ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
ダウンロード
ブラウザよりも高速アクセス!
 

ムーアの法則

索引 ムーアの法則

インテル製プロセッサのトランジスタ数の成長(各点)とムーアの法則(上線.

67 関係: 収穫加速の法則実行ユニット工業製品巨大磁気抵抗効果並列化主記憶装置ナノテクノロジーマルチコアマーフィーの法則マウス (コンピュータ)チップポラックの法則リーク電流レイ・カーツワイルロバート・デナードロードマップヴァーナー・ヴィンジヴィルトの法則トランジスタブルース・スターリングパラダイムシフトパフォーマンステープアウトフォトリソグラフィドープダグラス・エンゲルバートアムダールの法則インテルインテル チック・タックウェハーカリフォルニア工科大学カーバー・ミードカオの法則ギルダーの法則グロッシュの法則ゴードン・ムーアタビュレーティングマシン公式CMOSCPU磁気ディスク装置磁気抵抗効果継電器真空管経験則片対数グラフ表象複雑性クラス計算複雑性理論計算機科学...誤り検出訂正集積回路Intel CoreIntel PentiumNPNVIDIAP (計算複雑性理論)Pentium DRandom Access MemoryUNIVAC I技術的特異点法則最高経営責任者情報量教授2010年代2017年 インデックスを展開 (17 もっと) »

収穫加速の法則

収穫加速の法則(しゅうかくかそくのほうそく、The Law of Accelerating Returns)とは、アメリカの発明家レイ・カーツワイルが提唱した、一つの重要な発明は他の発明と結びつき、次の重要な発明の登場までの期間を短縮し、イノベーションの速度を加速することにより、科学技術は直線グラフ的ではなく指数関数的に進歩するという法則。および、彼がこの法則について言及したエッセイの表題。伝統的な収穫逓減あるいは限定的な収穫逓増と対比する概念として提唱している。.

新しい!!: ムーアの法則と収穫加速の法則 · 続きを見る »

実行ユニット

実行ユニット(じっこうゆにっと、Execution unit)とは、コンピュータのプロセッサの構成において、命令を実行する指示を受け、命令を実行するユニットである。。 -->.

新しい!!: ムーアの法則と実行ユニット · 続きを見る »

工業製品

工業製品(こうぎょうせいひん)とは、工業において原材料を消費して製造される物品であるが、特に、様々な工程を経て消費者に提供される段階にまで加工が済んだ物を指す場合が多い。二次的に他の加工業者へと渡り、更に加工される物は、単に製品(粗製品)と呼ばれる。これは、単一の製造業者による製品ではなく、工業全体を経て提供される製品という意味であり、ある業態の製造産業を経て、出荷(輸出入)される段階にある物を指すため、広義には粗製品を含む。.

新しい!!: ムーアの法則と工業製品 · 続きを見る »

巨大磁気抵抗効果

巨大磁気抵抗効果(GMR:Giant Magneto Resistive effect)とは、磁気抵抗効果の特殊事例である。 普通の金属の磁気抵抗効果(物質の電気抵抗率が磁場により変化する現象)は数%だが、1nm程度の強磁性薄膜(F層)と非強磁性薄膜(NF層)を重ねた多層膜には数十%以上の磁気抵抗比を示すものがある。このような現象を巨大磁気抵抗効果と呼ぶ。 1987年にドイツのペーター・グリューンベルク、フランスのアルベール・フェールらによって発見された。 巨大磁気抵抗効果は、多層膜の磁気構造が外部磁場によって変化するために生じる。 磁気多層膜以外においても、ペロブスカイト型マンガン酸化物においても見られる。 巨大磁気抵抗効果を応用した磁気ヘッドの登場によって、HDDの容量が飛躍的に増大した。 グリューンベルクとフェールはこの発見によって、2007年のノーベル物理学賞を受賞している。.

新しい!!: ムーアの法則と巨大磁気抵抗効果 · 続きを見る »

並列化

並列化(へいれつか)は、コンピュータにおいて、同時に複数の演算処理を実行すること(並列計算)によって処理のスループットを上げるプログラミング手法である。.

新しい!!: ムーアの法則と並列化 · 続きを見る »

主記憶装置

主記憶装置(しゅきおくそうち)は、記憶装置の分類で、「補助記憶装置」が一般に外部バスなど比較的CPUから離れていて大容量だが遅い記憶装置を指すのに対し、コンピュータのメインバスなどに直接接続されている記憶装置で、レイテンシやスループットは速いが比較すると小容量である。特に、CPUが入出力命令によって外部のインタフェースを操作するのではなく、「ロード・ストア命令」や、さらには通常の加算などの命令において直接読み書きできる対象であるものを指す。メインメモリ、一次記憶装置とも。.

新しい!!: ムーアの法則と主記憶装置 · 続きを見る »

ナノテクノロジー

ナノテクノロジー (nanotechnology) は、物質をナノメートル (nm, 1 nm.

新しい!!: ムーアの法則とナノテクノロジー · 続きを見る »

マルチコア

マルチコア (Multiple core, Multi-core) は、1つのプロセッサ・パッケージ内に複数のプロセッサ・コアを搭載する技術であり、マルチプロセッシングの一形態である。 外見的には1つのプロセッサでありながら論理的には複数のプロセッサとして認識されるため、同じコア数のマルチプロセッサと比較して実装面積としては省スペースであり、プロセッサコア間の通信を高速化することも可能である。主に並列処理を行わせる環境下では、プロセッサ・チップ全体での処理能力を上げ性能向上を果たすために行われる。このプロセッサ・パッケージ内のプロセッサ・コアが2つであればデュアルコア (Dual-core)、4つであればクアッドコア (Quad-core)、6つであればヘキサコア (Hexa-core)、8つは伝統的にインテルではオクタルコア (Octal-core) 、AMDではオクタコア (Octa-core)と呼ばれるほか、オクトコア (Octo-core) とも呼ばれる。さらに高性能な専用プロセッサの中には十個以上ものコアを持つものがあり、メニーコア (Many-core) と呼ばれる。 なお、従来の1つのコアを持つプロセッサはマルチコアに対してシングルコア (Single-core) とも呼ばれる。 レベル1キャッシュが2つあり、レベル2キャッシュは2つのコアと共有される。.

新しい!!: ムーアの法則とマルチコア · 続きを見る »

マーフィーの法則

食パンを落とすと必ずバターが付いているほうが下 マーフィーの法則(マーフィーのほうそく、Murphy's law)とは、「失敗する余地があるなら、失敗する」「落としたトーストがバターを塗った面を下にして着地する確率は、カーペットの値段に比例する」をはじめとする、先達の経験から生じた数々のユーモラスでしかも哀愁に富む経験則をまとめたものである(それが事実かどうかは別)。多くはユーモアの類で笑えるものであるが、認知バイアスのサンプルとして捉えることが可能なものもあり、中には重要な教訓を含むものもある。.

新しい!!: ムーアの法則とマーフィーの法則 · 続きを見る »

マウス (コンピュータ)

2ボタン型・ボール式マウス マウスボール マウス(mouse)とはポインティングデバイスの一種類である。.

新しい!!: ムーアの法則とマウス (コンピュータ) · 続きを見る »

チップ

チップ chip.

新しい!!: ムーアの法則とチップ · 続きを見る »

ポラックの法則

ポラックの法則(ポラックのほうそく)は、「プロセッサの性能はその複雑性の平方根に比例する」という経験則。ここで「複雑性」とは、論理回路の水準で見るならばゲート数やFF数、電子回路の水準で見るならばネットリストのエッジ数とノード数すなわち配線数と素子数、などのことである。トランジスタ数のことだとして、この法則に文字通り従うならば、1プロセッサに使うトランジスタを2倍に増やしても、性能は\sqrt\fallingdotseq 1.4倍にしか上がらない。 ここで、ある系列のプロセッサの新型を設計するとして、その新型ではプロセス微細化なしに2倍のトランジスタを使うことにする。すると(実際にはその設計次第であるが)、ポラックの法則に従うならばプロセッサの性能は1.4倍しか向上していないにもかかわらず、トランジスタ数に比例して消費電力は2倍に増大している。したがって消費電力あたりの性能は、トランジスタ数を2倍にした結果逆に0.7倍に低下することになる。消費電力は、ほぼそのまま発熱量とみてよい。結論として、トランジスタ数の増加によるプロセッサの性能の向上は、遠からず(仮に電力の供給はなんとかできたとしても)熱の問題により頭打ちとなることが、この法則が正しければ予言される。 直感的に説明するならば、この法則はプロセッサ設計がある種の「飽和」に達した後の現象だということになる。32ビットコンピュータを8ビットの算術論理演算装置を並べて作っていたような時代であれば、単純な物量作戦で性能は線形に上がるだろうし、もっとかも(グロッシュの法則)しれない。その後、単純に物量作戦で可能なことは全てやり、パイプライン化なども行われると、それ以上の性能向上は並列(parallel)処理で、となり、scoreboarding や Tomasuloのアルゴリズムなど、並行(concurrent)処理の複雑さが、目的の計算以上に素子などの資源を喰ってしまうわけである。 なお以上の議論ではプロセス微細化なしにという前提を置いているが、MOS集積回路の開発から200x年代頃までのトレンドとしては、ムーアの法則を達成するためのプロセス微細化によるデナードスケーリングによって、高速化と同時に消費電力も低減されていたため、そちらによる性能向上が大きかった。こちらによる性能向上は、集積回路の生産プロセスを更新するだけでプロセッサ設計やマスクパターンの大きな変更無しに、単にパターンをより小さく縮小するだけであり、「無料の昼食」(Free Lunch)などと形容されることもある。 インテル社のMRL(Microprocessor Research Labs)のディレクター兼インテル・フェロー(Intel Fellow)を務めていたフレッド・ポラック(Fred Pollack)が提唱した。なお、実際のデータからは、文字通りではなく、物量と性能の関係は一定ではなく変化するものだ、という意味に取るのが良いようであるhttp://news.mynavi.jp/column/architecture/122/index.html。 この法則が示唆する通り(また、物理法則の限界により、縮小しても高速化や低電圧化を以前のようには進められず、電流に至ってはリークのせいで増える傾向にすらあることもあり)、その後のプロセッサは低消費電力・マルチコア化を指向するようになった。.

新しい!!: ムーアの法則とポラックの法則 · 続きを見る »

リーク電流

リーク電流(リークでんりゅう、leakage current)とは、電子回路上で、絶縁されていて本来流れないはずの場所・経路で漏れ出す電流のことである。 当該電気回路内に限る意図しない電流の漏れ出しがリーク電流であり、当該電気回路外へ漏れ出す漏電とは区別される。集積回路などの微細化された半導体の回路内での漏れ出しを指すことが多い。.

新しい!!: ムーアの法則とリーク電流 · 続きを見る »

レイ・カーツワイル

レイ・カーツワイル(Ray Kurzweil, 1948年2月12日 - )はアメリカ合衆国の発明家、実業家、未来学者。本名はレイモンド・カーツワイル(Raymond Kurzweil)。 人工知能研究の世界的権威であり、特に技術的特異点(technological singularity)に関する著述で知られる。 発明家としては、オムニ・フォント式OCRソフト、フラットベッド・スキャナー、"Kurzweil"ブランドのシンセサイザー「K250」、文章音声読み上げマシーン(カーツワイル朗読機)などを開発している。.

新しい!!: ムーアの法則とレイ・カーツワイル · 続きを見る »

ロバート・デナード

バート・デナード、後ろに描かれているのはDRAMの回路 ロバート・デナード(Robert H. Dennard, 1932年9月5日 - )は、アメリカ合衆国の電子工学者で発明家である。.

新しい!!: ムーアの法則とロバート・デナード · 続きを見る »

ロードマップ

ードマップ(Roadmap 行程表)とは、プロジェクトマネジメントにおいて、用いられる思考ツールの一つである。 用途としては、.

新しい!!: ムーアの法則とロードマップ · 続きを見る »

ヴァーナー・ヴィンジ

ヴァーナー・シュテファン・ヴィンジ(Vernor Steffen Vinge、1944年2月10日 - )は、アメリカ合衆国の数学者、計算機科学者、SF作家。ヒューゴー賞受賞作の長編『遠き神々の炎』と『最果ての銀河船団』で知られている。「技術的特異点」のアイディアを広く普及させたひとりでもあり、The Coming Technological Singularity: How to Survive in the Post-Human Eraでは、技術の指数関数的発達は我々が想像もできない地点に達するだろうと述べている。元妻ジョーン・D・ヴィンジも著名な小説家・SF作家である。.

新しい!!: ムーアの法則とヴァーナー・ヴィンジ · 続きを見る »

ヴィルトの法則

ヴィルトの法則(ヴィルトのほうそく、)は、ニクラウス・ヴィルトによる1995年に発表された記事A Plea for Lean Softwareにおける議論に由来する警句で、コンピュータのプログラム(ソフトウェア)とハードウェアの成長(growth)と性能のバランスに関して「ソフトウェアは、ハードウェアが高速化するより急速に低速化する」とするものである。 ヴィルトはこの言葉をOberonについての彼の著書 (1991) の序文で Martin Reiser が書いた「その希望とは、ハードウェアの進歩がソフトウェアの病気を全て癒すだろうことである。しかし注意深く見れば、ソフトウェアの巨大化と緩慢化はハードウェアの進歩を超えていると気付く」という文章が元だとしている。このような傾向は1987年ごろには早くも明らかになりつつあり、同様のことを先に言及した者も少なくない。 多くの分野でハードウェアが時と共に高速化している現象が見られる。特にCMOSロジックが使われるマイクロコンピュータ革命以降のコンピュータは、ムーアの法則に従ったプロセスルールの微細化によって、デナード則により、縮小されたこと以外はそのままであっても、その縮小率に応じて高速化している(2016年現在では、消費電力の低下が法則通りにならなくなっていることから、必ずしもそうではないが)。ヴィルトの法則は、現実社会においてポピュラーなプロダクトが、その高速化以上に膨れ上がって(bloat)いるために(ソフトウェアの肥大化)、ユーザから見れば以前と同じだけの仕事をさせるのに、かえって遅くなってはいまいか、という問題提起と言える。 似たことを2009年、Google創業者ラリー・ペイジも述べている。そちらをペイジの法則と呼ぶ。名付け親はセルゲイ・ブリンで、Google I/O Conference 2009 でのことである。.

新しい!!: ムーアの法則とヴィルトの法則 · 続きを見る »

トランジスタ

1947年12月23日に発明された最初のトランジスタ(複製品) パッケージのトランジスタ トランジスタ(transistor)は、増幅、またはスイッチ動作をさせる半導体素子で、近代の電子工学における主力素子である。transfer(伝達)とresistor(抵抗)を組み合わせたかばん語である。によって1948年に名づけられた。「変化する抵抗を通じての信号変換器transfer of a signal through a varister または transit resistor」からの造語との説もある。 通称として「石」がある(真空管を「球」と通称したことに呼応する)。たとえばトランジスタラジオなどでは、使用しているトランジスタの数を数えて、6石ラジオ(6つのトランジスタを使ったラジオ)のように言う場合がある。 デジタル回路ではトランジスタが電子的なスイッチとして使われ、半導体メモリ・マイクロプロセッサ・その他の論理回路で利用されている。ただ、集積回路の普及に伴い、単体のトランジスタがデジタル回路における論理素子として利用されることはほとんどなくなった。一方、アナログ回路中では、トランジスタは基本的に増幅器として使われている。 トランジスタは、ゲルマニウムまたはシリコンの結晶を利用して作られることが一般的である。そのほか、ヒ化ガリウム (GaAs) などの化合物を材料としたものは化合物半導体トランジスタと呼ばれ、特に超高周波用デバイスとして広く利用されている(衛星放送チューナーなど)。.

新しい!!: ムーアの法則とトランジスタ · 続きを見る »

ブルース・スターリング

ミカエル・ブルース・スターリング(Michael Bruce Sterling, 1954年4月14日 -)は、アメリカ合衆国テキサス州ブラウンズビル出身の小説家、SF作家、ジャーナリスト。 1980年代を席巻したサイバーパンク運動でウィリアム・ギブスンと並んで中心的役割を果たした。その後もSF界の代表的な作家として活躍。セルビア人作家のジャスミナ・テサノヴィッチと結婚。現在ベオグラード在住である。.

新しい!!: ムーアの法則とブルース・スターリング · 続きを見る »

パラダイムシフト

パラダイムシフト()とは、その時代や分野において当然のことと考えられていた認識や思想、社会全体の価値観などが革命的にもしくは劇的に変化することをいう。パラダイムチェンジともいう。 科学史家トーマス・クーンが科学革命で提唱したパラダイム概念の説明で用いられたものが拡大解釈されて一般化したものである。 パラダイムシフトは、狭義では科学革命と同義である。.

新しい!!: ムーアの法則とパラダイムシフト · 続きを見る »

パフォーマンス

パフォーマンス(Performance).

新しい!!: ムーアの法則とパフォーマンス · 続きを見る »

テープアウト

テープアウト(Tape-out)は、マイクロプロセッサなどの半導体製造工程における、設計の最終段階の区切りを指す。.

新しい!!: ムーアの法則とテープアウト · 続きを見る »

フォトリソグラフィ

フォトリソグラフィ(photolithography)は、感光性の物質を塗布した物質の表面を、パターン状に露光(パターン露光、像様露光などとも言う)することで、露光された部分と露光されていない部分からなるパターンを生成する技術。主に、半導体素子、プリント基板、印刷版、液晶ディスプレイパネル、プラズマディスプレイパネルなどの製造に用いられる。.

新しい!!: ムーアの法則とフォトリソグラフィ · 続きを見る »

ドープ

ドープ (dope) またはドーピング (doping) とは、結晶の物性を変化させるために少量の不純物を添加すること。 特に半導体で重要な操作で、不純物の添加により電子や正孔(キャリア)の濃度を調整する他、禁制帯幅などのバンド構造や物理的特性などを様々に制御するのに用いる。 添加する不純物をドーパントと呼ぶ。半導体の場合、キャリアとして電子を供給するドーパントをドナー、正孔を供給するドーパントをアクセプタと呼ぶ。.

新しい!!: ムーアの法則とドープ · 続きを見る »

ダグラス・エンゲルバート

ダグラス・エンゲルバート(Douglas Carl Engelbart、1925年1月30日 - 2013年7月2日)は、アメリカ合衆国の発明家で、初期のコンピュータやインターネットの開発に関与した。特に、SRIインターナショナル内の Augmentation Research Center (ARC) で行ったヒューマンマシンインタフェース関連の業績で知られており、そこでマウスを発明し、ハイパーテキストやネットワークコンピュータやグラフィカルユーザインタフェースの先駆けとなるものを開発した。 エンゲルバートは、コンピュータとネットワークの開発と使用が世界の緊急かつ複雑な問題を解決する助けになるという主張をよく行っている。研究室には自身が "bootstrapping strategy" と名付けた一連の原則を貼っていた。その戦略は研究室での技術革新を加速するようエンゲルバートが設計したものである。.

新しい!!: ムーアの法則とダグラス・エンゲルバート · 続きを見る »

アムダールの法則

複数のプロセッサを使って並列計算してプログラムの高速化を図る場合、そのプログラムの逐次的部分は、制限を受ける。例えば、プログラムの95%を並列化できたとしても、またどれだけプロセッサ数を増やしたとしても、図で示したように20倍以上には高速化しない。 アムダールの法則(アムダールのほうそく、Amdahl's law)は、ある計算機システムとその対象とする計算についてのモデルにおいて、その計算機の並列度を上げた場合に、全体として期待できる全体の性能向上の程度を数式として表現したものである。コンピュータ・アーキテクトのジーン・アムダールが主張したものであり、Amdahl's argument(アムダールの主張)という呼称もある。並列計算の分野において、複数のプロセッサを使ったときの理論上の性能向上の限界を予測するのによく使われる。 複数のプロセッサを使い並列計算によってプログラムの高速化を図る場合、そのプログラムの中で逐次的に実行しなければならない部分の時間によって、高速化が制限される。例えば、1プロセッサでは20時間かかるプログラムがあり、その中の1時間かかる部分が並列化できないとする。したがって、19時間ぶん(95%)は並列化できるが、どれだけプロセッサを追加して並列化したとしても、そのプログラムの最小実行時間は1時間より短くならない。なぜなら、並列化できない部分に必ず1時間かかるため、図にも示したように、この場合の高速化は20倍までが限界だからである。.

新しい!!: ムーアの法則とアムダールの法則 · 続きを見る »

インテル

インテル(英:Intel Corporation)は、アメリカ合衆国カリフォルニア州に本社を置く半導体素子メーカーである。 社名の由来はIntegrated Electronics(集積されたエレクトロニクス)の意味である。.

新しい!!: ムーアの法則とインテル · 続きを見る »

インテル チック・タック

チック・タック戦略 (チクタク戦略、)とは、インテル社が2006年から採用している開発ロードマップモデル。.

新しい!!: ムーアの法則とインテル チック・タック · 続きを見る »

ウェハー

ウェハー、ウェーハ、ウエーハ、ウエハー、ウェハ、ウエハ(ウェイファ、wafer、/wéifər/)は、半導体素子製造の材料である。高度に組成を管理した単結晶シリコンのような素材で作られた円柱状のインゴットを、薄くスライスした円盤状の板である。呼称は洋菓子のウェハースに由来する。.

新しい!!: ムーアの法則とウェハー · 続きを見る »

カリフォルニア工科大学

リフォルニア工科大学(英語: California Institute of Technology)は、米国カリフォルニア州に本部を置く私立工科大学である。1891年に設置された。Caltech(カルテック、カルテク、キャルテク)の略称でも親しまれる。 カリフォルニア大学、カリフォルニア州立大学、南カリフォルニア大学とは別組織である。 全米屈指のエリート名門校の1つとされ, アメリカではマサチューセッツ工科大学(MIT)と並び称される工学及び科学研究の専門大学である。2011年10月の英国高等教育専門誌「Times Higher Education」においてはハーバード大学を抜き、世界第1位の高等教育機関として位置付けられた。以後、2015年まで、5年連続で同誌のランキングで第1位に選ばれている。 QS World University Rankingsの2018年度向け世界ランキングでは4位、前後には3位にハーバード大学が、5位にケンブリッジ大学が名を連ねる。 学部生896人、大学院生1275人。(ノーベル賞受賞者は37名) 校訓は"The truth shall make you free"。量子電磁力学の発展に寄与し、初等物理学の教科書やエッセイでも有名なリチャード・P・ファインマンや、クォーク仮説のマレー・ゲルマン、トランジスタの発明者の一人であるウィリアム・ショックレー等が教壇に立っていたこともある。NASAの技術開発に携わるジェット推進研究所 (JPL) があることでも有名。.

新しい!!: ムーアの法則とカリフォルニア工科大学 · 続きを見る »

カーバー・ミード

ーバー・アンドレス・ミード(Carver Andress Mead、1934年5月1日 - )は、アメリカ合衆国の著名な計算機科学者。カリフォルニア工科大学の名誉教授であり、40年以上教鞭をとっている。 カリフォルニア工科大学で電気工学を学んだ(学士号:1956年、修士号:1957年、博士号:1960年)。.

新しい!!: ムーアの法則とカーバー・ミード · 続きを見る »

カオの法則

の法則(カオのほうそく)は、サイモン・カオ (Simon Cao) が提唱した、通信に関する法則。 「波長分割多重方式の光ファイバー1本で情報を伝送する場合、波長毎の伝送速度を大きくするよりも多重数を増やすという選択が最善である」、また「光ファイバー1本の伝送路と通信容量はムーアの法則以上に早く増加する」というもの。 これは前者が情報伝達速度を上げる(1波長での変調速度や効率を良くする)よりも同じ変調を違う波長帯で行って多重化する方がコスト的にも技術的にも有効であるためである。 通信の世界では新しい変調技術が開発されるのはそう短くない為、基本的に過去の技術の改良という形が行われてきた。 しかし、その技術の向上は後者の法則には間に合わない。その為、波長分割多重化を行った方が有利である。 ただし、あくまで一時しのぎの方法論なので、長期的な目で見るといずれは1波長あたりの伝送速度を上げる必要がある。 なお、後者は現在のインターネットのトラフィックに関する法則でインターネットそのものが扱う情報量はムーアの法則(CPUの性能は24ヶ月で2倍になる)よりも早く多くなると言うものから導きだされたもの。実際の光ファイバーには様々な用途があるため、この通りになるのは多くの場合、ISPのバックボーンやIXなどに見られる。.

新しい!!: ムーアの法則とカオの法則 · 続きを見る »

ギルダーの法則

ルダーの法則(ギルダーのほうそく)は、通信網に関する法則。 アメリカの経済学者ジョージ・ギルダー(George Gilder)が2000年に自著「テレコズム」にて提唱した。 ギルダーの法則によると、10年で100万倍のペースとなるが、実際は10年で1000倍くらいであり、それは、1年で2倍のペースに当たる。また、この法則が引用される時も、引用される数字(6ヶ月、2倍)には多少幅が出ている。さらに、イーサネット自体は、ムーアの法則、つまり、10年で100倍のペースでしか速くなっていない。.

新しい!!: ムーアの法則とギルダーの法則 · 続きを見る »

グロッシュの法則

ッシュの法則(グロッシュのほうそく、Grosch's law)は、ハーバート・グロッシュ(Herbert Grosch)が1965年に提唱したコンピュータの性能に関する法則である。 「コンピュータの性能は価格の2乗に比例する」 という経験則で、例えば50,000円と100,000円のコンピュータの性能比は25:100である為、コンピュータは(予算の許す限り)高い物を買った方が、性能対価格比で得であるという結果になる。 牧野による分析では、この法則はCray-1より前では成り立つが、後では成り立たない。詳しく説明すると、パイプライン化してクロック毎に2演算(立ち上がりと立ち下がりの両方で演算することを仮定)が達成されたとすると、それより安い計算機では成り立つが、それより高い計算機では成り立たない。なぜなら、それ以上の性能を達成するためには複数個の演算装置で並列計算する必要があり、それらを制御するための回路がそれ以上に複雑になるからである。1999年には、複雑化による性能向上は2乗ではなく逆2乗であるというポラックの法則が誕生している。 また、提唱された当時には想像の範囲外であろうが、パーソナルコンピュータのように量産効果が大きく働くと、低価格側が、法則が示すよりも高性能になる、という形で法則から外れるようになる。この意味では、2000年頃まではスーパーコンピュータは量産効果において不利であったが、その後の超並列化の結果、京に至ってはSPARC 64 VIIIfxを8万基使用するなど、量産技術によって高性能を達成するように変わってきている。 似たような法則に、オペレーションズ・リサーチにおけるランチェスターの法則(第2法則)がある。たとえば戦争において、兵士の能力や兵器の性能が同等なら、兵士5人対兵士10人の戦力比は本法則同様25:100として考える。.

新しい!!: ムーアの法則とグロッシュの法則 · 続きを見る »

ゴードン・ムーア

魚釣りを楽しむゴードン・ムーア(2005年ごろ) ゴードン・ムーア(Gordon E. Moore, 1929年1月3日 - )は、Intel Corporation(インテル)の設立者の一人であり、現名誉会長である(2005年現在)。.

新しい!!: ムーアの法則とゴードン・ムーア · 続きを見る »

タビュレーティングマシン

ンピュータ歴史博物館にあるホレリスのタビュレーティングマシンとソータ (1890) ホレリスのパンチカード タビュレーティングマシン(Tabulating machine)は日本では一般にパンチカードシステムと呼ばれていたもので、会計などの作表を補助する機械群。タビュレータ (tabulator) とも。ハーマン・ホレリスが発明し、1890年の米国国勢調査のデータ処理で初めて使用された。その後コンピュータが普及するまでデータ処理に広く使われた。 「スーパーコンピューティング」という言葉は1931年、紙がIBMがコロンビア大学に納入した大型特製タビュレータを指して使ったのが最初である なお、95ページにある1920年という日付は間違っている。詳しくは を参照。.

新しい!!: ムーアの法則とタビュレーティングマシン · 続きを見る »

公式

数学において公式(こうしき)とは、数式で表される定理のことである。転じて比喩的に「問題を簡単に解決することができる魔法のようなもの」というような意味で用いられることがある。同様な意味で「方程式」という言葉が用いられることも多い。.

新しい!!: ムーアの法則と公式 · 続きを見る »

CMOS

CMOS(シーモス、Complementary MOS; 相補型MOS)とは、P型とN型のMOSFETをディジタル回路(論理回路)の論理ゲート等で相補的に利用する回路方式(論理方式)、およびそのような電子回路やICのことである。また、そこから派生し多義的に多くの用例が観られる(『#その他の用例』参照)。.

新しい!!: ムーアの法則とCMOS · 続きを見る »

CPU

Intel Core 2 Duo E6600) CPU(シーピーユー、Central Processing Unit)、中央処理装置(ちゅうおうしょりそうち)は、コンピュータにおける中心的な処理装置(プロセッサ)。 「CPU」と「プロセッサ」と「マイクロプロセッサ」という語は、ほぼ同義語として使われる場合も多いが、厳密には以下に述べるように若干の範囲の違いがある。大規模集積回路(LSI)の発達により1個ないしごく少数のチップに全機能が集積されたマイクロプロセッサが誕生する以前は、多数の(小規模)集積回路(さらにそれ以前はディスクリート)から成る巨大な電子回路がプロセッサであり、CPUであった。大型汎用機を指す「メインフレーム」という語は、もともとは多数の架(フレーム)から成る大型汎用機システムにおいてCPUの収まる主要部(メイン)、という所から来ている。また、パーソナルコンピュータ全体をシステムとして見た時、例えば電源部が制御用に内蔵するワンチップマイコン(マイクロコントローラ)は、システム全体として見た場合には「CPU」ではない。.

新しい!!: ムーアの法則とCPU · 続きを見る »

磁気ディスク装置

磁気ディスク装置とは、ハードディスクドライブを内蔵または、磁気ディスクパックを扱う補助記憶装置を指す。 装置内には、制御ボード、電源装置、インターフェースなどが組み込まれている。.

新しい!!: ムーアの法則と磁気ディスク装置 · 続きを見る »

磁気抵抗効果

Corbino disc. With the magnetic field turned off, a radial current flows in the conducting annulus due to the battery connected between the (infinite) conductivity rims. 磁場が回転したときローレンツ力により電流が流れる。リムの内側と外側に抵抗が生じる。磁場による抵抗を''磁気抵抗''と呼ぶ. 磁気抵抗効果(じきていこうこうか、magnetoresistance)とは、外部磁場によって電気抵抗が変化する現象である。まぎらわしいが、磁気抵抗(magnetic resistance)とはまったく異なる現象である。 この現象は、1856年にウィリアム・トムソンによって最初に発見された。この効果によってわずか5%変化するだけだった。後に普通の磁気抵抗効果と呼ばれる。今日では巨大磁気抵抗効果やトンネル磁気抵抗効果が発見されている。.

新しい!!: ムーアの法則と磁気抵抗効果 · 続きを見る »

継電器

継電器(けいでんき、英: relay リレー)は、動作スイッチ・物理量・電力機器等の状態に応じ、制御または電源用の電力の出力をする電力機器である。 もとは有線電信において、伝送路の電気抵抗によって弱くなった信号を「中継」(relay リレー)するために発明されたものである。図などではRyという記号が使われることが多い。発明者はジョセフ・ヘンリーである。小電力の入力によって大電力のオン・オフを制御することが当初の目的であったため、継電器を用いることを時として「アンプする」というが、対象とするものを直に制御するよりは、安全性(感電の防止など)や操作性(設置位置の自由度、遠隔操作)、操作の確実性等が増すことから、必ずしも電力的な増幅の目的にとどまらず、広範囲な目的で多用されている。.

新しい!!: ムーアの法則と継電器 · 続きを見る »

真空管

5球スーパーラジオに使われる代表的な真空管(mT管) 左から6BE6、6BA6、6AV6、6AR5、5MK9 ここでは真空管(しんくうかん、vacuum tube、vacuum valve)電子管あるいは熱電子管などと呼ばれるものについて解説する。.

新しい!!: ムーアの法則と真空管 · 続きを見る »

経験則

経験則 (けいけんそく、独 Erfahrungssatzブリタニカ百科事典【経験則】, 英 rule of thumb ) とは、実際に経験された事柄から見いだされる法則のことであるデジタル大辞泉.

新しい!!: ムーアの法則と経験則 · 続きを見る »

片対数グラフ

片対数グラフ(かたたいすうぐらふ、semilog graph)David Carr Baird・加藤幸弘・千川道幸・近藤康『実験法入門』ピアソンエデュケーション(2004年12月)東京理科大学 理学部第二部 物理学科編『物理学実験 入門編』内田老鶴圃(2008年4月)東北大学 自然科学総合実験 電気通信大学 基礎科学実験A とは、グラフの一方の軸が対数目盛(縦を対数目盛とすることが多い)になっているグラフである。極端に範囲の広いデータを扱える。通常の目盛の軸を範囲の狭いデータに、対数目盛の軸は極端に範囲の広いデータ用にする。.

新しい!!: ムーアの法則と片対数グラフ · 続きを見る »

表象

表象(ひょうしょう、Representation、Représentation)は、一般には、知覚したイメージを記憶に保ち、再び心のうちに表れた作用をいう(イメージそのものを含めて呼ぶこともある)が、元来は「なにか(に代わって)他のことを指す」という意味である。類義語に、記号、イメージ、シンボル(象徴)がある。.

新しい!!: ムーアの法則と表象 · 続きを見る »

複雑性クラス

複雑性クラス(ふくざつせいクラス、Complexity class)は、計算複雑性理論において関連する複雑性の問題の集合を指す。典型的な複雑性クラスは以下のように定義される。 例えば、クラスNPは非決定性チューリングマシンで多項式時間で解く事が出来る決定問題の集合である。また、クラスPSPACEはチューリングマシンで多項式領域で解く事が出来る決定問題の集合である。一部の複雑性クラスは函数問題の集合である(例えば'''FP''')。 数理論理学では表現の必要に応じて多数の複雑性クラスが定義される(記述計算量)。 ブラムの公理を使うと、完全な計算模型を参照しなくとも複雑性クラスを定義できる。.

新しい!!: ムーアの法則と複雑性クラス · 続きを見る »

計算複雑性理論

計算複雑性理論(けいさんふくざつせいりろん、computational complexity theory)とは、計算機科学における計算理論の一分野であり、アルゴリズムのスケーラビリティや、特定の計算問題の解法の複雑性(計算問題の困難さ)などを数学的に扱う。計算量理論、計算の複雑さの理論、計算複雑度の理論ともいう。.

新しい!!: ムーアの法則と計算複雑性理論 · 続きを見る »

計算機科学

計算機科学(けいさんきかがく、computer science、コンピュータ科学)とは、情報と計算の理論的基礎、及びそのコンピュータ上への実装と応用に関する研究分野である。計算機科学には様々な下位領域がある。コンピュータグラフィックスのように特定の処理に集中する領域もあれば、計算理論のように数学的な理論に関する領域もある。またある領域は計算の実装を試みることに集中している。例えば、プログラミング言語理論は計算を記述する手法に関する学問領域であり、プログラミングは特定のプログラミング言語を使って問題を解決する領域である。.

新しい!!: ムーアの法則と計算機科学 · 続きを見る »

誤り検出訂正

誤り検出訂正(あやまりけんしゅつていせい)またはエラー検出訂正 (error detection and correction/error check and correct) とは、データに符号誤り(エラー)が発生した場合にそれを検出、あるいは検出し訂正(前方誤り訂正)することである。検出だけをする誤り検出またはエラー検出と、検出し訂正する誤り訂正またはエラー訂正を区別することもある。また改竄検出を含める場合も含めない場合もある。誤り検出訂正により、記憶装置やデジタル通信・信号処理の信頼性が確保されている。.

新しい!!: ムーアの法則と誤り検出訂正 · 続きを見る »

集積回路

SOPパッケージに封入された標準ロジックICの例 集積回路(しゅうせきかいろ、integrated circuit, IC)は、主としてシリコン単結晶などによる「半導体チップ」の表面および内部に、不純物の拡散による半導体トランジスタとして動作する構造や、アルミ蒸着とエッチングによる配線などで、複雑な機能を果たす電子回路の多数の素子が作り込まれている電子部品である。多くの場合、複数の端子を持つ比較的小型のパッケージに封入され、内部で端子からチップに配線されモールドされた状態で、部品・製品となっている。.

新しい!!: ムーアの法則と集積回路 · 続きを見る »

Intel Core

Intel Coreは、インテルが製造するx86アーキテクチャのマイクロプロセッサのうち、メインストリームからハイエンドPC向けのCPUに与えられるブランド名である。 Coreプロセッサのラインナップには、最新のIntel Core i9、Core i7、Core i5、Core i3、Core Mプロセッサ(しばしばCore i シリーズ、Coreプロセッサ・ファミリなどと称される)と、その前世代のCore 2 Solo、Core 2 Duo、Core 2 Quad、Core 2 Extreme(Intel Core2の項目を参照)、初代となるIntel Core Solo、Core Duoが含まれる。.

新しい!!: ムーアの法則とIntel Core · 続きを見る »

Intel Pentium

Intel Pentium、(インテル ペンティアム).

新しい!!: ムーアの法則とIntel Pentium · 続きを見る »

NP

NPは、複雑性クラスのひとつで、Non-deterministic Polynomial time(非決定性多項式時間)の略である(「Non-P」ないしは「Not-P」ではない)。.

新しい!!: ムーアの法則とNP · 続きを見る »

NVIDIA

NVIDIA Corporation(エヌビディアコーポレーション)は、アメリカ合衆国カリフォルニア州サンタクララにある半導体メーカー。コンピュータのグラフィックス処理や演算処理の高速化を主な目的とするGPU(グラフィックス・プロセッシング・ユニット)を開発し販売する。 デスクトップパソコンやノートパソコン向けのGPUであるGeForceシリーズ、プロフェッショナル向けでワークステーションに搭載されるQuadroやNVSシリーズで有名だが、スーパーコンピュータ向けの演算専用プロセッサであるTesla(テスラ)や、携帯電話やスマートフォン・タブレット端末向けのSoC(システム・オン・チップ)であるTegra(テグラ)の開発販売も手掛ける。日本法人は東京都港区赤坂にある。 NV1 搭載ボード.

新しい!!: ムーアの法則とNVIDIA · 続きを見る »

P (計算複雑性理論)

計算量理論におけるPとは多項式時間(polynomial time)で解ける判定問題の集合である。.

新しい!!: ムーアの法則とP (計算複雑性理論) · 続きを見る »

Pentium D

Pentium D(ペンティアムディー)は2005年にインテルが発売したx86アーキテクチャのマイクロプロセッサ。.

新しい!!: ムーアの法則とPentium D · 続きを見る »

Random Access Memory

RAMの種類。上からDIP、SIPP、SIMM 30ピン、SIMM 72ピン、DIMM (SDRAM)、DIMM(DDR-SDRAM) Random access memory(ランダムアクセスメモリ、RAM、ラム)とは、コンピュータで使用するメモリの一分類である。本来は、格納されたデータに任意の順序でアクセスできる(ランダムアクセス)メモリといった意味で、かなりの粗粒度で「端から順番に」からしかデータを読み書きできない「シーケンシャルアクセスメモリ」と対比した意味を持つ語であった。しかし本来の意味からズレて、ROM(読み出し専用メモリ)に対して、任意に書き込みできるメモリの意で使われていることが専らである。.

新しい!!: ムーアの法則とRandom Access Memory · 続きを見る »

UNIVAC I

UNIVAC I のデモの様子 UNIVAC Iは、世界初の商用コンピュータ。1950年に完成し、1951年にレミントンランド社(現Unisys)が発売。Universal Automatic Computer(万能自動計算機)の略。初の事務処理用途のコンピュータでもある。 ENIACと比較して真空管の本数は3分の1以下の5200本。メモリには100本の水銀遅延管を使用し、10000本のダイオードを搭載していた。重量7.2トン。入出力装置には、初めて磁気テープが搭載された。プログラム内蔵方式で、1秒間に10万回の加算が可能だった。 ENIACを開発したモークリー(John William Mauchly)とエッカート(John Presper Eckert)が設立したエッカート・モークリ社で開発が開始された。しかし、資金不足に陥り、IBMからは資金援助を断られるが、1950年にレミントンランド社が買収し、発売にこぎつける。1号機は国勢調査局に納入された。 価格は、1台目が159,000ドル、2, 3台目が250,000ドル。最終的には、47台販売された。当時、コンピュータといえばUNIVACと言われるほど普及した。 1952年のアメリカ大統領選挙で、選挙結果の予想を行ったコンピュータとしても知られる。大方の予想に反してアイゼンハワーの勝利を予想し、的中させたことで驚きを与えた。 現在、スミソニアン博物館に第一号機が展示されている。また,ミュンヘンのドイッチェ博物館にも,本体が展示されている。 この機械は更にUNIVAC IIとして進化した。UNIVAC IIでは,主メモリ(2000語)・磁気テープ外部記憶装置との速度緩衝メモリ(60語)が磁気コアメモリとなり,磁気テープの記録密度は,250ppi(pulse per inch)と2倍密度であった。内部レジスタは超音波を結晶中で反射させその遅延時間を利用していた。1語長は,7ビット語12桁で,通常の機械命令語はその半分の6文字で構成していた。日本国にもその第29号機が(株)東京電力に輸入され,昭和36年~昭和43年まで,主に従量電灯計算など大量データ処理に使用された。 UNIVAC1 Category:UNIVACのメインフレーム.

新しい!!: ムーアの法則とUNIVAC I · 続きを見る »

技術的特異点

技術的特異点(ぎじゅつてきとくいてん、英語:Technological Singularity)、またはシンギュラリティ(Singularity)とは、未来学上の概念の一つ。端的に言えば、再帰的に改良され、指数関数的に高度化する人工知能により、技術が持つ問題解決能力が指数関数的に高度化することで、(頭脳が機械的に強化されていない)人類に代わって、汎用人工知能あるいはポストヒューマンが文明の進歩の主役に躍り出る時点の事である。 汎用人工知能ではなくポストヒューマンが登場するシナリオを辿った場合は、人類が自分自身の肉体を技術的に改造し、次なる人類の進化のステージに移行する瞬間としても捉えられる。端的に言えば史上初めて人間の脳を技術的に拡張して高速化できた時点である。方法はサイボーグ化か精神転送が有力である。 一度でも技術的特異点が到来すると、自律的に自身を強化し続けようとする機械的な知性が出現することで、決して後戻りできない超加速度的な技術の進歩を引き起こし、人間が築き上げた文明に計り知れない(もはや技術的特異点以前の文明で起きていた出来事の大きさが限りなく0に見える程に大きな)変化をもたらす。技術革新の歴史を辿って行くと、数学的あるいは物理的な特異点の近傍に似た挙動が見られることからこのように名付けられた。 人間の脳の機械的な改造も含め、機械で実現される知能が現れ自律的かつ再帰的な進化を開始すると、時系列グラフに表した場合に、機械で実現される知能の思考速度がそびえ立つ壁のように垂直に立ち上がり、生身の人間の感覚で言えば無限大に到達したように見える。しかし、当然の事ながら、物理的な制約が存在するため、どのような方法を用いても、実際の物理空間で実現される知能が無限大の思考速度を獲得することはない(仮に新しい宇宙の創造と利用が可能であれば、いくらでも知能の思考速度を無限大に近付けることは可能である)。 具体的にその時点がいつ頃到来するかという予測は、21世紀中頃~22世紀以降まで論者により様々だが、この概念を収穫加速の法則と結びつける形で一般化させたレイ・カーツワイルの影響により、2045年頃に到来するとの説が有力視されることが多い。2012年以降、ディープラーニングの爆発的な普及を契機に現実味を持って議論されるようになり、2045年問題とも呼ばれている。技術に関する話題の中では、全世界で一番大きな注目を集めていると言える。.

新しい!!: ムーアの法則と技術的特異点 · 続きを見る »

法則

法則(ほうそく)とは、ある現象とある現象の関係を指す言葉である。 自然現象についてだけでなく、法規上の規則を法則と呼ぶこともある。また文法上の規則(例えば係り結びの法則など)も法則とされる。 法則を大別し、自然現象に焦点が当てられているものが「自然法則」、人間の行動についての規範・規則は「道徳法則」、と分けられることもある。.

新しい!!: ムーアの法則と法則 · 続きを見る »

最高経営責任者

最高経営責任者(さいこうけいえいせきにんしゃ、chief executive officer、略語: CEO)とは、アメリカ合衆国内の法人において理事会(法人が会社の場合は取締役会)(board of directors) の指揮の下で法人のすべての業務執行を統括する役員、執行役員又は執行役(officer、または executive officer)の名称、若しくは最高経営責任者として選任された人物のことである。統括業務執行役員などと和訳されることもある。イギリスにおいては、同様の職務を行う役員を業務執行役員(managing director、略語: )、またはチーフ・エクゼクティブ(chief executive)という。また、非営利団体ではエグゼクティブ・ディレクター(executive director、略語: )の名称が使われることもある。.

新しい!!: ムーアの法則と最高経営責任者 · 続きを見る »

情報量

情報量(じょうほうりょう)やエントロピー(entropy)は、情報理論の概念で、あるできごと(事象)が起きた際、それがどれほど起こりにくいかを表す尺度である。ありふれたできごと(たとえば「風の音」)が起こったことを知ってもそれはたいした「情報」にはならないが、逆に珍しいできごと(たとえば「曲の演奏」)が起これば、それはより多くの「情報」を含んでいると考えられる。情報量はそのできごとが本質的にどの程度の情報を持つかの尺度であるとみなすこともできる。 なおここでいう「情報」とは、あくまでそのできごとの起こりにくさ(確率)だけによって決まる数学的な量でしかなく、個人・社会における有用性とは無関係である。たとえば「自分が宝くじに当たった」と「見知らぬAさんが宝くじに当たった」は、前者の方が有用な情報に見えるが、両者の情報量は全く同じである(宝くじが当たる確率は所与条件一定のもとでは誰でも同じであるため)。.

新しい!!: ムーアの法則と情報量 · 続きを見る »

教授

教員における教授(きょうじゅ、professor)は、大学院、大学、短期大学、高等専門学校など高等教育を行う教育施設や、JAXA、大学入試センターなど研究機関の、指導者の職階や職階者である。.

新しい!!: ムーアの法則と教授 · 続きを見る »

2010年代

2010年代(にせんじゅうねんだい)は、西暦(グレゴリオ暦)2010年から2019年までの10年間を指す十年紀。2000年代をゼロ年代とするのにならって、2010年代をテン年代とする表現もある。この項目では、国際的な視点に基づいた2010年代について記載する。.

新しい!!: ムーアの法則と2010年代 · 続きを見る »

2017年

この項目では国際的な視点に基づいた2017年について記載する。.

新しい!!: ムーアの法則と2017年 · 続きを見る »

ここにリダイレクトされます:

シリコンサイクル

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »