"はネズミの一種であり、そのネズミの習性に由来して「役に立たなそうなものでも習慣的に集めて持っておく人」という意味でも使われる。.

新しい!!: メモ化とパックラット構文解析 · 続きを見る »

ピーター・ノーヴィグ

ピーター・ノーヴィグ(Peter Norvig、1956年5月12日 -)はアメリカ合衆国の計算機科学者。ACMおよびAAAIのフェロー、Google研究本部長(Director of Research)を務めている。専門は人工知能および自然言語処理。エルデシュ数は4。 1978年、ブラウン大学にて応用数学の学士号を取得。1980年よりカリフォルニア大学バークレー校大学院にて計算機科学を学び、1985年、ロバート・ウィレンスキーによる指導のもと、自然言語処理に関する論文で博士号を取得。その後、南カリフォルニア大学助教授(1985年-1986年)、カリフォルニア大学バークレー校研究員(1986年-1991年)、サン・マイクロシステムズ上級研究員(1991年-1994年)を務めた。 1998年から2001年にかけてはNASAエイムズ研究センターにて計算科学部長を務め、ディープ・スペース1号に搭載された自律制御システムを設計。このシステムは1999年度のNASA年間最優秀ソフトウェア賞を受賞し、アメリカ人工知能学会会長演説では「人工知能の歴史における最良の成果の一つ」と評された。2001年以降はGoogleの研究部門に在籍し、機械学習研究部長(2001年-2002年)、検索品質管理部長(2002年-2005年)を経て、2005年以降は研究本部長を務めている。 ノーヴィグはまた、優れた教科書執筆者としても知られており、Artificial Intelligence: A Modern Approach(スチュワート・ラッセルとの共著)およびParadigms of Artificial Intelligence Programming: Case Studies in Common Lispは、それぞれ人工知能とCommon Lispにおける古典ともいうべき地位を占めている。.

新しい!!: メモ化とピーター・ノーヴィグ · 続きを見る »

ドナルド・ミッキー

ドナルド・ミッキー(Donald Michie、1923年11月11日 - 2007年7月7日)は、イギリスの人工知能研究者。第二次世界大戦中は、ブレッチリー・パークの政府暗号学校で働き、ドイツのテレタイプ暗号 "" の解読に貢献した。.

新しい!!: メモ化とドナルド・ミッキー · 続きを見る »

アルゴリズム

フローチャートはアルゴリズムの視覚的表現としてよく使われる。これはランプがつかない時のフローチャート。 アルゴリズム(algorithm )とは、数学、コンピューティング、言語学、あるいは関連する分野において、問題を解くための手順を定式化した形で表現したものを言う。算法と訳されることもある。 「問題」はその「解」を持っているが、アルゴリズムは正しくその解を得るための具体的手順および根拠を与える。さらに多くの場合において効率性が重要となる。 コンピュータにアルゴリズムをソフトウェア的に実装するものがコンピュータプログラムである。人間より速く大量に計算ができるのがコンピュータの強みであるが、その計算が正しく効率的であるためには、正しく効率的なアルゴリズムに基づいたものでなければならない。.

新しい!!: メモ化とアルゴリズム · 続きを見る »

アーリー法

アーリー法(Earley parser)は、チャートパーサの一種であり、主に計算言語学での構文解析に使われる。名称の由来は発明者の Jay Earley。このアルゴリズムは動的計画法に基づいている。 アーリー法は全ての文脈自由言語の構文解析が可能である。アーリー法は通常、入力の3乗の時間がかかり、曖昧でない文法の場合は2乗の時間がかかる。特に左再帰で書かれた生成規則を効率的に解析できる。.

新しい!!: メモ化とアーリー法 · 続きを見る »

キャッシュ (コンピュータシステム)

ャッシュ (cache) は、CPUのバスやネットワークなど様々な情報伝達経路において、ある領域から他の領域へ情報を転送する際、その転送遅延を極力隠蔽し転送効率を向上するために考案された記憶階層の実現手段である。実装するシステムに応じてハードウェア・ソフトウェア双方の形態がある(今後コンピュータのプログラムなども含め全ての転送すべき情報をデータと表す)。 キャッシュ概要図 転送元と転送先の中間に位置し、データ内容の一部とその参照を保持する。データ転送元への転送要求があり、それへの参照が既にキャッシュに格納されていた場合は、元データからの転送は行わずキャッシュが転送を代行する(この状態をキャッシュヒット、キャッシュに所望のデータが存在せず元データから転送する状態をキャッシュミスという。なお、由来は不明で和製英語と思われるが日本の一部の文献及び資格試験において「キャッシュミスヒット」という用語が使われている)。もしくは出力データをある程度滞留させ、データ粒度を高める機能を持つ。これらによりデータの2種の局所性、すなわち時間的局所性と空間的局所性を活用し、データ転送の冗長性やオーバヘッドを低減させることで転送効率を向上させる。 コンピュータの各記憶領域を始めとして、ネットワークやデータベース、GPU、DSPなど様々なシステムの様々な階層に搭載されている。.

新しい!!: メモ化とキャッシュ (コンピュータシステム) · 続きを見る »

クロージャ

ージャ(クロージャー、closure)、関数閉包はプログラミング言語における関数オブジェクトの一種。いくつかの言語ではラムダ式や無名関数で実現している。引数以外の変数を実行時の環境ではなく、自身が定義された環境(静的スコープ)において解決することを特徴とする。関数とそれを評価する環境のペアであるともいえる。この概念は少なくとも1960年代のSECDマシンまで遡ることができる。まれに、関数ではなくとも、環境に紐付けられたデータ構造のことをクロージャと呼ぶ場合もある。クロージャをサポートした言語のコーディングでは、関数の中に関数を定義することができる。その際に、外側の関数で宣言された変数を内側の関数で操作することができる。主な利点としてはグローバル変数の削減が挙げられる。 典型的にはクロージャは、外側の関数(以下、エンクロージャ)の内側の関数リテラルや、ネストした関数定義によって必要になる。言語により、そのような内側の関数内に出現する自由変数(内側の関数の仮引数でもなく、内側の関数自身のローカル変数でもない変数)の扱いは異なるが、自由変数が、その呼び出しにおけるエンクロージャのその名前の変数を、レキシカルに参照するのがクロージャであり、実行時に外部の関数が実行された際、クロージャが形成される。クロージャは内部の関数のコードとエンクロージャのスコープ内の必要なすべての変数への参照からなる。 クロージャはプログラム内で環境を共有するための仕組みである。レキシカル変数はグローバルな名前空間を占有しないという点でグローバル変数とは異なっている。またオブジェクトのインスタンス変数とは、オブジェクトのインスタンスではなく関数の呼び出しに束縛されているという点で異なる。 クロージャは関数型言語では遅延評価やカプセル化のために、また高階関数の引数として広く用いられる。 例: クロージャを使ったカウンタの例を Scheme で示す。 (define (new-counter) (define c (new-counter)) (display (c)); 1 (display (c)); 2 (display (c)); 3 関数 new-counter の中でクロージャが使用されている。c に代入された無名関数は new-counter 内のローカル変数 count を参照している。c を呼び出すたびに count はインクリメントされていく。.

新しい!!: メモ化とクロージャ · 続きを見る »

コンパイラ最適化

ンパイラ最適化(こんぱいらさいてきか、Compiler optimization)の記事では、コンピュータ・プログラムの最適化に関する話題のうち、もっぱらコンパイラに関係するものに関して説明する。最も一般的な要求はプログラムの実行時間を最小化することであり、その次に使用するメモリ量を最小化することである。また、携帯可能なコンピュータが増えるにつれて、消費電力を最小化するという最適化も生まれてきた。 一部のコード最適化問題はNP完全問題であることが示されている。実際には、プログラマがコンパイラによる最適化の完了を待てる時間の上限なども考慮してコンパイラ最適化を実装する(最適化はCPU時間とメモリを多大に使用する)。かつては、コンピュータのメモリ実装量も実行できる最適化を制限する要因だった。 コンパイラメーカによっては、「コンパイラの最適化の能力が売り上げや評判に大きく影響する」と信じている場合があり、そういう信念に従って「最適化コンパイラ」と銘打つことがある。少なくとも、同程度にバグが無いコンパイラ同士であれば、という前提の範囲内なら、最適化の能力が高いほうが魅力的と言えるであろう。.

新しい!!: メモ化とコンパイラ最適化 · 続きを見る »

コールスタック

ールスタック (Call Stack)は、プログラムに実行中にサブルーチンに関する情報を格納するスタックである。実行中のサブルーチンとは、呼び出されたが処理を完了していないサブルーチンを意味する。実行スタック (Execution Stack)、制御スタック (Control Stack)、関数スタック (Function Stack)などとも呼ばれる。また、単に「スタック」と言ったときにコールスタックを指していることが多い。コールスタックを正しく保つことは多くのソフトウェアが正常動作するのに重要であるが、その詳細は高水準言語からは透過的である。.

新しい!!: メモ化とコールスタック · 続きを見る »

サブルーチン

ブルーチン(subroutine)は、コンピュータプログラミングにおいて、プログラム中で意味や内容がまとまっている作業をひとつの手続きとしたものである。繰り返し利用されるルーチン作業をモジュールとしてまとめたもので、呼び出す側の「主」となるもの(メインルーチン)と対比して「サブルーチン」と呼ばれる。サブプログラム (subprogram) と呼ばれることもある。また、「サブ」をつけずに「ルーチン」と呼ぶこともある。 プログラムのソース中で、繰り返し現れる作業をサブルーチン化することで、可読性や保守性を高く保つことができる。繰り返し現れる作業でなくても、意味的なまとまりを示すためにサブルーチン化することもある。また、キャッシュのような階層的メモリの設計を持つコンピュータ(現在のパソコンやワークステーションなどほぼすべて)では、よく使われるサブルーチンがキャッシュに格納されることで高速な動作を期待できる。.

新しい!!: メモ化とサブルーチン · 続きを見る »

再帰

再帰(さいき)は、あるものについて記述する際に、記述しているものそれ自身への参照が、その記述中にあらわれることをいう。定義において、再帰があらわれているものを再帰的定義という。 主に英語のrecursionとその派生語の訳にあてられる。他にrecurrenceの訳(回帰#物理学及び再帰性を参照のこと)や、reflexiveの訳として「再帰」が使われることがある。数学的帰納法との原理的な共通性から、recursionの訳として数学では「帰納」を使うことがある。.

新しい!!: メモ化と再帰 · 続きを見る »

再帰下降構文解析

再帰下降構文解析(さいきかこうこうぶんかいせき、Recursive Descent Parsing)は、相互再帰型の手続き(あるいは再帰的でない同等の手続き)で構成されるLL法のトップダウン構文解析であり、各プロシージャが文法の各生成規則を実装することが多い。従って、生成されるプログラムの構造はほぼ正確にその文法を反映したものとなる。そのような実装の構文解析器を再帰下降パーサ(Recursive Descent Parser)と呼ぶ。.

新しい!!: メモ化と再帰下降構文解析 · 続きを見る »

C++

C++(シープラスプラス)は、汎用プログラミング言語の一つである。日本語では略してシープラプラ、シープラなどとも呼ばれる。.

新しい!!: メモ化とC++ · 続きを見る »

Common Lisp

Common Lisp(コモン・リスプ)は、コンピュータ・プログラミング言語 Lispの標準(の、ひとつ)であり、Lisp方言のひとつである。Common Lispの略称はCL(ごくまれにclispとも。なおCLISPという実装が実在するので混同回避のためあまり用いられない)。規格はANSIによる ANSI INCITS X3.226-1994 (R2004) 。仕様を指すこともあれば、実装を指すこともある。いくつかの、フリーソフトウェアの定義に合致したライセンスによりライセンスされている実装や、オープンソースの定義に合致したライセンスによりライセンスされている実装や、プロプライエタリなライセンスによりライセンスされている実装がある。 Lispの基本的な特徴の他、いくつかのプログラミングパラダイムのLispへの取り込みについて標準を提供しているという、マルチパラダイムプログラミング言語という面がある。.

新しい!!: メモ化とCommon Lisp · 続きを見る »

第一級オブジェクト

一級オブジェクト(ファーストクラスオブジェクト、first-class object)は、あるプログラミング言語において、たとえば生成、代入、演算、(引数・戻り値としての)受け渡しといったその言語における基本的な操作を制限なしに使用できる対象のことである。ここで「オブジェクト」とは広く対象物・客体を意味し、必ずしもオブジェクト指向プログラミングにおけるオブジェクトを意味しない。第一級オブジェクトは「第一級データ型に属す」という。 この言葉は1960年代にChristopher Stracheyによって「functions as first-class citizens」という文脈で初めて使われた。 言語によって異なるが、第一級オブジェクトは概ね次のような性質をもつ。.

新しい!!: メモ化と第一級オブジェクト · 続きを見る »

階乗

数学において非負整数 の階乗(かいじょう、factorial) は、1 から までのすべての整数の積である。例えば、 である。空積の規約のもと と定義する。 階乗は数学の様々な場面に出現するが、特に組合せ論、代数学、解析学などが著しい。階乗の最も基本的な出自は 個の相異なる対象を一列に並べる方法(対象の置換)の総数が 通りであるという事実である。この事実は少なくとも12世紀にはインドの学者によって知られていた。は1677年にへの応用として階乗を記述した。再帰的な手法による記述の後、Stedman は(独自の言葉を用いて)階乗に関しての記述を与えている: 感嘆符(!)を用いた、この "" という表記は1808年にによって発明された。 階乗の定義は、最も重要な性質を残したまま、非整数を引数とする函数に拡張することができる。そうすれば解析学における著しい手法などの進んだ数学を利用できるようになる。.

新しい!!: メモ化と階乗 · 続きを見る »

遅延評価

遅延評価(ちえんひょうか、lazy evaluation)や必要呼び(ひつようよび、call-by-need)は評価戦略の一種類であり、非正格な関数型言語で使用もされる。対義語は先行評価(eager evaluation)。.

新しい!!: メモ化と遅延評価 · 続きを見る »

項書き換え

項書き換え(こうかきかえ、term rewriting)とは、数学・計算機科学・論理学において、式(数式、論理式)の項を別の項に置換する手法を総称する用語である。項書き換え系(term rewriting system、TRS)とは、項の集合とその置換規則から構成される。 項書き換えは非決定論的になることがありうる。ある規則で書き換え可能な項が他の規則でも書き換え可能な場合がありえて、その場合は複数の規則が適用可能と言うことになる。項書き換え系では、項書き換えのためのアルゴリズムは提供されず、書き換え規則の集合のみが提供される。しかし、適当なアルゴリズムと組み合わせれば、項書き換え系はプログラムのような働きをし、実際いくつかの宣言型プログラミング言語は項書き換えに基づいている。.

新しい!!: メモ化と項書き換え · 続きを見る »

複雑性

複雑性(ふくざつせい、complexity)という用語は、多数の部品が入り組んで配置された何らかのものを特徴付ける言葉として使われる。科学として複雑性を研究するアプローチはいくつか存在しており、本項目ではそれらを概説する。マサチューセッツ工科大学のセス・ロイドは、複雑性の定義を32種類集めてプレゼンテーションしたことがあるという。.

新しい!!: メモ化と複雑性 · 続きを見る »

計算複雑性理論

計算複雑性理論(けいさんふくざつせいりろん、computational complexity theory)とは、計算機科学における計算理論の一分野であり、アルゴリズムのスケーラビリティや、特定の計算問題の解法の複雑性(計算問題の困難さ)などを数学的に扱う。計算量理論、計算の複雑さの理論、計算複雑度の理論ともいう。.

新しい!!: メモ化と計算複雑性理論 · 続きを見る »

記憶装置

GB SDRAM。一次記憶装置の例 GB ハードディスクドライブ(HDD)。コンピュータに接続すると二次記憶装置として機能する SDLT テープカートリッジ。オフライン・ストレージの例。自動テープライブラリで使う場合は、三次記憶装置に分類される 記憶装置(きおくそうち)は、コンピュータが処理すべきデジタルデータをある期間保持するのに使う、部品、装置、電子媒体の総称。「記憶」という語の一般的な意味にも対応する英語としてはメモリ(memory)である。記憶装置は「情報の記憶」を行う。他に「記憶装置」に相当する英語としてはストレージ デバイス(Storage Device)というものもある。.

新しい!!: メモ化と記憶装置 · 続きを見る »

連想配列

連想配列(れんそうはいれつ、associative array.)とは、コンピュータプログラミングにおいて、添え字にスカラー数値以外のデータ型(文字列型等)も使用できる配列である。抽象データ型のひとつ。連想リスト、連想コンテナ、辞書(あるいはカタカナでディクショナリ dictionary)、ハッシュ(hash)、マップ(map)とも呼ばれる。 歴史的には、最初に LISP の連想リストとして広く認知された。その後、SNOBOL で table として、AWK で連想配列として実装したことで、その潜在能力がさらに広く知られるようになった。現在、Ruby など一部の言語では、添え字にはどのようなデータでも使えるものもある。.

新しい!!: メモ化と連想配列 · 続きを見る »

Lua

Lua(ルア)は、リオデジャネイロ・カトリカ大学の、主としてDepartment of Computer Science(コンピュータ科学科)and・or Computer Graphics Technology Group (Tecgraf) に属する、Roberto Ierusalimschy, Waldemar Celes, Luiz Henrique de Figueiredo らによって設計開発されたスクリプト言語およびその処理系の実装である。 手続き型言語として、また、プロトタイプベースのオブジェクト指向言語としても利用することができ、関数型言語、データ駆動型としての要素も併せ持っている。 Luaという名前は、ポルトガル語の月に由来する。.

新しい!!: メモ化とLua · 続きを見る »

Perl

Perl(パール)とは、ラリー・ウォールによって開発されたプログラミング言語である。実用性と多様性を重視しており、C言語やsed、awk、シェルスクリプトなど他のプログラミング言語の優れた機能を取り入れている。ウェブ・アプリケーション、システム管理、テキスト処理などのプログラムを書くのに広く用いられている。 言語処理系としてのperlはフリーソフトウェアである。Artistic LicenseおよびGPLのもとで配布されており、誰でもどちらかのライセンスを選択して利用することができる。UNIXやWindowsなど多くのプラットフォーム上で動作する。.

新しい!!: メモ化とPerl · 続きを見る »

Python

Python(パイソン)は、汎用のプログラミング言語である。コードがシンプルで扱いやすく設計されており、C言語などに比べて、さまざまなプログラムを分かりやすく、少ないコード行数で書けるといった特徴がある。.

新しい!!: メモ化とPython · 続きを見る »

Ruby

Ruby(ルビー)は、まつもとゆきひろ(通称 Matz)により開発されたオブジェクト指向スクリプト言語であり、スクリプト言語が用いられてきた領域でのオブジェクト指向プログラミングを実現する。 また日本で開発されたプログラミング言語としては初めて国際電気標準会議で国際規格に認証された事例となった。.

新しい!!: メモ化とRuby · 続きを見る »

構文解析

構文解析(こうぶんかいせき、syntactic analysis あるいは parse)とは、文章、具体的にはマークアップなどの注記の入っていないベタの文字列を、自然言語であれば形態素に切分け、さらにその間の関連(修飾-被修飾など)といったような、統語論的(構文論的)な関係を図式化するなどして明確にする(解析する)手続きである。自然言語については自然言語処理における要点のひとつであり、プログラミング言語など形式言語の場合は、形式文法に従い構文木を得る。構文解析を行う機構を構文解析器(parser)と呼ぶ。.

新しい!!: メモ化と構文解析 · 続きを見る »

構文解析器

構文解析器(こうぶんかいせきき)とは、構文解析をおこなうプログラム。パーサ (parser)とも。プログラミング言語処理系の入力部分が代表的であるが、それに限らず設定ファイルの読み込みなど、構造を持った入力テキストの処理を行う。自然言語処理でも使われる。 構文解析のアルゴリズムには複雑なものも多いが、パーサジェネレータの研究は盛んであり、そういったものを使用zすれば、構文規則を記述するだけで構文解析器を自動的に生成できる(プログラムのソースコードが出力される)。.

新しい!!: メモ化と構文解析器 · 続きを見る »

構文木

構文木(こうぶんぎ)とは、構文解析の経過や結果(またはそれら両方)を木構造で表したもの。.

新しい!!: メモ化と構文木 · 続きを見る »

演算子強度低減

演算子強度低減(英: Strength reduction)とはコンパイラ最適化手法の一つで、コストの高い演算式を等価でコストの低い演算式に置き換えるものである。 演算子強度低減では、数学的な同一性を用いて低速な演算式を高速な演算式で置換する。置換したことによるコストと利点は対象の CPU や、時には周辺のコード(CPU 内の機能ユニットが利用できるかどうか)に大きく依存する。.

新しい!!: メモ化と演算子強度低減 · 続きを見る »

最適化 (情報工学)

ンピュータ関連において最適化(Optimization)という語は、最適化問題のそれを指すことも多いが、ここでは、コンパイラ最適化などに似た話題について説明する(「情報工学」と記事名には付いているが、全く information engineering の話題ではない)。コンピュータシステムは、主としてコストパフォーマンス上の理由から、効率的に(efficiently)動作することが望ましいことが多い。例えば、コンパイラ最適化は、高速化のためだったり、メモリの使用量を削減するためだったり、電力消費を抑えるためだったりする。最適化の対象となるシステムは、1つのプログラムの場合もあるし、複数のコンピュータの場合もあるし、インターネットのようなネットワーク全体の場合もある。 "optimization" という単語の語源は "optimal"(最適な、最善な)と同じだが、最適化によって真に最適なシステムとなることは稀である。最適化されたシステムは一般にある面でのみ最適となる。プログラムの実行時間を削減するためにメモリ使用量を増やしてでも実行時間を最適化したり、逆にメモリが少ないシステムで実行時間が長くなることを覚悟してメモリ使用量が少ないアルゴリズムを選んだりする。あらゆる場合に最適な方法や設計は存在しないので、技術者は最も重要と思われる観点での最適化のために妥協点を探る。さらに、ソフトウェアを完全に最適にする(それ以上どうやっても最適化できない状態にする)のに要する労力は、その最適化されたシステムを利用することで得られる利益よりも大きい。従って、最適化の工程は完全な最適解に到達する以前に終了させられるのが普通である。幸いなことに、効果の大きい改善は最適化工程の初期に現れることが多い。 最適化は様々なレベルで行われる。最も高いレベルの最適化は設計段階に行われる。設計が最適化されていれば、実装でも効率的なアルゴリズムを利用でき、品質のよいコードになるという利点がある。コンパイラ最適化を使えば、実行ファイルがさらに最適化される。最も低いレベルでは、コンパイラを使わずに人間がアセンブリ言語で最適なコードを書く。コンパイラ最適化の技術の進歩と最近のCPUの複雑さのため、コンパイラよりも最適なコードを人間が書くには大変な技能を要する。そのため、このような最適化を行うプロジェクトは滅多にない。最適化は例外的なケースを考慮しつつ、複雑な妥協点を探ることが多い。従って最適化されたプログラムはプログラマが理解できないほど難解になることも多い。可能であれば等価であることが保証されながらプログラムを変形させるなどの手法でバグの可能性をゼロにすべきだが、できない場合、できてないコードではバグを多く含む危険性がある。.

新しい!!: メモ化と最適化 (情報工学) · 続きを見る »

文字列

文字列(もじれつ)は、単語や文章のような、文字の連なったもの。ストリング (string)、テキスト (text) という場合もある。コンピュータ、特にプログラミングの分野で用いることが多い。.

新しい!!: メモ化と文字列 · 続きを見る »

擬似コード

擬似コード (ぎじコード、pseudocode)とは、アルゴリズムなどを、架空の非常に高水準なプログラミング言語(擬似言語)で記述したものである。Pascal、Fortran、C言語などの既存のプログラミング言語の構文と、自然言語に近い表現を組み合わせて記述することが多い。.

新しい!!: メモ化と擬似コード · 続きを見る »

整数

数学における整数(せいすう、integer, whole number, Ganze Zahl, nombre entier, número entero)は、0 とそれに 1 ずつ加えていって得られる自然数 (1, 2, 3, 4, …) および 1 ずつ引いていって得られる数 (−1, −2, −3, −4, …) の総称である。 整数は数直線上の格子点として視覚化される 整数の全体からなる集合は普通、太字の Z または黒板太字の \mathbb Z で表す。これはドイツ語 Zahlen(「数」の意・複数形)に由来する。 抽象代数学、特に代数的整数論では、しばしば「代数体の整数環」の元という意味で代数的整数あるいは「整数」という言葉を用いる。有理数全体の成す体はそれ自身が代数体の最も簡単な例であり、有理数体の代数体としての整数環すなわち、「有理数の中で整なもの」の全体の成す環は、本項でいう意味での整数全体の成す環である。一般の「整数」との区別のためにここでいう意味の整数を有理整数 (rational integer) と呼ぶことがある接頭辞「有理(的)」(rational) はそもそも「整数比」であるという意味なので、この呼称は自己循環的にもみえる。しかし、有理整数と呼ぶ場合の「有理」は「有理数の中で」という程度の意味の単なる符牒であって、「整数比」という本来の意味合いに拘るのは徒労である。。.

新しい!!: メモ化と整数 · 続きを見る »

1968年

記載なし。

新しい!!: メモ化と1968年 · 続きを見る »

1991年

この項目では、国際的な視点に基づいた1991年について記載する。.

新しい!!: メモ化と1991年 · 続きを見る »

1995年

この項目では、国際的な視点に基づいた1995年について記載する。.

新しい!!: メモ化と1995年 · 続きを見る »

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »