ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
ダウンロード
ブラウザよりも高速アクセス!
 

マンデルブロ集合

索引 マンデルブロ集合

マンデルブロ集合 数学、特に複素力学系に於けるマンデルブロ集合(マンデルブロしゅうごう、 )は、 充填ジュリア集合に対する指標として提唱された集合である。数学者ブノワ・マンデルブロの名に因む。.

20 関係: 宍倉光広ブノワ・マンデルブロフラクタルフラクタル幾何ベンチマークカージオイドジュリア集合充填ジュリア集合無限相似次元複素力学系複素平面複素数集合連結空間極限漸化式数学数学者数列

宍倉光広

宍倉 光広(ししくら みつひろ、1960年11月27日 - )は日本の数学者。京都大学教授。専門は、力学系理論。 1983年に京都大学理学部を卒業。1988年に同大学院理学研究科博士課程修了。プリンストン高等研究所所員、東京工業大学助手・助教授、東京大学助教授、広島大学教授を経て、現職。 力学系の中でもフラクタルの研究を活発に行っている。特に複素平面上のマンデルブロ集合についての研究は有名で、境界のハウスドルフ次元が2であるというマンデルブロの予想を証明した。 1992年にはサレム賞、1995年には日本数学会春季賞を受賞した。.

新しい!!: マンデルブロ集合と宍倉光広 · 続きを見る »

ブノワ・マンデルブロ

ブノワ・マンデルブロ(、1924年11月20日 - 2010年10月14日)はフランスの数学者、経済学者。パシフィック・ノースウェスト国立研究所フェロー、IBM・トーマス・J・ワトソン研究所名誉フェロー、イェール大学名誉教授。フラクタルを導入したことで著名である。本人は(バヌワ・マンデルブロート)と発音していたが、日本では文献によりベンワまたはマンデルブロと書いているところも多い。.

新しい!!: マンデルブロ集合とブノワ・マンデルブロ · 続きを見る »

フラクタル

フラクタル(, fractal)は、フランスの数学者ブノワ・マンデルブロが導入した幾何学の概念である。ラテン語 fractus から。 図形の部分と全体が自己相似になっているものなどをいう。.

新しい!!: マンデルブロ集合とフラクタル · 続きを見る »

フラクタル幾何

フラクタル幾何(フラクタルきか)とは、簡単に言えば「どんなに拡大しても複雑な図形」のことをさす。フラクタル図形とも呼ばれる。 フラクタル幾何に関する理論は、そのほとんどが一人の数学者ブノワ・マンデルブロ(Benoit Mandelbrot)によって創作された。彼は海岸線やひび割れの形、樹木の枝分かれなどに見られる複雑な図形を数学的に理論化した。.

新しい!!: マンデルブロ集合とフラクタル幾何 · 続きを見る »

ベンチマーク

ベンチマーク()とは、本来は測量において利用する水準点を示す語で、転じて金融、資産運用や株式投資における指標銘柄など、比較のために用いる指標を意味する。また、広く社会の物事のシステムのあり方や規範としての水準や基準などを意味する。またベンチマーキングとは自社の課題解決のために、競合他社などの優れた経営手法(ベストプラクティス)を持つ企業を分析するプロセスを指す。.

新しい!!: マンデルブロ集合とベンチマーク · 続きを見る »

カージオイド

ージオイド(cardioid)は、極座標の方程式 によって表される曲線である。心臓形(しんぞうけい)とも呼ばれる。心臓に似た形のためこの名称が付いた(καρδιοειδής).

新しい!!: マンデルブロ集合とカージオイド · 続きを見る »

ジュリア集合

ュリア集合 数学、特に複素力学系に於けるジュリア集合(ジュリアしゅうごう、 )は、複素平面上のある近傍で反復関数が非正規族となる点の集合である。数学者ガストン・ジュリアの名に因む。 ジュリア集合内には充填ジュリア集合と発散点集合が稠密に存在している。 ジュリア集合の補集合はファトゥ集合である。.

新しい!!: マンデルブロ集合とジュリア集合 · 続きを見る »

充填ジュリア集合

充填ジュリア集合 数学、特に複素力学系に於ける充填ジュリア集合(じゅうてんジュリアしゅうごう、 )は、ジュリア集合とその内部を含む集合である。 充填ジュリア集合は、漸化式 zn+1.

新しい!!: マンデルブロ集合と充填ジュリア集合 · 続きを見る »

無限

無限(むげん、infinity、∞)とは、限りの無いことである。 直感的には「限界を持たない」というだけの単純に理解できそうな概念である一方で、直感的には有限な世界しか知りえないと思われる人間にとって、無限というものが一体どういうことであるのかを厳密に理解することは非常に難しい問題を含んでいる。このことから、しばしば哲学、論理学や自然科学などの一部の分野において考察の対象として無限という概念が取り上げられ、そして深い考察が得られている。 本項では、数学などの学問分野において、無限がどのように捉えられ、どのように扱われるのかを記述する。.

新しい!!: マンデルブロ集合と無限 · 続きを見る »

相似次元

似次元(そうじじげん、similarity dimension)は、図形の自己相似性に注目した次元の定義である。人工的な自己相似図形に対して次元を求める場合に用いる。人工的な自己相似図形以外の図形(実際の自然界に存在する図形など)に対しても相似次元の概念を適用できるように定義を拡張した次元として、容量次元がある。.

新しい!!: マンデルブロ集合と相似次元 · 続きを見る »

複素力学系

複素力学系(ふくそりきがくけい、 )は、複素数の空間上での関数の反復適用によって定義される力学系の研究である。特に解析関数の力学系の研究を複素解析力学( )と言う。.

新しい!!: マンデルブロ集合と複素力学系 · 続きを見る »

複素平面

複素平面 数学において、数平面(すうへいめん、Zahlenebene)あるいは複素数­平面(ふくそすう­へいめん、Komplexe Zahlenebene, complex plane)は、数直線あるいは実数直線 (real line) を実軸 (real axis) として含む。 が実数であるとき、複素数 を単に実数の対とみなせば、平面の直交座標 の点に対応付けることができる。xy-平面上の y-軸は純虚数の全体に対応し、虚軸 (imaginary axis) と呼ばれる。-平面上の点 に複素数 を対応させるとき、-平面とも言う。 1811年頃にガウスによって導入されたため、ガウス平面 (Gaussian plane) とも呼ばれる。一方、それに先立つ1806年に も同様の手法を用いたため、アルガン図 (Argand Diagram) とも呼ばれている。さらに、それ以前の1797年の の書簡にも登場している。このように複素数の幾何的表示はガウス以前にも知られていたが、今日用いられているような形式で複素平面を論じたのはガウスである。三者の名前をとってガウス・アルガン平面、ガウス・ウェッセル平面などとも言われる。 英語名称 complex plane を「直訳」して複素平面と呼ぶことも少なくないが、ここにいう complex は「複素数上の—」という意味ではなく複素数そのものを意味している(複素数の全体を "the complexes" と呼んだり、" is a complex" などのような用例のあることを想起せよ)。したがって、語義に従った complex plane の直訳は「複素数平面」と考えるべきである(実数全体の成す real line についても同様であり、これは通例「実数直線」と訳され、実直線は多少異なる意味に用いられる)。.

新しい!!: マンデルブロ集合と複素平面 · 続きを見る »

複素数

数学における複素数(ふくそすう、complex number)は、実数の対 と と線型独立な(実数ではない)要素 の線型結合 の形に表される数(二元数: 実数体上の二次拡大環の元)で、基底元 はその平方が になるという特別な性質を持ち虚数単位と呼ばれる。 複素数全体の成す集合を太字の あるいは黒板太字で と表す。 は、実数全体の成す集合 と同様に、可換体の構造を持ち、とくに を含む代数閉体を成す。複素数体はケイリー–ディクソン代数(四元数、八元数、十六元数など)の基点となる体系であり、またさまざまな超複素数系の中で最もよく知られた例である。 複素数の概念は、一次元の実数直線を二次元の複素数平面に拡張する。複素数は自然に二次元平面上に存在すると考えることができるから、複素数全体の成す集合上に自然な大小関係(つまり全順序)をいれることはできない。すなわち は順序体でない。 ある数学的な主題や概念あるいは構成において、それが複素数体を基本の体構造として考えられているとき、そのことはしばしばそれら概念等の名称に(おおくは接頭辞「複素-」を付けることで)反映される。例えば、複素解析、複素行列、複素(係数)多項式、複素リー代数など。.

新しい!!: マンデルブロ集合と複素数 · 続きを見る »

集合

数学における集合 (しゅうごう、set, ensemble, Menge) とは、大雑把に言えばいくつかの「もの」からなる「集まり」である。集合を構成する個々の「もの」のことを元 (げん、; 要素) という。 集合は、集合論のみならず現代数学全体における最も基本的な概念の一つであり、現代数学のほとんどが集合と写像の言葉で書かれていると言ってよい。 慣例的に、ある種の集合が系 (けい、) や族 (ぞく、) などと呼ばれることもある。実際には、これらの呼び名に本質的な違いはないが細かなニュアンスの違いを含むと考えられている。たとえば、方程式系(「相互に連立する」方程式の集合)、集合族(「一定の規則に基づく」集合の集合)、加法族(「加法的な性質を持つ」集合族)など。.

新しい!!: マンデルブロ集合と集合 · 続きを見る »

連結空間

位相幾何学や関連する数学の分野において、連結空間(れんけつくうかん、connected space)とは、2つ以上の互いに素な空でない開部分集合の和集合として表すことのできない位相空間のことである。空間の連結性は主要なの1つであり、位相空間の区別をつけることに利用できる。より強い意味での連結性として、弧状連結 (path-connected) という概念があり、これは任意の2点が道によって結べることをいう。 位相空間 X の部分集合が連結であるとは、X の相対位相によってそれ自身を位相空間と見たときに連結であることをいう。 連結でない空間の例は、平面から直線を取り除いたものがある。非連結空間(すなわち連結でない空間)の他の例には、平面からアニュラスを取り除いたものや、2つの交わりを持たない閉円板の和集合がある。ただし、これら3つの例はいずれも、2次元ユークリッド空間から誘導される相対位相を考えている。.

新しい!!: マンデルブロ集合と連結空間 · 続きを見る »

極限

数学においては、数列など、ある種の数学的対象をひとまとまりに並べて考えたものについての極限(きょくげん、limit)がしばしば考察される。数の列がある値に限りなく近づくとき、その値のことを数列の極限あるいは極限値といい、この数列は収束するという。収束しない場合は、発散するという。 極限を表す記号として、次のような lim (英語:limit, リミット、ラテン語:limes)という記号が一般的に用いられる。.

新しい!!: マンデルブロ集合と極限 · 続きを見る »

漸化式

数学における漸化式(ぜんかしき、recurrence relation; 再帰関係式)は、各項がそれ以前の項の函数として定まるという意味で数列を再帰的に定める等式である。 ある種の漸化式はしばしば差分方程式 (difference equation) と呼ばれる。また、「差分方程式」という言葉を単に「漸化式」と同義なものとして扱うことも多い。 漸化式の例として、ロジスティック写像 が挙げられる。このような単純な形の漸化式が、しばしば非常に複雑な(カオス的な)挙動を示すことがあり、このような現象についての研究は非線型解析学などと呼ばれる分野を形成している。 漸化式を解くとは、 添字 n に関する非再帰的な函数として、一般項を表すの式を得ることをいう。.

新しい!!: マンデルブロ集合と漸化式 · 続きを見る »

数学

数学(すうがく、μαθηματικά, mathematica, math)は、量(数)、構造、空間、変化について研究する学問である。数学の範囲と定義については、数学者や哲学者の間で様々な見解がある。.

新しい!!: マンデルブロ集合と数学 · 続きを見る »

数学者

数学者(すうがくしゃ、mathematician)とは、数学に属する分野の事柄を第一に、調査および研究する者を指していう呼称である。.

新しい!!: マンデルブロ集合と数学者 · 続きを見る »

数列

数学において数列(すうれつ、numerical sequence)とは、数が列になったもの (sequence of numbers) を言う。 ある数はそれ単独で興味深い性質や深い意味を持っているかもしれない。単独ではそれほど面白くはない数たちもまとめて考えると興味深い性質を持つかもしれない。数列を考える意識は後者に属する。数列とは例えば正の奇数を小さい順に並べた のような数の“並び”である。並べる数に制限を加えて、たとえば自然数のみを並べるならば、これを自然数列と略称する。整数、有理数、実数などのほかの数体系を用いる場合も同様の略称を用いる。各々の数の“置かれるべき場所”は数列の項 (こう、term) と呼ばれる。数の並びが数列と呼ばれるためには、数列の各項を“順番に並べる”こと、つまりそれぞれの数が何番目の項に配置されているのかを一意に示すように番号付けができなければならない。したがって、“最も簡単”な数列は自然数を小さい順に並べた数列 ということになる(これは自然数が順序数であることによる)。 考える数列に端が存在する場合がある。数列の端に存在する項は、その数列の最初の項、または最後の項であると考えることができる。数列の最初の項をその数列の初項(しょこう、first term)といい、最後の項を数列の末項(まっこう、last term)と呼ぶ。 数列に対して必ずしも初項と末項を定めることはできない。たとえば「すべての自然数」を表わす数列の項の数は「自然数の個数」に等しいが、自然数は無限に存在するため、その末項は存在しない。このように末項が定まらないような数列は、無限数列(むげんすうれつ、infinite sequence)と呼ばれ、末項を持つ数列は有限数列(ゆうげんすうれつ、finite sequence)と呼ばれる。 初項を表わす添字は自由に与えることができ、議論や計算を簡単にするように選ばれるが、慣習的に 0 または 1 が与えられることも多い。たとえば有限数列の初項の添字を 1 から始めた場合、末項は項数に等しい添字 が与えられるため、記述が簡単になる。 特別な数列には、項の並びに規則性のあるものがある。代表的なものは、等差数列や等比数列あるいはフィボナッチ数列のように漸化式で定義される数列である。.

新しい!!: マンデルブロ集合と数列 · 続きを見る »

ここにリダイレクトされます:

マンデルブロー集合マンデブロ集合

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »