ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
ダウンロード
ブラウザよりも高速アクセス!
 

行列

索引 行列

数学の線型代数学周辺分野における行列(ぎょうれつ、matrix)は、数や記号や式などを行と列に沿って矩形状に配列したものである。行の数と列の数が同じ行列はが成分ごとの計算によって与えられる。行列の積の計算はもっと複雑で、2 つの行列がかけ合わせられるためには、積の左因子の列の数と右因子の行の数が一致していなければならない。 行列の応用として顕著なものは一次変換の表現である。一次変換は のような一次関数の一般化で、例えば三次元空間におけるベクトルの回転などは一次変換であり、 が回転行列で が空間の点の位置を表す列ベクトル(1 列しかない行列)のとき、積 は回転後の点の位置を表す列ベクトルになる。また 2 つの行列の積は、2 つの一次変換の合成を表現するものとなる。行列の別な応用としては、連立一次方程式の解法におけるものである。行列が正方行列であるならば、そのいくつかの性質は、行列式を計算することによって演繹することができる。例えば、正方行列が正則であるための必要十分条件は、その行列式の値が非零となることである。固有値や固有ベクトルは一次変換の幾何学に対する洞察を与える。行列の応用は科学的な分野の大半に及び、特に物理学において行列は、電気回路、光学、量子力学などの研究に利用される。コンピュータ・グラフィックスでは三次元画像の二次元スクリーンへの投影や realistic-seeming motion を作るのに行列が用いられる。は、古典的な解析学における微分や指数関数の概念を高次元へ一般化するものである。 主要な数値解析の分野は、行列計算の効果的なアルゴリズムの開発を扱っており、主題は何百年にもわたって今日では研究領域も広がっている。行列の分解は、理論的にも実用的にも計算を単純化するもので、アルゴリズムは正方行列や対角行列などといった行列の特定の構造に合わせて仕立てられており、有限要素法やそのほかの計が効率的に処理される。惑星運動論や原子論では無限次行列が現れる。関数のテイラー級数に対して作用する微分の表現行列は、無限次行列の簡単な例である。.

173 関係: 加法単位元基底単位ベクトル単位行列単位正方形反数可逆元可換体可換環双対ベクトル空間双線型形式同型写像同値多元数多項式実数対称群対称行列対角化対角行列小行列小行列式三項系三角行列一般線型群一次関数九章算術平行四辺形交代行列交換法則二項積二項演算二次形式代数的閉体位置作用素微分区分行列ミネソタ大学ツインシティー校ノルムノルム代数マックス・ボルンマサチューセッツ工科大学出版局像 (数学)ハメル次元ハンケル行列バナッハ空間ヤコビ行列ユークリッド空間ユニタリ群...ユニタリ行列リー代数レオポルト・クロネッカーヴェルナー・ハイゼンベルクパスクアル・ヨルダンヒルベルト空間ヒルベルト=シュミット作用素テンソルテイラー展開フェルディナント・ゲオルク・フロベニウスフェルディナント・ゴットホルト・マックス・アイゼンシュタインドーヴァー出版ドット積ベクトル空間列空間分配法則アメリカ数学会アーベル群アーサー・ケイリーインペリアル・カレッジ・ロンドンウィリアム・ローワン・ハミルトンエルミート行列オライリーメディアオーギュスタン=ルイ・コーシーオックスフォード大学出版局オックスフォード英語辞典カール・ワイエルシュトラスカール・グスタフ・ヤコブ・ヤコビガブリエル・クラメールガウスの消去法クラメルの公式ケンブリッジ大学出版局ケイリー・ハミルトンの定理コレスキー分解コンマコンピュータグラフィックスゴットフリート・ライプニッツシュプリンガー・サイエンス・アンド・ビジネス・メディアジョルダン標準形ジョン・フォン・ノイマンジェームス・ジョセフ・シルベスター冪乗内積写像の合成全単射回転群回転行列因数分解固有値空積符号理論算術線型代数学線型写像線型結合線型独立線型方程式線型方程式系総乗群 (数学)結合多元環結合法則環 (数学)環上の加群物理学特異値分解特殊線型群直交群直交行列直積 (ベクトル)階数・退化次数の定理随伴行列表現論行列行列力学行列の定値性行列の乗法行列の分解行列の相似行列の階数行列式行列ノルム行空間複素数解析学計量ベクトル空間跡 (線型代数学)転置写像転置行列部分群関孝和関数解析学閉集合量子力学量子力学の数学的基礎自己準同型環自由加群配置集合零行列集合連続写像LU分解MATLABQR分解R言語S&P グローバル核 (代数学)正則表現 (数学)正則行列正規行列正方行列指数関数有理数有限体有限群有限要素法斜体 (数学)族 (数学)数学数式処理システム数値解析数論括弧 インデックスを展開 (123 もっと) »

加法単位元

数学、とくに抽象代数学における加法単位元(かほうたんいげん、additive identity)は、加法を演算として備える集合において、ほかのどのような元 x に加えても x が変化しない特別の元である。最もよく馴染みのある加法単位元のひとつとしては初等数学で扱う数の 0 が挙げられるが、加法単位元の概念はもっと多くの、加法が定義される数学的構造(たとえば加法群や環)に対して定義されるものである。環などにおける加法単位元はしばしば零元と呼ばれる。.

新しい!!: 行列と加法単位元 · 続きを見る »

基底

* 一般.

新しい!!: 行列と基底 · 続きを見る »

単位ベクトル

単位ベクトル(たんい-ベクトル、unit vector)とは、長さ(ノルム)が 1 のベクトルの事である。 二つのベクトル, があって、 が単位ベクトル( |\mathbf|.

新しい!!: 行列と単位ベクトル · 続きを見る »

単位行列

数学、特に線型代数学において、単位行列(たんいぎょうれつ、identity matrix)とは、単位的環上で定義される同じ型の正方行列同士の、積演算における単位元のことである。.

新しい!!: 行列と単位行列 · 続きを見る »

単位正方形

ユークリッド空間における単位正方形 数学における単位正方形(たんいせいほうけい、unit square)は一辺の長さが の正方形を言う。しばしば一意な ("the") 単位正方形として、四つの頂点が で与えられるものを指す。.

新しい!!: 行列と単位正方形 · 続きを見る »

反数

反数(はんすう、opposite)とは、ある数に対し、足すと になる数である。つまり、ある数 に対して、 となるような数 を の反数といい、 と表す。記号「−」を負号と呼び、「マイナス 」と読む。また、 は の反数であるともいえる。 は加法における単位元であるから、反数は加法における逆元である。このような加法における逆元は加法逆元(かほうぎゃくげん、additive inverse)と呼ばれる。 ある数にある数の反数を足すことを「引く」といい、減法 を以下のように定義する。 「 引く 」 または「 マイナス 」 と読む。反数に使われる「−」(負号)と引き算に使われる「−」(減算記号)をあわせて「マイナス記号」と呼ぶ。 また、反数を与える − は単項演算子と見なすことができ、単項マイナス演算子 と呼ばれる。一方、減算を表す演算子としての − は、項を 2 つとるの二項演算子なので、二項マイナス演算子 と呼ばれる。 乗法において反数に相当するものは逆数、あるいはより一般には乗法逆元 と呼ばれる。整数、有理数、実数、複素数においては、逆数は必ずしも存在しないが、反数は必ず存在する。ただし、 を含まない自然数においては反数は常に存在しない。 反数の概念はそのままベクトルに拡張することができ、反ベクトル(はんベクトル、opposite vector)と呼ばれる。ベクトルの加法における単位元はゼロ・ベクトルであり、あるベクトル に足すと を与えるベクトル を の反ベクトルという。 これを満たすベクトル は と表される。またこのとき は の反ベクトル でもある。.

新しい!!: 行列と反数 · 続きを見る »

可逆元

数学、とくに代数学における可逆元(かぎゃくげん、invertible element)または単元(たんげん、unit)とは、一般に代数系の乗法と呼ばれる二項演算に対する逆元を持つ元のことをいう。.

新しい!!: 行列と可逆元 · 続きを見る »

可換体

抽象代数学において、可換体(かかんたい、corps commutatif)あるいは単に体(たい、field)本記事において単に体と言った場合「可換」体を意味するものとする。とは、零でない可換可除環、あるいは同じことだが、非零元全体が乗法の下で可換群をなすような環のことである。そのようなものとして体は、適当なアーベル群の公理と分配則を満たすような加法、減法、乗法、除法の概念を備えた代数的構造である。最もよく使われる体は、実数体、複素数体、有理数体であるが、他にも有限体、関数の体、代数体、''p'' 進数体、などがある。 任意の体は、線型代数の標準的かつ一般的な対象であるベクトル空間のスカラーとして使うことができる。(ガロワ理論を含む)体拡大の理論は、ある体に係数を持つ多項式の根に関係する。他の結果として、この理論により、古典的な問題である定規とコンパスを用いたや円積問題が不可能であることの証明や五次方程式が代数的に解けないというアーベル・ルフィニの定理の証明が得られる。現代数学において、体論は数論や代数幾何において必要不可欠な役割を果たしている。 代数的構造として、すべての体は環であるが、すべての環が体であるわけではない。最も重要な違いは、体は(ゼロ除算を除いて)除算ができるが、環は乗法逆元がなくてもよいということである。例えば、整数の全体は環をなすが、2x.

新しい!!: 行列と可換体 · 続きを見る »

可換環

数学、特に抽象代数学の一分野である環論における可換環(かかんかん、commutative ring)は、その乗法が可換であるような環をいう。可換環の研究は可換環論あるいは可換代数学と呼ばれる。 いくつか特定の種類の可換環は以下のようなクラスの包含関係にある。.

新しい!!: 行列と可換環 · 続きを見る »

双対ベクトル空間

数学におけるベクトル空間の双対ベクトル空間(そうついベクトルくうかん、dual vector space)あるいは単に双対空間(そうついくうかん、dual space)は、そのベクトル空間上の線型汎函数(一次形式)全体の成す空間として定義される。有限次元ベクトル空間の双対空間はテンソルの研究に利用することができる。函数の成す(典型的には無限次元の)ベクトル空間に対する双対空間は、測度や超函数、あるいはヒルベルト空間のような概念の定義や研究に用いられ、結果として双対空間は函数解析学の研究における重要な観念となっている。 一般に双対空間には、代数的双対と連続的双対の二種類が用いられており、代数的双対は任意のベクトル空間に対して定義することができるが、位相線型空間を扱うときは代数的双対よりもその部分線型空間として、連続線型汎函数全体の成す連続的双対空間を考えるのが自然である。.

新しい!!: 行列と双対ベクトル空間 · 続きを見る »

双線型形式

数学の特に抽象代数学および線型代数学における双線型形式(そうせんけいけいしき、bilinear form)とは、スカラー値の双線型写像、すなわち各引数に対してそれぞれ線型写像となっている二変数函数を言う。より具体的に、係数体 上のベクトル空間 で定義される双線型形式 は.

新しい!!: 行列と双線型形式 · 続きを見る »

同型写像

数学において,同型写像(isomorphismfrom the Ancient Greek: ἴσος isos "equal", and μορφή morphe "form" or "shape")あるいは単に同型とは,は準同型写像あるいは射であって,逆射を持つものである逆関数ではない..2つの数学的対象が同型 (isomorphic) であるとは,それらの間に同型写像が存在することをいう.自己同型写像は始域と終域が同じ同型写像である.同型写像の興味は2つの同型な対象は写像を定義するのに使われる性質のみを使って区別できないという事実にある.したがって同型な対象はこれらの性質やその結果だけを考える限り同じものと考えてよい. 群や環を含むほとんどの代数的構造に対して,準同型写像が同型写像であることと全単射であることは同値である. 位相幾何学において,射とは連続写像のことであるが,同型写像は同相写像あるいは双連続写像とも呼ばれる.解析学において,射は可微分関数であり,同型写像は微分同相とも呼ばれる. 標準的な同型写像 (canonical isomorphism) は同型であるようなである.2つの対象が標準的に同型 (canonically isomorphic) であるとは,それらの間に標準的な同型写像が存在することをいう.例えば,有限次元ベクトル空間 から二重双対空間への標準的な写像は標準的な同型写像である.一方, は双対空間に同型であるが,一般には標準的にではない. 同型写像は圏論を用いて形式化される.ある圏の射 が同型射であるとは,両側逆射を持つことをいう,すなわち,その圏における別の射 があって, かつ となる,ただし と はそれぞれ と の恒等射である..

新しい!!: 行列と同型写像 · 続きを見る »

同値

同値(どうち)または等価(とうか)とは、2つの命題が共に真または共に偽のときに真となる論理演算である。 英語ではequivalence (EQ)。「if and only if」を略して、iff ともいう。否定排他的論理和 (XNOR) に等しい。 演算子記号は ⇔、↔、≡、.

新しい!!: 行列と同値 · 続きを見る »

多元数

数学における多元数(たげんすう、hyper­complex number; 超複素数)は、実数体上の単位的多元環の元を表す歴史的な用語である。多元数の研究は19世紀後半に現代的な群の表現論の基盤となった。.

新しい!!: 行列と多元数 · 続きを見る »

多項式

数学における多項式(たこうしき、poly­nomial)は、多数を意味するpoly- と部分を意味する -nomen あるいは nomós を併せた語で、定数および不定元(略式ではしばしば変数と呼ぶ)の和と積のみからなり、代数学の重要な対象となる数学的対象である。歴史的にも現代代数学の成立に大きな役割を果たした。 不定元がひとつの多項式は、一元多項式あるいは一変数多項式 と呼ばれ、不定元を とすれば のような形をしている。各部分 "", "", "", "" のことを項(こう、)と呼ぶ。一つの項だけからできている式を単項式 (monomial)、同様に二項式 (binomial)、三項式 (trinomial) などが、-nomial にラテン配分数詞を付けて呼ばれる。すなわち、多項式とは「多数」の「項」を持つものである。単項式の語が頻出であることに比べれば、二項式の語の使用はやや稀、三項式あるいはそれ以上の項数に対する語の使用はごく稀で一口に多項式として扱う傾向があり、それゆえ単項式のみ多項式から排他的に分類するものもある。また多項式のことを整式 (integral expression) と呼ぶ流儀もある。 多項式同士の等式として与えられる方程式は多項式方程式と呼ばれ、特に有理数係数の場合において代数方程式という。多項式方程式は多項式函数の零点を記述するものである。 不定元がふたつならば二元 (bivariate), 三つならば三元 (trivariate) というように異なるアリティを持つ多元多項式が同様に定義できる。算術あるいは初等代数学において、数の計算の抽象化として実数(あるいは必要に応じてより狭く有理数、整数、自然数)を代表する記号としての「文字」変数を伴う「」およびその計算を扱うが、それは大抵の場合多変数の多項式である。 本項では主として一元多項式を扱い、多元の場合にも多少触れるが、詳細は多元多項式の項へ譲る。.

新しい!!: 行列と多項式 · 続きを見る »

実数

数学における実数(じっすう、 nombre réel, reelle Zahl, real number)は、様々な量の連続的な変化を表す数の体系である。実数全体の空間は、途切れのなさにあたる完備性とよばれる位相的な性質を持ち、代数的には加減乗除ができるという体の構造を持っている。幾何学や解析学ではこれらのよい性質を利用して様々な対象が定義され、研究されている。一方でその構成方法に自明でない手続きが含まれるため、実数の空間は数学基礎論の観点からも興味深い性質を持っている。また、自然科学における連続的なものの計測値を表すのに十分な数の体系だとも考えられている。 実数の概念は、その形式的な定義が19世紀に達成される前から数の体系として使われていた。「実数」という名前は複素数の概念が導入された後に「普通の数」を表現する言葉として導入されたものである。.

新しい!!: 行列と実数 · 続きを見る »

対称群

対称群(たいしょうぐん、)とは、「ものを並べ替える」という操作を元とする群である。この場合の「ものを並べ替える」操作のことを置換(ちかん、)という。数学の議論の様々な場面で「番号づけられて並んでいるものを入れ替える」「入れ替えの可能性すべてを調べる」ことが問題となり、対称群はそのような議論を定式化するために用いられる。置換のうちで特別なものだけを集めて得られる群は置換群(ちかんぐん、)と呼ばれる。置換群が空間 の変換群として与えられているとき、 の元 の置換は で与えられる の部分群の分だけ潰れているが、これは のなかに と「同じ」元が複数含まれている場合に対応しており、 の中でこれらを区別することができれば の元の置換から対称群 が回復される。.

新しい!!: 行列と対称群 · 続きを見る »

対称行列

線型代数学における対称行列(たいしょうぎょうれつ、symmetric matrix)は、自身の転置行列と一致するような正方行列を言う。記号で書けば、行列 A は を満たすとき対称であるという。相等しい行列の型(次元、サイズ)は相等しいから、この式を満たすのは正方行列に限られる。 定義により、対称行列の成分は主対角線に関して対称である。即ち、成分に関して行列 は任意の添字 に関して を満たす。例えば、次の 行列 1 & 7 & 3\\ 7 & 4 & -5\\ 3 & -5 & 6 \end は対称である。任意の正方対角行列は、その非対角成分が であるから、対称である。同様に、歪対称行列( なる行列)の各対角成分は、自身と符号を変えたものと等しいから、すべて でなければならない。 線型代数学において、実対称行列は実内積空間上の自己随伴作用素を表す。これと、複素内積空間の場合に対応する概念は、複素数を成分に持つエルミート行列(自身の共役転置行列と一致するような複素行列)である。故に、複素数体上の線型代数学においては、対称行列という言葉は行列が実数に成分をとる場合に限って使うことがしばしばある。対称行列は様々な応用の場面に現れ、典型的な数値線型代数ソフトウェアではこれらに特別な便宜をさいている。.

新しい!!: 行列と対称行列 · 続きを見る »

対角化

対角化(たいかくか、diagonalization)とは、正方行列を適当な線形変換によりもとの行列と相似な対角行列に変形することを言う。あるいは、ベクトル空間の線形写像に対し、空間の基底を取り替え、その作用が常にある方向(固有空間)へのスカラー倍(固有値)として現れるようにすること。対角化により変換において本質的には無駄な計算を省くことで計算量を大幅に減らすことが出来る。.

新しい!!: 行列と対角化 · 続きを見る »

対角行列

数学、特に線型代数学において、対角行列(たいかくぎょうれつ、diagonal matrix)とは、正方行列であって、その対角成分(-要素)以外が零であるような行列のことである。 \end この対角行列は、クロネッカーのデルタを用いて (ci δij) と表現できる。また、しばしば のようにも書かれる。 単位行列やスカラー行列は対角行列の特殊例である。.

新しい!!: 行列と対角行列 · 続きを見る »

小行列

小行列は行列から特定の行および列を取り除いて得られる。この図では第二行と第四列を落としている。 線型代数学における部分行列(ぶぶんぎょうれつ、submatrix)または小行列(しょうぎょうれつ、TeilmatrixChristian Karpfinger: Höhere Mathematik in Rezepten. Springer Verlag, Berlin 2014, ISBN 978-3-642-37865-2, S. 95.

新しい!!: 行列と小行列 · 続きを見る »

小行列式

線型代数学において,行列 の小行列式(しょうぎょうれつしき,minor, minor determinant)とは, から1列以上の行や列を取り除いて得られる小さい正方行列の行列式である.正方行列から行と列をただ1つずつ取り除いて得られる小行列式 (first minors; 第一小行列式) は行列の余因子 (cofactor) を計算するのに必要で,これは正方行列の行列式や逆行列の計算に有用である..

新しい!!: 行列と小行列式 · 続きを見る »

三項系

代数学における三重系または三項系(さんこうけい、triple system)は、ベクトル空間 V と V 上の三重積 (triple product) または三項積 (ternary product) と呼ばれる三重線型写像 との組として与えられる構造である。最も重要な例にリー三重系やジョルダン三重系があり、これらは1949年にネイサン・ジェイコブソンが三項交換子および三項反交換子に関して閉じている結合代数の部分空間を研究するために導入した。特に、任意のリー環はリー三重系を定め、任意のジョルダン環はジョルダン三重系を定める。これらの概念は、対称空間(特にエルミート対称空間およびその一般化である対称 ''R''-空間とその非コンパクト双対)の理論において重要である。.

新しい!!: 行列と三項系 · 続きを見る »

三角行列

数学の一分野線型代数学における三角行列(さんかくぎょうれつ、triangular matrix)は特別な種類の正方行列である。正方行列が またはであるとは主対角線より「上」の成分がすべて零となるときに言い、同様にまたはとは主対角線より「下」の成分がすべて零となるときに言う。三角行列は上半または下半三角となる行列のことを言い、また上半かつ下半三角となる行列は対角行列と呼ぶ。 三角行列に関する行列方程式は解くことが容易であるから、それは数値解析において非常に重要である。LU分解アルゴリズムにより、正則行列が下半三角行列 と上半三角行列 との積 に書くことができるための必要十分条件は、その行列の首座小行列式 (leading principal minor) がすべて非零となることである。.

新しい!!: 行列と三角行列 · 続きを見る »

一般線型群

数学において、一般線型群(いっぱんせんけいぐん、general linear group)とは線型空間上の自己同型写像のなす群のこと。あるいは基底を固定することで、正則行列のなす群のことを指すこともある。.

新しい!!: 行列と一般線型群 · 続きを見る »

一次関数

y-切片を持つ。 数学、特に初等解析学における(狭義の)一次関数(いちじかんすう、linear function)は、(の)一次()、つまり次数 の多項式が定める関数 をいう。ここで、係数 は に依存しない定数であり、矢印は各値 に対して を対応させる関数であることを意味する。特に解析幾何学において、係数および定義域は実数の範囲で扱われ、その場合一次関数のグラフは平面直線である。 より広義には、係数や定義域として複素数やその他の環を考えたり、多変数の一次多項式函数や、あるいは一次式をベクトル空間や作用を持つ加群の文脈で理解することもある。 一次関数は線型関数( の直訳)やアフィン関数 とも呼ばれ、この場合しばしば定数関数 も含む。ベクトルを変数とする広義の一次関数はアフィン写像と呼ばれ、これはベクトルにベクトルを対応させる写像であるが、ふつう線型写像はその特別な場合 で斉一次函数で与えられる。 以下、解析幾何学における実函数としての一次函数について述べる。.

新しい!!: 行列と一次関数 · 続きを見る »

九章算術

九章算術の1頁。劉徽の註釈本。 宋代の本を復刻した本) 九章算術(きゅうしょうさんじゅつ)とは古代中国の数学書。 著者はわかっておらず、加筆修正を経て次第に現在に伝わる形に完成したとされている。研究によると前漢の張蒼や耿寿昌も加筆した。263年に劉徽が本書の註釈本を制作したことなどから、制作年代は紀元前1世紀から紀元後2世紀と考えられている。『算数書』(1983年12月に湖北省・荊州で発見された)に続いて、古い数学書である。.

新しい!!: 行列と九章算術 · 続きを見る »

平行四辺形

平行四辺形(へいこうしへんけい、英: parallelogram)とは、2組の対辺がそれぞれ平行である四角形のことである。 平行四辺形は、台形の一種である。また、特殊な平行四辺形に長方形,菱形がある。.

新しい!!: 行列と平行四辺形 · 続きを見る »

交代行列

線型代数学において、交代行列(こうたいぎょうれつ、alternative matrix)、歪対称行列(わいたいしょうぎょうれつ、skew-symmetric matrix)または反対称行列(はんたいしょうぎょうれつ、antisymmetric matrix, antimetric matrix; 反称行列)は、正方行列 であってその転置 が自身の 倍となるものをいう。すなわち、転置に対して反対称性を持つ行列は交代行列である。交代行列とは逆に、転置に対して対称な行列は対称行列と呼ばれる。本項において(何も言わなければ)、係数体の標数 は でない と仮定する。標数が のとき、任意のスカラーは自身を反数として持つので、任意の歪対称行列は対称行列の概念に一致する。歪対称行列に付随する双線型形式は歪対称形式であり、標数 のときは対称形式になる。一方、付随する双線型形式が交代形式であるような行列を「交代行列」と呼べば、標数 のとき「交代行列」は歪対称(.

新しい!!: 行列と交代行列 · 続きを見る »

交換法則

交換法則(こうかんほうそく、Commutative property) は数学における法則の一つ。可換則(かかんそく)や交換律(こうかんりつ)ともいう。.

新しい!!: 行列と交換法則 · 続きを見る »

二項積

多重線型代数学における二項積(にこうせき、dyadic)あるいは二項テンソル (dyadic tensor) は、二つのベクトルのある種の積として得られる二階テンソルである。二項積はしばしば二つのベクトルを併置することで表され、しかしその振舞いは行列に対応する法則に従う。二項積に関する用語や概念は今日では比較的時代遅れのものであるが、連続体力学や電磁気学などの物理学において引き続き用例がある。 二項積の記法を確立した最初の人はジョサイア・ウィラード・ギブスで1884年の事である。 (本項では、大文字太字は二項積、小文字太字はベクトルを表すものとする。別な表記法として二項積およびベクトルのそれぞれに二重および一重の上付きまたは下付きのバーを付けるものがある。).

新しい!!: 行列と二項積 · 続きを見る »

二項演算

数学において、二項演算(にこうえんざん、binary operation)は、数の四則演算(加減乗除)などの 「二つの数から新たな数を決定する規則」 を一般化した概念である。二項算法(にこうさんぽう)、結合などともいう。.

新しい!!: 行列と二項演算 · 続きを見る »

二次形式

数学における二次形式(にじけいしき、quadratic form) は、いくつかの変数に関する次数が 2 の斉次多項式である。たとえば は変数 x, y に関する二次形式である。 二次形式は数学のいろいろな分野(数論、線型代数学、群論(直交群)、微分幾何学(リーマン計量)、微分位相幾何学(四次元多様体の交叉形式)、リー理論(キリング形式)など)で中心的な位置を占める概念である。.

新しい!!: 行列と二次形式 · 続きを見る »

代数的閉体

数学において、体 が代数的に閉じているまたは代数的閉体(だいすうてきへいたい、; 代数閉体)であるとは、一次以上の任意の 係数変数多項式が 上に根を持つこと、あるいは同じことであるが、一次以上の任意の 係数一変数多項式が一次多項式の積として書けることである。 代数学の基本定理は、複素数体 が代数的閉体であることを主張する定理である。一方で、有限体 、有理数体 や実数体 は代数的閉体ではない。.

新しい!!: 行列と代数的閉体 · 続きを見る »

位置

位置(いち、position)とは、物体が空間の中のどこにあるかを表す量である。 原点 O から物体の位置 P へのベクトル(位置ベクトル (position vector))で表される。通常は x, r, s で表され、O から P までの各軸に沿った直線距離に対応する。 「位置ベクトル」という用語は、主に微分幾何学、力学、時にはベクトル解析の分野で使用される。 2次元または3次元空間で使用されることが多いが、任意の次元数のユークリッド空間に容易に一般化することができるKeller, F. J, Gettys, W. E. et al.

新しい!!: 行列と位置 · 続きを見る »

作用素

数学における作用素(さようそ、operator)は、しばしば写像、函数、変換などの同義語として用いられる。函数解析学においては主にヒルベルト空間やバナッハ空間上の(必ずしも写像でない部分写像の意味での)線型変換を単に作用素と呼ぶ。そのような空間として特に函数空間と呼ばれる函数の成す無限次元線型空間は典型的であり(同じものを物理学の分野、特に量子力学などでは演算子(えんざんし)と呼ぶ)、このとき、作用素を関数を別の関数にうつす写像として理解することができる。数(定数関数)の集合に値をとる作用素は汎函数(はんかんすう、functional)と呼ばれる。 また、群や環が空間に作用しているとき、群や環の各元が定める空間上の変換、あるいはその変換が引き起こす関数空間上の変換のことを作用素ということがある。.

新しい!!: 行列と作用素 · 続きを見る »

微分

数学におけるの微分(びぶん)、微分係数、微分商または導函数(どうかんすう、derivative)は、別の量(独立変数)に依存して決まるある量(函数の値あるいは従属変数)の変化の感度を測るものである。微分は微分積分学の基本的な道具である。例えば、動く物体の位置の時間に関する導函数はその物体の速度であり、これは時間が進んだときその物体の位置がどれほど早く変わるかを測る。 一変数函数の適当に選んだ入力値における微分係数は、その点における函数のグラフの接線の傾きである。これは導函数がその入力値の近くでその函数の最適線型近似を記述するものであることを意味する。そのような理由で、微分係数はしばしば「瞬間の変化率」として記述される。瞬間の変化率は独立変数に依存する従属変数である。 微分はにも拡張できる。この一般化において、導函数はそのグラフが(適当な変換の後)もとの函数のグラフを最適線型近似する線型変換と解釈しなおされる。ヤコビ行列はこの線型変換を独立および従属変数を選ぶことで与えられる基底に関して表現する行列であり、独立変数に関する偏微分を用いて計算することができる。多変数実数値函数に対して、ヤコビ行列は勾配に簡約される。 導函数を求める過程を微分あるいは微分法、微分演算 (differentiation) と言い、その逆の過程(原始函数を求めること)をという。微分積分学の基本定理は反微分が積分と同じであることを主張する。一変数の微分積分学において微分と積分は基本的な操作の二本柱である。.

新しい!!: 行列と微分 · 続きを見る »

区分行列

区分行列(くぶんぎょうれつ)もしくはブロック行列 (block matrix) とは、いくつかの長方形のブロックに「区分け」された行列である。.

新しい!!: 行列と区分行列 · 続きを見る »

ミネソタ大学ツインシティー校

ミネソタ大学ツインシティー校(The University of Minnesota, TwinCities)は、アメリカ合衆国ミネソタ州最大の都市ミネアポリスと同州の州都セントポールにまたがって本部を置く、同国最大の研究機関型州立総合大学の一つである。ミネアポリスとセントポールの二都市を中心とした大都市圏が「Twin Cities(=双子都市)」と呼称されるため、学校名も「ミネソタ大学ツインシティー校」という。1851年に設置された。大学の略称は「U of M」、「UMTC」。同州のミネソタ州立大学(w:Minnesota State University)とは別の大学組織である。 ツインシティー校はミネソタ大学(The University of Minnesota)の旗艦校(本校)であり、ツインシティー校、ダルース(Duluth)校、モーリス(Morris)校、クルークストン(Crookston)校、ロチェスター(Rochester)校の5校からなる、ミネソタ大学系列の中で最古かつ最大の大学である。州立大学の大学として「パブリック・アイビー」の一つに数えられることもある。医療、理工学の研究実績で名高い。1908年より、北米トップレベルの研究型大学で組織されるアメリカ大学協会(The Association of American Universities, AAU)に加盟している。これまでに9名の卒業生、15名の教授がノーベル賞を受賞、86名のグッゲンハイムフェローをはじめ、数多くの分野にわたり人材を輩出してきた。 総学生数は50,678人(2015年統計)で、その規模と同時に17対1の学生対教員の比率が保たれ充実した教育・研究機関としても知られる。143の学部の学位と150の大学院の学位を授与している。国際交流にも力を入れており、日本の一橋大学、名古屋大学、広島大学、上智大学をはじめ、海外250校以上の大学との交換留学プログラムを有する。.

新しい!!: 行列とミネソタ大学ツインシティー校 · 続きを見る »

ノルム

解析学において、ノルム (norm, Norm) は、平面あるいは空間における幾何学的ベクトルの "長さ" の概念の一般化であり、ベクトル空間に対して「距離」を与えるための数学の道具である。ノルムの定義されたベクトル空間を線型ノルム空間または単にノルム空間という。.

新しい!!: 行列とノルム · 続きを見る »

ノルム代数

数学の特に函数解析学におけるノルム環(ノルムかん)またはノルム代数(ノルムだいすう、normed algebra; ノルム多元環、ノルム線型環) は適当な位相体 (とくに実数体 または複素数体 )上のノルム空間かつ多元環であって、そのノルムが を満たすものを言う。加えて、 が乗法単位元 を持つ(単位的多元環)ならば も仮定することがある。.

新しい!!: 行列とノルム代数 · 続きを見る »

マックス・ボルン

マックス・ボルン(Max Born, 1882年12月11日 - 1970年1月5日)は、ドイツの理論物理学者。量子力学の初期における立役者の一人である。1954年ノーベル物理学賞を受賞。.

新しい!!: 行列とマックス・ボルン · 続きを見る »

マサチューセッツ工科大学出版局

マサチューセッツ工科大学出版局(MIT Press)は、マサチューセッツ工科大学 (MIT) 系列の大学出版局である。.

新しい!!: 行列とマサチューセッツ工科大学出版局 · 続きを見る »

像 (数学)

'''f''' は始域 '''X''' から終域 '''Y''' への写像。'''Y''' の内側にある小さな楕円形が '''f''' の像である。 数学において、何らかの写像の像(ぞう、image)は、写像の始域(域、定義域)の部分集合上での写像の出力となるもの全てからなる、写像の終域(余域)の部分集合である。すなわち、始域の部分集合 X の各元において写像の値を評価することによって得られる集合を f による(または f に関する、f のもとでの、f を通じた)X の像という。また、写像の終域の何らかの部分集合 S の逆像(ぎゃくぞう、inverse image)あるいは原像(げんぞう、preimage)は、S の元に写ってくるような始域の元全体からなる集合である。 像および逆像は、写像のみならず一般の二項関係に対しても定義することができる。.

新しい!!: 行列と像 (数学) · 続きを見る »

ハメル次元

数学における、ベクトル空間の次元(じげん、dimension)とは、その基底の濃度、すなわち基底に属するベクトルの個数)である。 他の種類の次元との区別のため、ハメル次元または代数次元と呼ばれることもある。この定義は「任意のベクトル空間は(選択公理を仮定すれば)基底を持つ」ことと「一つのベクトル空間の基底は、どの二つも必ず同じ濃度を持つ」という二つの事実に依存しており、これらの事実の結果として、ベクトル空間の次元は空間に対して一意的に定まる。体 F 上のベクトル空間 V の次元を dimF(V) あるいは で表す(文脈から基礎とする体 F が明らかならば単に dim(V) と書く)。 ベクトル空間 V が有限次元であるとは、その次元が有限値であるときにいう。.

新しい!!: 行列とハメル次元 · 続きを見る »

ハンケル行列

ハンケル行列(-ぎょうれつ、Hankel matrix)とは、通常の対角成分とは垂直方向つまり左下から右上方向(↗)の対角線と平行となる行列成分がすべて等しくなっている正方行列のことをいう。 名称はヘルマン・ハンケルに由来する。.

新しい!!: 行列とハンケル行列 · 続きを見る »

バナッハ空間

数学におけるバナッハ空間(バナッハくうかん、Banach space; バナハ空間)は、完備なノルム空間、即ちノルム付けられた線型空間であって、そのノルムが定める距離構造が完備であるものを言う。 解析学に現れる多くの無限次元函数空間、例えば連続函数の空間(コンパクトハウスドルフ空間上の連続写像の空間)、 ''L''''p''-空間と呼ばれるルベーグ可積分函数の空間、ハーディ空間と呼ばれる正則函数の空間などはバナッハ空間を成す。これらはもっとも広く用いられる位相線型空間であり、これらの位相はノルムから規定されるものになっている。 バナッハ空間の名称は、この概念をハーンとヘリーらと共に1920-1922年に導入したポーランドの数学者ステファン・バナフに因む。.

新しい!!: 行列とバナッハ空間 · 続きを見る »

ヤコビ行列

数学、特に多変数微分積分学およびベクトル解析におけるヤコビ行列(やこびぎょうれつ、Jacobian matrix)あるいは単にヤコビアンまたは関数行列(かんすうぎょうれつ、Funktionalmatrix)は、一変数スカラー値関数における接線の傾きおよび一変数ベクトル値函数の勾配の、多変数ベクトル値関数に対する拡張、高次元化である。名称はカール・グスタフ・ヤコブ・ヤコビに因む。多変数ベクトル値関数 のヤコビ行列は、 の各成分の各軸方向への方向微分を並べてできる行列で \end\quad (f.

新しい!!: 行列とヤコビ行列 · 続きを見る »

ユークリッド空間

数学におけるユークリッド空間(ユークリッドくうかん、Euclidean space)は、エウクレイデス(ユークリッド)が研究したような幾何学(ユークリッド幾何学)の場となる平面や空間、およびその高次元への一般化である。エウクレイデスが研究した平面や空間はそれぞれ、2次元ユークリッド空間、3次元ユークリッド空間に当たり、これらは通常、ユークリッド平面、ユークリッド空間などとも呼ばれる。「ユークリッド的」という修飾辞は、これらの空間が非ユークリッド幾何やアインシュタインの相対性理論に出てくるような曲がった空間ではないことを示唆している。 古典的なギリシャ数学では、ユークリッド平面や(三次元)ユークリッド空間は所定の公準によって定義され、そこからほかの性質が定理として演繹されるものであった。現代数学では、デカルト座標と解析幾何学の考え方にしたがってユークリッド空間を定義するほうが普通である。そうすれば、幾何学の問題に代数学や解析学の道具を持ち込んで調べることができるようになるし、三次元以上のユークリッド空間への一般化も容易になるといった利点が生まれる。 現代的な観点では、ユークリッド空間は各次元に本質的に一つだけ存在すると考えられる。たとえば一次元なら実数直線、二次元ならデカルト平面、より高次の場合は実数の組を座標にもつ実座標空間である。つまり、ユークリッド空間の「点」は実数からなる組であり、二点間の距離は二点間の距離の公式に従うものとして定まる。n-次元ユークリッド空間は、(標準的なモデルを与えるものという意味で)しばしば とかかれるが、(余分な構造を想起させない)ユークリッド空間固有の性質を備えたものということを強調する意味で と書かれることもある。ふつう、ユークリッド空間といえば有限次元であるものをいう。.

新しい!!: 行列とユークリッド空間 · 続きを見る »

ユニタリ群

n 次のユニタリ群(ユニタリぐん、unitary group) U(n) とは、n 次ユニタリ行列のなす群のことである。演算は行列の積で与えられる。 ユニタリ群は一般線型群の部分群である。.

新しい!!: 行列とユニタリ群 · 続きを見る »

ユニタリ行列

ユニタリ行列(~ぎょうれつ、英:Unitary matrix)は、次を満たす複素正方行列 として定義される。 ここで、 は単位行列、 は行列 の随伴行列。 なお、実数で構成される行列の随伴は単に転置であるため実ユニタリ行列は直交行列に等しく、直交行列を複素数体へ拡張したものがユニタリ行列とも言える。.

新しい!!: 行列とユニタリ行列 · 続きを見る »

リー代数

数学において、リー代数、もしくはリー環日本語ではしばしば Lie algebra のことをリー環と呼ぶが、後述の Lie ring はより一般的な概念である。本項ではこの2つの用語を区別して用いる。は、「リー括弧積」(リーブラケット、Lie bracket)と呼ばれる非結合的な乗法 を備えたベクトル空間である。 の概念を研究するために導入された。"Lie algebra" という言葉は、ソフス・リーに因んで、1930年代にヘルマン・ワイルにより導入された。古い文献では、無限小群 (infinitesimal group) という言葉も使われている。 リー代数はリー群と密接な関係にある。リー群とは群でも滑らかな多様体でもあるようなもので、積と逆元を取る群演算がであるようなものである。任意のリー群からリー代数が生じる。逆に、実数あるいは複素数上の任意の有限次元リー代数に対し、対応する連結リー群がによる違いを除いて一意的に存在する()。このによってリー群をリー代数によって研究することができる。.

新しい!!: 行列とリー代数 · 続きを見る »

レオポルト・クロネッカー

レオポルト・クロネッカー(Leopold Kronecker, 1823年12月7日 - 1891年12月29日)はドイツの数学者である。リーグニッツ(現在のポーランド・レグニツァ Legnica)生まれ。ユダヤ系。 彼は、ヤコビ、ディリクレ、アイゼンシュタイン、クンマーといったドイツの先達の後に立って、また、パリ滞在中にエルミートなどの影響によって、群論、モジュラー方程式、代数的整数論、楕円関数、また行列式の理論において大きな業績を残した。クロネッカーの名前は現在でも、クロネッカーのデルタ、クロネッカー積、クロネッカー=ウェーバーの定理、クロネッカーの青春の夢などに見ることができる。.

新しい!!: 行列とレオポルト・クロネッカー · 続きを見る »

ヴェルナー・ハイゼンベルク

ヴェルナー・カール・ハイゼンベルク(Werner Karl Heisenberg, 1901年12月5日 - 1976年2月1日)は、ドイツの理論物理学者。行列力学と不確定性原理によって量子力学に絶大な貢献をした。.

新しい!!: 行列とヴェルナー・ハイゼンベルク · 続きを見る »

パスクアル・ヨルダン

ルンスト・パスクアル・ヨルダン(Ernst Pascual Jordan、1902年10月18日 - 1980年7月31日)は、ドイツの物理学者。姓はジョルダンとも表記される。量子力学に数学的基礎を与えた物理学者の一人である。で知られる。.

新しい!!: 行列とパスクアル・ヨルダン · 続きを見る »

ヒルベルト空間

数学におけるヒルベルト空間(ヒルベルトくうかん、Hilbert space)は、ダフィット・ヒルベルトにその名を因む、ユークリッド空間の概念を一般化したものである。これにより、二次元のユークリッド平面や三次元のユークリッド空間における線型代数学や微分積分学の方法論を、任意の有限または無限次元の空間へ拡張して持ち込むことができる。ヒルベルト空間は、内積の構造を備えた抽象ベクトル空間(内積空間)になっており、そこでは角度や長さを測るということが可能である。ヒルベルト空間は、さらに完備距離空間の構造を備えている(極限が十分に存在することが保証されている)ので、その中で微分積分学がきちんと展開できる。 ヒルベルト空間は、典型的には無限次元の関数空間として、数学、物理学、工学などの各所に自然に現れる。そういった意味でのヒルベルト空間の研究は、20世紀冒頭10年の間にヒルベルト、シュミット、リースらによって始められた。ヒルベルト空間の概念は、偏微分方程式論、量子力学、フーリエ解析(信号処理や熱伝導などへの応用も含む)、熱力学の研究の数学的基礎を成すエルゴード理論などの理論において欠くべからざる道具になっている。これら種々の応用の多くの根底にある抽象概念を「ヒルベルト空間」と名付けたのは、フォン・ノイマンである。ヒルベルト空間を用いる方法の成功は、関数解析学の実りある時代のさきがけとなった。古典的なユークリッド空間はさておき、ヒルベルト空間の例としては、自乗可積分関数の空間 、自乗総和可能数列の空間 、超関数からなるソボレフ空間 、正則関数の成すハーディ空間 などが挙げられる。 ヒルベルト空間論の多くの場面で、幾何学的直観は重要である。例えば、三平方の定理や中線定理(の厳密な類似対応物)は、ヒルベルト空間においても成り立つ。より深いところでは、部分空間への直交射影(例えば、三角形に対してその「高さを潰す」操作の類似対応物)は、ヒルベルト空間論における最適化問題やその周辺で重要である。ヒルベルト空間の各元は、平面上の点がそのデカルト座標(直交座標)によって特定できるのと同様に、座標軸の集合(正規直交基底)に関する座標によって一意的に特定することができる。このことは、座標軸の集合が可算無限であるときには、ヒルベルト空間を自乗総和可能な無限列の集合と看做すことも有用であることを意味する。ヒルベルト空間上の線型作用素は、ほぼ具体的な対象として扱うことができる。条件がよければ、空間を互いに直交するいくつかの異なる要素に分解してやると、線型作用素はそれぞれの要素の上では単に拡大縮小するだけの変換になる(これはまさに線型作用素のスペクトルを調べるということである)。.

新しい!!: 行列とヒルベルト空間 · 続きを見る »

ヒルベルト=シュミット作用素

数学の分野におけるヒルベルト=シュミット作用素(ヒルベルト=シュミットさようそ、)とは、ダフィット・ヒルベルトとエルハルト・シュミットの名にちなむ、ヒルベルト空間上の有界線型作用素で、次のような有限のヒルベルト=シュミットノルムを備えるもののことを言う: ここで \|\ \| は H のノルムを表し、\ は添字集合 I についての H の正規直交基底を表す。この添字集合は必ずしも可算でなくても良いことに注意されたい。この定義は、基底の選び方に依存しないため、 が成り立つ。ここで A_.

新しい!!: 行列とヒルベルト=シュミット作用素 · 続きを見る »

テンソル

テンソル(tensor, Tensor)とは、線形的な量または線形的な幾何概念を一般化したもので、基底を選べば、多次元の配列として表現できるようなものである。しかし、テンソル自身は、特定の座標系によらないで定まる対象である。個々のテンソルについて、対応する量を記述するのに必要な配列の添字の組の数は、そのテンソルの階数とよばれる。 例えば、質量や温度などのスカラー量は階数0のテンソルだと理解される。同様にして力や運動量などのベクトル的な量は階数1のテンソルであり、力や加速度ベクトルの間の異方的な関係などをあらわす線型変換は階数2のテンソルで表される。 物理学や工学においてしばしば「テンソル」と呼ばれているものは、実際には位置や時刻を引数としテンソル量を返す関数である「テンソル場」であることに注意しなければならない。いずれにせよテンソル場の理解のためにはテンソルそのものの概念の理解が不可欠である。.

新しい!!: 行列とテンソル · 続きを見る »

テイラー展開

数学において、テイラー級数 (Taylor series) は関数のある一点での導関数たちの値から計算される項の無限和として関数を表したものである。そのような級数を得ることをテイラー展開という。 テイラー級数の概念はスコットランドの数学者ジェームズ・グレゴリーにより定式化され、フォーマルにはイギリスの数学者ブルック・テイラーによって1715年に導入された。0 を中心としたテイラー級数は、マクローリン級数 (Maclaurin series) とも呼ばれる。これはスコットランドの数学者コリン・マクローリンにちなんでおり、彼は18世紀にテイラー級数のこの特別な場合を積極的に活用した。 関数はそのテイラー級数の有限個の項を用いて近似することができる。テイラーの定理はそのような近似による誤差の定量的な評価を与える。テイラー級数の最初のいくつかの項として得られる多項式はと呼ばれる。関数のテイラー級数は、その関数のテイラー多項式で次数を増やした極限が存在すればその極限である。関数はそのテイラー級数がすべての点で収束するときでさえもテイラー級数に等しいとは限らない。開区間(あるいは複素平面の開円板)でテイラー級数に等しい関数はその区間上の解析関数と呼ばれる。.

新しい!!: 行列とテイラー展開 · 続きを見る »

フェルディナント・ゲオルク・フロベニウス

フェルディナント・ゲオルク・フロベニウス フェルディナント・ゲオルク・フロベニウス(Georg Ferdinand Frobenius、1849年10月26日 - 1917年8月3日)はドイツの数学者。 ベルリンに生まれる。1867年ゲッティンゲン大学に入学、その後ベルリン大学に転じて、1870年に博士号を取得。1874年ベルリン大学助教授、1875年から1902年までチューリッヒ工科大学教授を務めた。1902年からベルリン大学教授となり、最期までその職にあり続けた。 群の指標の概念を導入し、有限群の表現論を実質的に完成した。これはのちに量子力学に不可欠のものとなる。また代数的整数論でフロベニウス置換を発見。.

新しい!!: 行列とフェルディナント・ゲオルク・フロベニウス · 続きを見る »

フェルディナント・ゴットホルト・マックス・アイゼンシュタイン

フェルディナント・ゴットホルト・マックス・アイゼンシュタイン(Ferdinand Gotthold Max Eisenstein、1823年4月16日 - 1852年10月11日)は、ドイツの数学者。楕円関数論、行列の理論やアイゼンシュタイン整数の発見などの業績を残したが若くして結核で亡くなった。ガウスやディリクレのもとで学び、ガウスも彼の才能を高く評価していた。ベルリン大学で学生時代に、レオポルト・クロネッカーと友人になった。リーマンはベルリン大学で彼の講義を受けている。 楕円関数論での研究では、(関数論に依拠するのではなく)整数論との関連を重視して多くの公式を具体的に与えた。この成果を晩年のクロネッカーが見出して、楕円関数論に新たな方向性をもたらすことになる。.

新しい!!: 行列とフェルディナント・ゴットホルト・マックス・アイゼンシュタイン · 続きを見る »

ドーヴァー出版

ドーヴァー出版(英:Dover Publications)は、アメリカの出版社。本社はニューヨーク市にある。1941年設立。 元の出版元で絶版になった本の再出版で有名である。再出版する書籍にはパブリックドメインのものも多い。歴史的に意義深く質の高い本を丈夫な製本と安い値段で提供する方針のもとに、現在までに9,000タイトル以上の書籍を出版している。 古典文学、クラシック音楽の楽譜、18-19世紀の図版の再出版が特に有名である。また、学生から一般読者向けの数学・科学関連書籍や、軍事史、アメリカ史、奇術、チェスなど特定の分野の本の出版もしている。 著作権使用料無料(royalty-free)のデザイン・イラスト集を多く出版しており、画集的なものから、そのままコピーして使う素材集まで存在する。題材は19世紀以前のイラスト、アールヌーボーの意匠、伝統的な民族文様など多様である。CD-ROM付きのシリーズもある。コンピューター関連メディア企業オライリー社の初期の書籍表紙の動物の絵は、ドーヴァー出版の19世紀の版画図版から採用されたものである。.

新しい!!: 行列とドーヴァー出版 · 続きを見る »

ドット積

数学あるいは物理学においてドット積(ドットせき、dot product)あるいは点乗積(てんじょうせき)とは、ベクトル演算の一種で、2つの同じ長さの数列から一つの数値を返す演算。代数的および幾何的に定義されている。幾何的定義では、(デカルト座標の入った)ユークリッド空間 において標準的に定義される内積のことである。.

新しい!!: 行列とドット積 · 続きを見る »

ベクトル空間

数学、特に線型代数学におけるベクトル空間(ベクトルくうかん、vector space)、または、線型空間(せんけいくうかん、linear space)は、ベクトルと呼ばれる元からなる集まりの成す数学的構造である。ベクトルには和が定義され、またスカラーと呼ばれる数による積(「スケール変換」)を行える。スカラーは実数とすることも多いが、複素数や有理数あるいは一般の体の元によるスカラー乗法を持つベクトル空間もある。ベクトルの和とスカラー倍の演算は、「ベクトル空間の公理」と呼ばれる特定の条件(後述)を満足するものでなければならない。ベクトル空間の一つの例は、力のような物理量を表現するのに用いられる幾何ベクトルの全体である(同じ種類の任意の二つの力は、加え合わせて力の合成と呼ばれる第三の力のベクトルを与える。また、力のベクトルを実数倍したものはまた別の力のベクトルを表す)。同じ調子で、ただしより幾何学的な意味において、平面や空間での変位を表すベクトルの全体もやはりベクトル空間を成す。 ベクトル空間は線型代数学における主題であり、ベクトル空間はその次元(大雑把にいえばその空間の独立な方向の数を決めるもの)によって特徴づけられるから、その観点からはよく知られている。ベクトル空間は、さらにノルムや内積などの追加の構造を持つこともあり、そのようなベクトル空間は解析学において主に函数をベクトルとする無限次元の函数空間の形で自然に生じてくる。解析学的な問題では、ベクトルの列が与えられたベクトルに収束するか否かを決定することもできなければならないが、これはベクトル空間に追加の構造を考えることで実現される。そのような空間のほとんどは適当な位相を備えており、それによって近さや連続性といったことを考えることができる。こういた位相線型空間、特にバナッハ空間やヒルベルト空間については、豊かな理論が存在する。 歴史的な視点では、ベクトル空間の概念の萌芽は17世紀の解析幾何学、行列論、連立一次方程式の理論、幾何ベクトルの概念などにまで遡れる。現代的な、より抽象的な取扱いが初めて定式化されるのは、19世紀後半、ペアノによるもので、それはユークリッド空間よりも一般の対象が範疇に含まれるものであったが、理論の大半は(直線や平面あるいはそれらの高次元での対応物といったような)古典的な幾何学的概念を拡張することに割かれていた。 今日では、ベクトル空間は数学のみならず科学や工学においても広く応用される。ベクトル空間は線型方程式系を扱うための適当な線型代数学的概念であり、例えば画像圧縮ルーチンで使われるフーリエ展開のための枠組みを提示したり、あるいは偏微分方程式の解法に用いることのできる環境を提供する。さらには、テンソルのような幾何学的および物理学的な対象を、抽象的に座標に依らない で扱う方法を与えてくれるので、そこからさらに線型化の手法を用いて、多様体の局所的性質を説明することもできるようになる。 ベクトル空間の概念は様々な方法で一般化され、幾何学や抽象代数学のより進んだ概念が導かれる。.

新しい!!: 行列とベクトル空間 · 続きを見る »

列空間

数学の線型代数学の分野において、ある行列 A の列空間(れつくうかん、)C(A)(しばしば、行列の値域(range)とも呼ばれる) とは、その行列の列ベクトルの線型結合としてあり得るすべてのものからなる集合のことを言う。 K を(実数あるいは複素数全体のような)体とする。K の成分からなる、ある m × n 行列の列空間は、m-空間 Km の線型部分空間である。列空間の次元は、その行列の階数と呼ばれる。(整数全体のような)環 K についての行列に対しても、同様に列空間を定義することが出来る。 ある行列の列空間は、対応する遷移行列の像あるいは値域である。.

新しい!!: 行列と列空間 · 続きを見る »

分配法則

集合 S に対して、積 × と和 + が定義されている時に、.

新しい!!: 行列と分配法則 · 続きを見る »

アメリカ数学会

アメリカ数学会(アメリカすうがくかい、英語:American Mathematical Society、略称:AMS)は、アメリカ合衆国の数学の学会である。現会員数は、32000人。 イギリス滞在中にロンドン数学会の影響を受けたトーマス・フィスクによって1888年に設立された。1894年7月に、現在の名前で再編成された。 AMS は組版処理ソフトウェア TeX の主唱者であり、AmS-TeX や AmS-LaTeX の開発を支援した。また、との合弁事業で MathJax オープンソースプロジェクトを管理している。.

新しい!!: 行列とアメリカ数学会 · 続きを見る »

アーベル群

数学、とくに抽象代数学におけるアーベル群(アーベルぐん、abelian group)または可換群(かかんぐん、commutative group)は、群演算が可換な群、すなわちどの二つの元の積も掛ける順番に依らず定まる群を言う。名称は、ノルウェーの数学者ニールス・アーベルに因む。 アーベル群は環や体、環上の加群やベクトル空間といった抽象代数学の概念において、その基礎となる加法に関する群(加法群)としてしばしば生じる。任意の抽象アーベル群についても、しばしば加法的な記法(例えば群演算は "+" を用いて表され、逆元は負符号を元の前に付けることで表す)が用いられ、その場合に用語の濫用で「加法群」と呼ばれることがある。また任意のアーベル群は整数全体の成す環 上の加群とみることができ、その意味でやはり用語の濫用だがアーベル群のことを「加群」と呼ぶこともある。 一般に可換群はに比べて著しく容易であり、とくに有限アーベル群の構造は具さに知られているが、それでも無限アーベル群論はいまなお活発な研究領域である。.

新しい!!: 行列とアーベル群 · 続きを見る »

アーサー・ケイリー

アーサー・ケイリー(、、1821年8月16日 - 1895年1月26日)は、イギリスの数学者、弁護士。行列に関するケイリー・ハミルトンの定理で有名。.

新しい!!: 行列とアーサー・ケイリー · 続きを見る »

インペリアル・カレッジ・ロンドン

インペリアル・カレッジ・ロンドン(英語: Imperial College London, ICL)は、ロンドンに本部を置くイギリスの公立研究大学である。1907年に設置され、主に理化学科目を中心とした大学である。元々はロンドン大学のカレッジの1つであったが、創立100周年にあたる2007年7月にロンドン大学から独立した。法的な正式名称はthe Imperial College of Science, Technology and Medicineであるが、2002年よりImperial College Londonという略称を対外的に使用している。一般的には"Imperial"として知られており、今日において英国を代表する理系に特化した大学である。 インペリアルカレッジは特に理系において世界トップレベルに位置付けられており、科目別では、材料工学が世界3位、医学が4位、情報工学が7位である。 総合では、Times Higher Education World University Rankings 2017で世界8位、QS World University Rankings 2017で世界8位に位置付けられている。さらに、15人のノーベル賞受賞者、2人のフィールズ賞受賞者、70人のRoyal Society のフェロー、82人のRoyal Academy of Engineeringのフェロー、78人のAcademy of Medical Sciencesのフェローを輩出している。 医学部、工学部、理学部からなる理系大学であり、学生数は学部生が約9000人、大学院生が約5300人である。この内約43%が留学生である。中国籍の留学生は13%にも及ぶ。.

新しい!!: 行列とインペリアル・カレッジ・ロンドン · 続きを見る »

ウィリアム・ローワン・ハミルトン

ウィリアム・ローワン・ハミルトン(William Rowan Hamilton、1805年8月4日 - 1865年9月2日)は、アイルランド・ダブリン生まれのイギリスの数学者、物理学者。四元数と呼ばれる高次複素数を発見したことで知られる。また、イングランドの数学者アーサー・ケイリーに与えた影響は大きい。.

新しい!!: 行列とウィリアム・ローワン・ハミルトン · 続きを見る »

エルミート行列

線型代数学におけるエルミート行列(エルミートぎょうれつ、Hermitian matrix)または自己随伴行列(じこずいはんぎょうれつ、self-adjoint matrix)は、複素数に成分をとる正方行列で自身の随伴行列(共軛転置)と一致するようなものを言う。エルミート行列は、実対称行列の複素数に対する拡張版の概念として理解することができる。 行列 の随伴を と書くとき、複素行列がエルミートであるということは、 が成り立つということであり、これはまた が成り立つことと同値ゆえ、その成分は任意の添字 について -成分は -成分の複素共軛と等しい。 随伴行列 は と書かれるほうが普通だが、 を複素共軛(本項では と書いた)の意味で使う文献も多く紛らわしい。 エルミート行列の名はシャルル・エルミートに因む。エルミートは1855年、この種の行列が固有値が常に実数となるという実対称行列と同じ性質を持つことを示した。 よく知られたパウリ行列、ゲルマン行列および一般化されたそれらはエルミートである。理論物理学においてそれらのエルミート行列には、しばしば虚数の係数が掛かって歪エルミート行列となる。.

新しい!!: 行列とエルミート行列 · 続きを見る »

オライリーメディア

ライリーメディア(O'Reilly Media)は、アメリカ合衆国のメディア企業。ティム・オライリーが創設した。コンピュータ関連の書籍出版、ウェブサイト作成、カンファレンスの開催などを主な業務としている。表紙に動物の木版画を使った書籍群でよく知られている。日本法人はオライリー・ジャパン。.

新しい!!: 行列とオライリーメディア · 続きを見る »

オーギュスタン=ルイ・コーシー

ーギュスタン=ルイ・コーシー(Augustin Louis Cauchy, 1789年8月21日 - 1857年5月23日)はフランスの数学者。解析学の分野に対する多大な貢献から「フランスのガウス」と呼ばれることもある。これは両者がともに数学の厳密主義の開始者であった事にも関係する。他に天文学、光学、流体力学などへの貢献も多い。.

新しい!!: 行列とオーギュスタン=ルイ・コーシー · 続きを見る »

オックスフォード大学出版局

Walton Streetのオックスフォード大学出版局 オックスフォード大学出版局(オックスフォードだいがくしゅっぱんきょく、英語:Oxford University Press、略称OUP)は、イングランドのオックスフォード大学の出版局を兼ねる出版社である。OUPは世界最大の大学出版局であり、アメリカの全ての大学出版局とケンブリッジ大学出版局の合計以上の規模を誇る。OUPはケンブリッジ大学出版局とともに、イギリスの特権出版社(en:privileged presses イギリスで祈祷書・欽定訳聖書の出版権を持つ出版社)の一つである。インド・パキスタン・カナダ・オーストラリア・ニュージーランド・マレーシア・シンガポール・ナイジェリア・南アフリカ共和国など、世界中に支部を持っている。OUP USAは1896年ごろに設立され、1987年に法人化された非公開有限(en:private limited company)の子会社で、OUP初の国際ベンチャーである。1905年設立のカナダ支部は2番目。OUP全体は選挙によって選ばれた、出版局代表団(Delegates of the Press)と呼ばれる代表者たちによって運営される。出版局代表団はすべてオックスフォード大学のメンバーである。現在、OUPが用いる出版社名は二つある。第一に参考書・教育書・学術書などの大部分はOxford University Press(オックスフォード大学出版局)名義、「名声のある(prestige)」学術書はClarendon Press(クラレンドンプレス)名義である。主要な支部のほとんどは、OUP本部の書籍の発行・販売だけでなく、その地域の出版社として機能している。 OUPは1972年にアメリカの法人税を控除され、1978年にイギリスでも控除された。OUPは、慈善事業団体としてほとんどの国で所得税・法人税を控除されているが、出版物に対し、売上税その他の商取引に関する税金を払う場合もある。OUPは現在、黒字の30%(毎年最低12万ポンドの確約つき)をオックスフォード大学に送っている。OUPは出版数として世界最大の大学出版局で、毎年4500冊以上の新刊を出版し、従業員数は約4000人。OUPはオックスフォード英語辞典、、Oxford World's Classics、Oxford Dictionary of National Biographyなどの参考書・専門書・学術書を出版している。これらの重要書籍の多くが、Oxford Reference Onlineというパッケージとして電子公開されており、イギリスの公立図書館の利用者カードの所有者には無料で提供されている。 哲学者のアンドリュー・マルコムが、著書Making Namesに関する1985年の出版契約不履行について提訴した裁判で、1990年OUPはイギリス控訴院にて敗訴した。1998年、OUPは人気の高かったOxford Poetsシリーズを打ち切った。2001年、OUPはイギリスの法律系出版社Blackstoneを取得した。2003年、OUPはMacmillan PublishersからGrove Dictionary of Music and Musicians(グローヴ音楽事典)・Grove Dictionary of Art(グローヴ芸術事典)を取得した。2006年、OUPはイギリスの出版社Richmond Law & Taxを取得した。 OUPで出版された本のISBNは0-19で始まる。つまりOUPは数少ないISBN識別番号2桁の出版社のひとつなのである。(ISBN番号は13桁と決まっており、桁が少ないほど多くの図書を登録できるようになっている。).

新しい!!: 行列とオックスフォード大学出版局 · 続きを見る »

オックスフォード英語辞典

ックスフォード英語辞典 (オックスフォードえいごじてん、Oxford English Dictionary) は、オックスフォード大学出版局が刊行する記述的英語辞典である。略称はOED。オックスフォード英語大辞典とも呼ばれる。世界中の多様な英語の用法を記述するだけでなく、英語の歴史的発展をも辿っており、学者や学術研究者に対して包括的な情報源を提供している。.

新しい!!: 行列とオックスフォード英語辞典 · 続きを見る »

カール・ワイエルシュトラス

ール・ワイエルシュトラス カール・テオドル・ヴィルヘルム・ワイエルシュトラス(Karl Theodor Wilhelm Weierstraß, 1815年10月31日 – 1897年2月19日)はドイツの数学者である。姓のワイ (Wei) の部分はヴァイと表記するほうが正確である。また、"er" に当たる部分はエル/ヤ/ア、"st" はシュト/スト、"raß" はラス/ラースとそれぞれ表記されることがある。.

新しい!!: 行列とカール・ワイエルシュトラス · 続きを見る »

カール・グスタフ・ヤコブ・ヤコビ

ール・グスタフ・ヤコプ・ヤコビ(Carl Gustav Jacob Jacobi, 1804年12月10日 - 1851年2月18日)はドイツの数学者。.

新しい!!: 行列とカール・グスタフ・ヤコブ・ヤコビ · 続きを見る »

ガブリエル・クラメール

ブリエル・クラメール (仏語: Gabriel Cramer、1704年7月31日 - 1752年1月4日) は、スイスの数学者である。クラメールはジュネーヴで生まれ、早くから数学の才能を見せ、18歳で博士の学位を授与され20歳で数学の副主任となった。1728年、10年後にダニエル・ベルヌーイによって示された期待効用の考え方に非常に近いサンクトペテルブルクのパラドックスの解を求めた。 クラメールはその主要な業績を40歳代で公表している。1750年に出版された平面代数曲線に関する論文、"Introduction à l'analyse des lignes courbes algébraique" である。そこでは任意の一・向きを持つ n 次の平面代数曲線が 個の点で定義される、ということを最も早期に示しており、その問題は今日、クラメールのパラドックスと呼ばれている。一方、クラメールの名に因むクラメールの公式はその論文の中で紹介されているが、コリン・マクローリンは同様の公式を1748年に公表している。 クラメールはベルヌーイ家の二人の長兄 (ヤコブ・ベルヌーイ、ヨハン・ベルヌーイ) の業績を編集し、惑星の回転楕円体形状とその楕円軌道の物理的理由 (1730年)、そしてアイザック・ニュートンの3次曲線の扱い (1746年) について執筆した。クラメールはジュネーヴ大学の教授を務め、:en:Bagnols-sur-Cèzeで死亡した。 クラメールは物理学者ジャン・クラメールとアンヌ・マレ・クラメールの息子である。.

新しい!!: 行列とガブリエル・クラメール · 続きを見る »

ガウスの消去法

ウスの消去法(ガウスのしょうきょほう、Gaussian elimination)あるいは掃き出し法(はきだしほう、row reduction)とは、連立一次方程式を解くための多項式時間アルゴリズムであり、通常は問題となる連立一次方程式の係数からなる拡大係数行列に対して行われる一連の変形操作を意味する。 同様のアルゴリズムは歴史的には前漢に九章算術で初めて記述された。連立一次方程式の解法以外にも.

新しい!!: 行列とガウスの消去法 · 続きを見る »

クラメルの公式

線型代数学におけるクラメルの法則あるいはクラメルの公式(クラメルのこうしき、Cramer's rule; クラメルの規則)は、未知数の数と方程式の本数が一致し、かつ一意的に解ける線型方程式系の解を明示的に書き表す行列式公式である。これは、方程式の解を正方係数行列とその各列ベクトルを一つずつ方程式の右辺のベクトルで置き換えて得られる行列の行列式で表すものになっている。名称はガブリエル・クラーメル (1704–1752) に因むもので、クラーメルは任意個の未知数に関する法則を1750年に記している。なお特別の場合に限れば、コリン・マクローリンが1748年に公表している(また、恐らくはそれを1729年ごろにはすでに知っていたと思われる)。.

新しい!!: 行列とクラメルの公式 · 続きを見る »

ケンブリッジ大学出版局

ンブリッジ大学出版局(Cambridge University Press)は、ケンブリッジ大学の出版事業を手がける出版社である。1534年、ヘンリー8世により特許状が発せられたのを起こりとする世界最古の出版社、かつ世界第2の規模の大学出版局であり、聖書や学術誌の出版も手掛けている。 「出版活動を通して、大学の理念である全世界における学問、知識、研究の促進を推し進めること」を使命として掲げている。これは、ケンブリッジ大学規約中の「Statute J」に規定されている。そして、「公益のため継続的に出版活動を行い、ケンブリッジという名前の評価を高めること」を目的としている。 ケンブリッジ大学出版局は、学術、教育分野の書籍の出版を行なっており、ヨーロッパ、中東、アフリカ、アメリカ、アジア太平洋といった地域で事業を展開している。世界中に50以上の事業所を持ち、2000人近くの従業員を抱え、4万以上のタイトルの書籍を発行している。その種類は、専門書、教科書、研究論文、参考書、 300近くに及ぶ学術誌、聖書、祈祷書、英語教育教材、教育ソフト、電子出版など、多岐にわたる。.

新しい!!: 行列とケンブリッジ大学出版局 · 続きを見る »

ケイリー・ハミルトンの定理

イリー・ハミルトンの定理(ケイリー・ハミルトンのていり、Cayley–Hamilton theorem)、またはハミルトン・ケイリーの定理とは、線型代数学において、(実数体や複素数体を含む)可換環上の正方行列は固有方程式を満たすという定理である。アーサー・ケイリーとウィリアム・ローワン・ハミルトンにちなむ。.

新しい!!: 行列とケイリー・ハミルトンの定理 · 続きを見る »

コレスキー分解

レスキー分解(コレスキーぶんかい、)とは、正定値エルミート行列 を下三角行列 と の共役転置 との積に分解することをいう。 のエルミート性を利用したLU分解の特別な場合である。 の対角成分は実数にとることができて(符号・位相の自由度があるが)通常は、対角成分を正の実数に採り、その場合には、 は一意に定まる。アンドレ=ルイ・コレスキーにちなんで名づけられた。 が実対称行列の場合、上式の共役転置は転置に単純化される。 エルミート対称行列 が正定値であることと、 のコレスキー分解が存在することは同値になる。.

新しい!!: 行列とコレスキー分解 · 続きを見る »

コンマ

ンマ (comma) は、カンマとも呼ばれ、約物のひとつ。文の区切り、数字の区切り、小数点などに用いられる。.

新しい!!: 行列とコンマ · 続きを見る »

コンピュータグラフィックス

ンピュータグラフィックス(computer graphics、略称: CG)とは、コンピュータを用いて作成される画像である。日本では、和製英語の「コンピュータグラフィック」も使われる。.

新しい!!: 行列とコンピュータグラフィックス · 続きを見る »

ゴットフリート・ライプニッツ

ットフリート・ヴィルヘルム・ライプニッツ(Gottfried Wilhelm Leibniz、1646年7月1日(グレゴリオ暦)/6月21日(ユリウス暦) - 1716年11月14日)は、ドイツの哲学者、数学者。ライプツィヒ出身。なお Leibniz の発音は、(ライプニッツ)としているものと、(ライブニッツ)としているものとがある。ルネ・デカルトやバールーフ・デ・スピノザなどとともに近世の大陸合理主義を代表する哲学者である。主著は、『モナドロジー』、『形而上学叙説』、『人間知性新論』など。.

新しい!!: 行列とゴットフリート・ライプニッツ · 続きを見る »

シュプリンガー・サイエンス・アンド・ビジネス・メディア

ュプリンガー・サイエンス・アンド・ビジネス・メディア(Springer Science+Business Media, Springer)は、科学(Science)、技術(Technology、工学など)、医学(Medicine)、すなわちSTM関連の書籍、電子書籍、査読済みジャーナルを出版するグローバル企業である。シュプリンガーはまた、"SpringerLink"(「シュプリンガー・リンク」) 、"SpringerProtocols"(「」) 、"SpringerImages"(「シュプリンガー・イメージ」) 、"SpringerMaterials"(「シュプリンガー・マテリアル」) などいくつかの科学データベース・サービスのホスティングも行っている。 出版物には、参考図書(Reference works、レ(リ)ファレンス・ワークス)、教科書、モノグラフ(Monograph)、(Proceedings)、叢書など多数が含まれる。また、シュプリンガー・リンクには45,000以上のタイトルが自然科学など13の主題・テーマで集められており、それらは電子書籍として利用可能である。シュプリンガーはSTM分野の書籍に関しては世界最大の出版規模を持ち、ジャーナルでは世界第2位である(第1位はエルゼビア)。 多数のインプリントや、20ヶ国に約55の発行所(パブリッシング・ハウス)、5,000人以上の従業員を抱え、毎年約2,000のジャーナル、7,000以上の新書(これにはSTM分野だけではなく、B2B分野のものも含まれる)を発刊している。シュプリンガーはベルリン、ハイデルベルク、ドルトレヒト、ニューヨークに主要オフィスを構える。近年成長著しいアジア市場のために、アジア地域本部を香港に置いており、2005年8月からは北京に代表部を設置している 。 2015年5月、シュプリンガー・サイエンス+ビジネスメディアとマクミラン・サイエンス・アンド・エデュケーションの大半の事業の合併が、欧州連合や米国司法省などの主要な公正競争監視機関により承認された。新会社の名称は「シュプリンガー・ネイチャー(Springer Nature)」。.

新しい!!: 行列とシュプリンガー・サイエンス・アンド・ビジネス・メディア · 続きを見る »

ジョルダン標準形

ョルダン標準形(ジョルダンひょうじゅんけい、Jordan normal form)とは、代数的閉体(例えば複素数体)上の正方行列に対する標準形のことである。任意の正方行列は本質的にただ一つのジョルダン標準形と相似である。名前はカミーユ・ジョルダンにちなむ。.

新しい!!: 行列とジョルダン標準形 · 続きを見る »

ジョン・フォン・ノイマン

ョン・フォン・ノイマン(ハンガリー名:Neumann János(ナイマン・ヤーノシュ、)、ドイツ名:ヨハネス・ルートヴィヒ・フォン・ノイマン、John von Neumann, Margittai Neumann János Lajos, Johannes Ludwig von Neumann, 1903年12月28日 - 1957年2月8日)はハンガリー出身のアメリカ合衆国の数学者。20世紀科学史における最重要人物の一人。数学・物理学・工学・計算機科学・経済学・気象学・心理学・政治学に影響を与えた。第二次世界大戦中の原子爆弾開発や、その後の核政策への関与でも知られる。.

新しい!!: 行列とジョン・フォン・ノイマン · 続きを見る »

ジェームス・ジョセフ・シルベスター

ェームス・ジョセフ・シルベスター(James Joseph Sylvester, 1814年9月3日 - 1897年3月15日)は、イギリスの数学者。 1838年からユニヴァーシティ・カレッジ・ロンドン教授、1877年に渡米してジョンズ・ホプキンス大学教授、1883年からオックスフォード大学の幾何学の Savillian 教授を歴任した。1839年王立協会フェロー選出。 w:American Journal of Mathematicsを創刊。シルベスター行列などに名を残している。.

新しい!!: 行列とジェームス・ジョセフ・シルベスター · 続きを見る »

冪乗

冪演算(べきえんざん、英: 独: 仏: Exponentiation)は、底 (base) および冪指数 (exponent) と呼ばれる二つの数に対して定まる数学的算法である。通常は、冪指数を底の右肩につく上付き文字によって示す。自然数 を冪指数とする冪演算は累乗(るいじょう、repeated multiplication) に一致する。 具体的に、 および冪指数 を持つ冪 (power) は、 が自然数(正整数)のとき、底の累乗 で与えられる。このとき は の -乗とか、-次の -冪などと呼ばれる。 よく用いられる冪指数に対しては、固有の名前が与えられているものがある。例えば冪指数 に対して二次の冪(二乗) は の平方 (square of) あるいは -自乗 (-squared) と呼ばれ、冪指数 に対する三次の冪 は の立方 (cube of, -cubed) と呼ばれる。また冪指数 に対して冪 は であり の逆数(あるいは乗法逆元)と呼ばれる。一般に負の整数 に対して底 が零でないとき、冪 はふつう なる性質を保つように と定義される。 冪演算は任意の実数あるいは複素数を冪指数とするように定義を拡張することができる。底および冪指数が実数であるような冪において、底を固定して冪指数を変数と見なせば指数函数が、冪指数を固定して底を変数と見れば冪函数がそれぞれ生じる。整数乗冪に限れば、行列などを含めた非常に多種多様な代数的対象に対してもそれを底とする冪を定義することができるが、冪指数まで同種の対象に拡張するならばその上で定義された自然指数函数と自然対数函数を持つ完備ノルム環(例えば実数全体 や複素数全体 などはそう)を想定するのが自然である。.

新しい!!: 行列と冪乗 · 続きを見る »

内積

線型代数学における内積(ないせき、inner product)は、(実または複素)ベクトル空間上で定義される非退化かつ正定値のエルミート半双線型形式(実係数の場合には対称双線型形式)のことである。二つのベクトルに対してある数(スカラー)を定める演算であるためスカラー積(スカラーせき、scalar product)ともいう。内積を備えるベクトル空間は内積空間と呼ばれ、内積の定める計量を持つ幾何学的な空間と見做される。エルミート半双線型形式の意味での内積はしばしば、エルミート内積またはユニタリ内積と呼ばれる。.

新しい!!: 行列と内積 · 続きを見る »

写像の合成

数学において写像あるいは函数の合成(ごうせい、composition)とは、ある写像を施した結果に再び別の写像を施すことである。 たとえば、時刻 t における飛行機の高度を h(t) とし、高度 x における酸素濃度を c(x) で表せば、この二つの函数の合成函数 (c ∘ h)(t).

新しい!!: 行列と写像の合成 · 続きを見る »

全単射

数学において、全単射(ぜんたんしゃ)あるいは双射(そうしゃ)(bijective function, bijection) とは、写像であって、その写像の終域となる集合の任意の元に対し、その元を写像の像とする元が、写像の定義域となる集合に常にただ一つだけ存在するようなもの、すなわち単射かつ全射であるような写像のことを言う。例としては、群論で扱われる置換が全単射の良い例である。 全単射であることを一対一上への写像 (one-to-one onto mapping)あるいは一対一対応 (one-to-one correspondence) ともいうが、紛らわしいのでここでは使用しない。 写像 f が全単射のとき、fは可逆であるともいう。.

新しい!!: 行列と全単射 · 続きを見る »

回転群

(n 次の)回転群(かいてんぐん、rotation group)あるいは特殊直交群(とくしゅちょっこうぐん、special orthogonal group)とは、n行n列の直交行列であって、行列式が1のもの全体が行列の乗法に関してなす群をいう。SO(n) と書く。 SO(n) はコンパクトリー群であり、n.

新しい!!: 行列と回転群 · 続きを見る »

回転行列

線型代数において、回転行列(かいてんぎょうれつ、rotation matrix)とは、ユークリッド空間内における原点中心の回転変換の表現行列のことである。 二次元や三次元では、幾何学、物理学、コンピュータグラフィックスの分野での計算に非常によく使われている。大半の応用で扱うのは2次元や3次元の回転だが、一般の次元でも回転行列を定義することができる。 n 次元空間における回転行列は、実数を成分とする正方行列であって、行列式が 1 の n 次直交行列として特徴づけられる: n 次元の回転行列の全体は特殊直交群(あるいは回転群)と呼ばれる群をなす。.

新しい!!: 行列と回転行列 · 続きを見る »

因数分解

数学における因数分解(いんすうぶんかい、factorization)は(数、多項式、行列といったような、積の定義される)代数的対象を、(それらを掛け合わせると元に戻る)別の対象、つまり因数 (factor) の積に分解することである。たとえば、15 という数は 3 × 5 という因数の積に分解され、多項式 x2 − 4 は (x − 2)(x + 2) という因数の積に分解される。このようにより単純な対象の積になっている。 因数分解の反対は、因数を掛け合わせてもとの展開された対象を得る過程であるところの、展開である。 因数分解の目的はふつう、何らかのものを(自然数ならば素数、多項式ならば既約多項式といったような)「基本的な構成要素」に帰着させることである。1でない自然数が素数の積で表せることは算術の基本定理で、定数でない一変数複素係数多項式が一次式の積で表せることは代数学の基本定理で保障されている。ヴィエタの公式は多項式の根と係数の関係を記述するものである。 巨大整数の素因数分解は困難な問題で、これを一般に短時間に行う方法は知られていない。この複雑性はRSA暗号のような公開鍵暗号によるセキュリティの信頼性の基礎になっている。 行列も(応用に際して利用しやすい)特別な種類の行列の積に分解することができる。よく用いられるのはたとえば、直交行列やユニタリ行列あるいは三角行列などである。ほかに、QR, LQ, QL, RQ, RZ のような分解が知られる。 他の例としては、写像を特定の性質を持つ写像の合成の形に分解することが挙げられる。たとえば、任意の写像は全射と単射の合成と見ることができる。これはによって一般化される。.

新しい!!: 行列と因数分解 · 続きを見る »

固有値

線型代数学において、線型変換の特徴を表す指標として固有値 (eigenvalue) や固有ベクトル (eigenvector) がある。この2つの用語を合わせて、固有対 (eigenpair) という。与えられた線型変換の固有値および固有ベクトルを求める問題のことを固有値問題 (eigenvalue problem) という。ヒルベルト空間論において線型作用素 あるいは線型演算子と呼ばれるものは線型変換であり、やはりその固有値や固有ベクトルを考えることができる。固有値という言葉は無限次元ヒルベルト空間論や作用素代数におけるスペクトルの意味でもしばしば使われる。.

新しい!!: 行列と固有値 · 続きを見る »

空積

数学における空積(くうせき、empty product)あるいは零項積 (nullary product) は、 個の因子を掛けた結果である。(考えている乗法演算に単位元が存在する場合に限り)「空積の値は単位元 1 に等しい」という規約を設ける。このことは、空和(すなわち0個の数を足した結果)が零元 0 に等しいと約束することと同様である。 用語 "空積" は算術的演算を議論するときに上の意味で使われることが多い。しかしながら、この用語は集合論の共通部分、圏論の積、コンピュータプログラミングにおける積に対しても使われる。これらは以下で議論される。.

新しい!!: 行列と空積 · 続きを見る »

符号理論

号理論(ふごうりろん、Coding theory)は、情報を符号化して通信を行う際の効率と信頼性についての理論である。符号は、データ圧縮・暗号化・誤り訂正・ネットワーキングのために使用される。符号理論は、効率的で信頼できるデータ伝送方法を設計するために、情報理論・電気工学・数学・言語学・計算機科学などの様々な分野で研究されている。通常、符号理論には、冗長性の除去と、送信されたデータの誤りの検出・訂正が含まれる。 符号化は、以下の4種類に分けられる。.

新しい!!: 行列と符号理論 · 続きを見る »

算術

算術 (さんじゅつ、arithmetic) は、数の概念や数の演算を扱い、その性質や計算規則、あるいは計算法などの論理的手続きを明らかにしようとする学問分野である。.

新しい!!: 行列と算術 · 続きを見る »

線型代数学

線型代数学(せんけいだいすうがく、linear algebra)とは、線型空間と線型変換を中心とした理論を研究する代数学の一分野である。現代数学において基礎的な役割を果たし、幅広い分野に応用されている。また、これは特に行列・行列式・連立一次方程式に関する理論を含む。線形などの用字・表記の揺れについては線型性を参照。 日本の大学においては、多くの理系学部学科で解析学(微分積分学)とともに初学年から履修する。なお、高校教育においては平成27年度からの新課程では行列の分野が除外されている。.

新しい!!: 行列と線型代数学 · 続きを見る »

線型写像

数学の特に線型代数学における線型変換(せんけいへんかん、linear transformation、一次変換)あるいは線型写像(せんけいしゃぞう、linear mapping)は、ベクトルの加法とスカラー乗法を保つ特別の写像である。特に任意の(零写像でない)線型写像は「直線を直線に移す」。 抽象代数学の言葉を用いれば、線型写像とは(体上の加群としての)ベクトル空間の構造を保つ準同型のことであり、また一つの固定された体上のベクトル空間の全体は線型写像を射とする圏を成す。 「線型変換」は線型写像とまったく同義と扱われる場合もあるが、始域と終域を同じくする線型写像(自己準同型)の意味で用いていることも少なくない。また函数解析学の分野では、(特に無限次元空間上の)線型写像のことを「線型作用素」(せんけいさようそ、linear operator)と呼ぶことも多い。スカラー値の線型写像はしばしば「線型汎函数」もしくは「一次形式」(いちじけいしき、linear form, one-form; 線型形式; 1-形式)とも呼ばれる一次の微分形式(一次微分形式もしくは微分一次形式; differential one-form)を単に「一次形式」または「1-形式」(one-form) と呼ぶこともある。これとの対照のため、本項に云う意味での一次形式を「代数一次形式」(albegraic one-form) と呼ぶ場合がある。。 線形等の用字・表記の揺れについては線型性を参照。.

新しい!!: 行列と線型写像 · 続きを見る »

線型結合

線型結合(せんけいけつごう、)は、線型代数学およびその関連分野で用いられる中心的な概念の一つで、平たく言えば、ベクトルの定数倍と加え合わせのことである。一次結合あるいは線型和とも呼ぶ。 いくつかのベクトルを組み合わせると他のベクトルを作ることができる。例えば、2次元数ベクトルを例にとれば、ベクトル v.

新しい!!: 行列と線型結合 · 続きを見る »

線型独立

線型代数学において、ベクトルの集合が線型独立 (せんけいどくりつ、linearly independent) または一次独立であるとは、線型従属(一次従属)でないこと、つまり集合のベクトルの線型結合によるゼロベクトルの表示が自明なものに限ることをいう(#定義)。.

新しい!!: 行列と線型独立 · 続きを見る »

線型方程式

線型方程式(せんけいほうていしき、linear equation)とは、線型性を持つ写像(関数・作用素)の等式で表される方程式のことである。線形等の用字・表記の揺れについては線型性を参照。 線型方程式においては、その線型性から解の重ね合わせが成り立つなどいくつものよい性質が成り立つ。線型方程式(特に多変数の一次代数方程式)の研究から行列などの手法が整備され、線型代数学という一分野が形成された。 線型代数学の整備により、多くの場合に線型方程式の係数を実数や複素数に限らず、四則演算が自由にできる(つまり体と呼ばれる代数的構造をもつ)集合からとったとして広く適用できる結果が知られている。 以下、特に断らない場合は係数をとる集合 K を(可換な)体とする。多くの場合 K は、実数全体の成す集合 R または複素数全体の成す集合 C のことと思って差し支えない。.

新しい!!: 行列と線型方程式 · 続きを見る »

線型方程式系

数学において、線型方程式系(せんけいほうていしきけい)とは、同時に成立する複数の線型方程式(一次方程式)の組のことである。線形等の用字・表記の揺れについては線型性を参照。 複数の方程式の組み合わせを方程式系あるいは連立方程式と呼ぶことから、線型方程式系のことを一次方程式系、連立線型方程式、連立一次方程式等とも呼ぶこともある。.

新しい!!: 行列と線型方程式系 · 続きを見る »

総乗

総乗(そうじょう)とは、積の定義される集合における多項演算の一つで、元の列の全ての積のことである。.

新しい!!: 行列と総乗 · 続きを見る »

群 (数学)

数学における群(ぐん、group)とは最も基本的と見なされる代数的構造の一つである。群はそれ自体興味深い考察対象であり、群論における主要な研究対象となっているが、数学や物理学全般にわたってさまざまな構成に対する基礎的な枠組みを与えている。.

新しい!!: 行列と群 (数学) · 続きを見る »

結合多元環

数学における(結合)線型環あるいは結合的代数または結合多元環(けつごうたげんかん、associative algebra)は、結合的な環であって、かつそれと両立するような、何らかの体上の線型空間(若しくはもっと一般の可換環上の加群)の構造を備えたものである。即ち、線型環 A は(結合律や分配律を含む)幾つかの公理を満足する二項演算(内部演算)としての加法と乗法を備え、同時に乗法と両立するスカラー(体 K や環 R の元)による乗法(外部演算)を備える。 分野によっては、線型環が乗法単位元 1 を持つと仮定することが典型的である場合もある。このような余分の仮定を満たすことを明らかにする場合には、そのような線型環を単型線型環(単位的(結合)多元環)と呼ぶ。.

新しい!!: 行列と結合多元環 · 続きを見る »

結合法則

数学、殊に代数学における結合法則(けつごうほうそく、associative law) 、結合則、結合律あるいは演算の結合性(けつごうせい、associativity)は二項演算に対して考えられる性質の一つ。ひとつの数式にその演算の演算子が2個以上並んでいる時、その演算子について、左右どちらの側が優先されるかに関わらず結果が同じになるような演算は結合的 (associative) である。.

新しい!!: 行列と結合法則 · 続きを見る »

環 (数学)

数学における環(かん、ring)は、台集合に「加法」(和)および「乗法」(積)と呼ばれる二種類の二項演算を備えた代数系になっており、最もよく知られた環の例は、整数全体の成す集合に自然な加法と乗法を考えたものである(これは乗法が可換だから可換環の例でもある)。ただし、それが環と呼ばれるためには、環の公理として、加法は可換で、加法と乗法はともに結合的であって、乗法は加法の上に分配的で、各元は加法逆元をもち、加法単位元が存在すること、が全て要求される。従って、台集合は加法のもと「加法群」と呼ばれるアーベル群を成し、乗法のもと「乗法半群」と呼ばれる半群であって、乗法は加法に対して分配的であり、またしばしば乗法単位元を持つ乗法に関しては半群となることのみを課す(乗法単位元の存在を要求しない)こともある。定義に関する注意節を参照。なお、よく用いられる環の定義としていくつか流儀の異なるものが存在するが、それについては後述する。 環について研究する数学の分野は環論として知られる。環論学者が研究するのは(整数環や多項式環などの)よく知られた数学的構造やもっと他の環論の公理を満足する多くの未だよく知られていない数学的構造のいずれにも共通する性質についてである。環という構造のもつ遍在性は、数学の様々な分野において同時多発的に行われた「代数化」の動きの中心原理として働くことになった。 また、環論は基本的な物理法則(の根底にある特殊相対性)や物質化学における対称現象の理解にも寄与する。 環の概念は、1880年代のデデキントに始まる、フェルマーの最終定理に対する証明の試みの中で形成されていった。他分野(主に数論)からの寄与もあって、環の概念は一般化されていき、1920年代のうちにエミー・ネーター、ヴォルフガング・クルルらによって確立される。活発に研究が行われている数学の分野としての現代的な環論では、独特の方法論で環を研究している。すなわち、環を調べるために様々な概念を導入して、環をより小さなよく分かっている断片に分解する(イデアルをつかって剰余環を作り、単純環に帰着するなど)。こういった抽象的な性質に加えて、環論では可換環と非可換環を様々な点で分けて考える(前者は代数的数論や代数幾何学の範疇に属する)。特に豊かな理論が展開された特別な種類の可換環として、可換体があり、独自に体論と呼ばれる分野が形成されている。これに対応する非可換環の理論として、非可換可除環(斜体)が盛んに研究されている。なお、1980年代にアラン・コンヌによって非可換環と幾何学の間の奇妙な関連性が指摘されて以来、非可換幾何学が環論の分野として活発になってきている。.

新しい!!: 行列と環 (数学) · 続きを見る »

環上の加群

抽象代数学における環上の加群(かぐん、module)とは、ベクトル空間を一般化した概念で、係数(スカラー)を体の元とする代わりに、より一般の環の元としたものである。つまり、加群とは(ベクトル空間がそうであるように)加法的なアーベル群であって、その元と環の元との間に乗法が定義され、その乗法が結合的かつ加法に関して分配的となるようなものである。 任意のアーベル群は有理整数環上の加群であり、したがって環上の加群はアーベル群の一般化でもある。また、環のイデアルは環上の加群であり、したがって環上の加群はイデアルの一般化でもある。このように環上の加群はベクトル空間・アーベル群・イデアルを包括する概念であるので、さまざまな議論を加群の言葉によって統一的に扱うことができるようになる。 加群は群の表現論に非常に近しい関連を持つ。また、加群は可換環論やホモロジー代数における中心概念の一つであり、ひろく代数幾何学や代数的位相幾何学において用いられる。.

新しい!!: 行列と環上の加群 · 続きを見る »

物理学

物理学(ぶつりがく, )は、自然科学の一分野である。自然界に見られる現象には、人間の恣意的な解釈に依らない普遍的な法則があると考え、自然界の現象とその性質を、物質とその間に働く相互作用によって理解すること(力学的理解)、および物質をより基本的な要素に還元して理解すること(原子論的理解)を目的とする。化学、生物学、地学などほかの自然科学に比べ数学との親和性が非常に強い。 古代ギリシアの自然学 にその源があり, という言葉も、元々は自然についての一般的な知識の追求を意味しており、天体現象から生物現象までを含む幅広い概念だった。現在の物理現象のみを追求する として自然哲学から独立した意味を持つようになったのは19世紀からである。 物理学の古典的な研究分野は、物体の運動、光と色彩、音響、電気と磁気、熱、波動、天体の諸現象(物理現象)である。.

新しい!!: 行列と物理学 · 続きを見る »

特異値分解

特異値分解(とくいちぶんかい、singular value decomposition; SVD)とは、線形代数学における、複素数あるいは実数を成分とする行列に対する行列分解の一手法である。信号処理や統計学の分野で用いられる。特異値分解は、行列に対するスペクトル定理の一般化とも考えられ、正方行列に限らず任意の形の行列を分解できる。.

新しい!!: 行列と特異値分解 · 続きを見る »

特殊線型群

数学において、 体 上の次数 の特殊線型群(とくしゅせんけいぐん、special linear group)とは、 行列式が である 次正方行列のなす集合に、通常の行列の積と逆行列の演算が入った群である。この群は、行列式 の核として得られる、一般線型群 の正規部分群である。 ここで は の乗法群(つまり、 から を除いた集合)を表す。 特殊線型群の元は「特殊な」もの、つまりある多項式が定める一般線型群の部分代数多様体、である(行列式は多項式であることに注意)。.

新しい!!: 行列と特殊線型群 · 続きを見る »

直交群

数学において、 次元の直交群(ちょっこうぐん、orthogonal group)とは、 次元ユークリッド空間上のある固定された点を保つような距離を保つ変換全体からなる群であり、群の演算は変換の合成によって与える。 と表記する。同値な別の定義をすれば、直交群とは、元が の実直交行列であり、群の積が行列の積によって与えられるものをいう。直交行列とは、逆行列がもとの行列の転置と等しくなるような行列のことである。 直交行列の行列式は か である。 の重要な部分群である特殊直交群 は行列式が である直交行列からなる。この群は回転群ともよばれ、例えば次元 2 や 3 では、群の元が表す変換は(2次元における)点や(3次元における)直線のまわりの通常の回転である。低次元ではこれらの群の性質は幅広く研究されている。 用語「直交群」は上の定義を一般化して、体上のベクトル空間における非退化な対称双線型形式や二次形式基礎体の標数が でなければ、対称双線型形式と二次形式のどちらを使っても同値である。を保つような、可逆な線形作用素全体からなる群を表すことがある。特に、体 上の 次元ベクトル空間 上の双線型形式がドット積で与えられ、二次形式が二乗の和で与えられるとき、これに対応する直交群 は、群の元が 成分 直交行列で群の積を行列の積で定めるものである。これは一般線形群 の部分群であって、以下の形で与えられる。 ここで は の転置であり、 は単位行列である。.

新しい!!: 行列と直交群 · 続きを見る »

直交行列

交行列(ちょっこうぎょうれつ, )とは、転置行列と逆行列が等しくなる正方行列のこと。つまりn × n の行列 M の転置行列を MT と表すときに、MTM.

新しい!!: 行列と直交行列 · 続きを見る »

直積 (ベクトル)

線型代数学における直積(ちょくせき、direct product)あるいは外積(がいせき、outer product)は典型的には二つのベクトルのテンソル積を言う。の外積をとった結果は行列になる。外積の名称は内積に対照するもので、内積はベクトルの対をスカラーにする。外積は、クロス積の意味で使われることもあるため、どちらの意味で使われているか注意が必要である。 \beginu_1 \\ u_2 \\ u_3 \\ u_4\end \beginv_1 & v_2 & v_3\end.

新しい!!: 行列と直積 (ベクトル) · 続きを見る »

階数・退化次数の定理

数学の線型代数学の分野における階数・退化次数の定理(かいすう・たいかじすうのていり、)とは、最も簡単な場合、ある行列の階数(rank)と退化次数(nullity)の和は、その行列の列の数に等しいということを述べた定理である。特に、A がある体上の m×n 行列(行の数が m で、列の数が n)であるなら、 が成立する。 この定理は線型写像に対しても同様に適用される。V と W をある体上のベクトル空間とし、T: V → W をある線型写像とする。このとき、T の階数は T の像の次元であり、T の退化次数は T の核の次元である。したがって、 が成立する。あるいは、同値であるが が成立する。これは実際、V と W が無限次元であることも許しているため、前述の行列の場合よりもより一般的な定理となっている。 この定理の内容は、あるいは後述の証明を用いることで、次元のみならず、空間の間の同型写像に関する内容へと精練することが出来る。 より一般的に、線型代数学の基本定理によって関連付けられる像、核、余像、余核について考えることが出来る。.

新しい!!: 行列と階数・退化次数の定理 · 続きを見る »

随伴行列

数学の特に線型代数学における行列の, エルミート転置 (Hermitian transpose), エルミート共軛 (Hermitian conjugate), エルミート随伴 (Hermitian adjoint) あるいは随伴行列(ずいはんぎょうれつ、adjoint matrix)とは、複素数に成分をとる 行列 に対して、 の転置およびその成分の複素共軛(実部はそのままで虚部の符号を反転する)をとって得られる 行列 を言う。 \end.

新しい!!: 行列と随伴行列 · 続きを見る »

表現論

表現論(ひょうげんろん、representation theory)とは、ベクトル空間の線型変換として代数構造を表現することにより研究し、代数構造上の加群を研究する数学の一分野である。本質的には、表現は抽象的な代数的構造を、その元と演算を行列と行列の和や行列の積で記述することで、より具体的にする。この記述で扱われる代数的対象は、群や結合代数やリー代数がある。これらの中で最も優れているものは、歴史的にも最初に現れた群の表現論であり、群の演算が群の要素が行列の積により正則行列で表現されている。 Classic texts on representation theory include and.

新しい!!: 行列と表現論 · 続きを見る »

行列

数学の線型代数学周辺分野における行列(ぎょうれつ、matrix)は、数や記号や式などを行と列に沿って矩形状に配列したものである。行の数と列の数が同じ行列はが成分ごとの計算によって与えられる。行列の積の計算はもっと複雑で、2 つの行列がかけ合わせられるためには、積の左因子の列の数と右因子の行の数が一致していなければならない。 行列の応用として顕著なものは一次変換の表現である。一次変換は のような一次関数の一般化で、例えば三次元空間におけるベクトルの回転などは一次変換であり、 が回転行列で が空間の点の位置を表す列ベクトル(1 列しかない行列)のとき、積 は回転後の点の位置を表す列ベクトルになる。また 2 つの行列の積は、2 つの一次変換の合成を表現するものとなる。行列の別な応用としては、連立一次方程式の解法におけるものである。行列が正方行列であるならば、そのいくつかの性質は、行列式を計算することによって演繹することができる。例えば、正方行列が正則であるための必要十分条件は、その行列式の値が非零となることである。固有値や固有ベクトルは一次変換の幾何学に対する洞察を与える。行列の応用は科学的な分野の大半に及び、特に物理学において行列は、電気回路、光学、量子力学などの研究に利用される。コンピュータ・グラフィックスでは三次元画像の二次元スクリーンへの投影や realistic-seeming motion を作るのに行列が用いられる。は、古典的な解析学における微分や指数関数の概念を高次元へ一般化するものである。 主要な数値解析の分野は、行列計算の効果的なアルゴリズムの開発を扱っており、主題は何百年にもわたって今日では研究領域も広がっている。行列の分解は、理論的にも実用的にも計算を単純化するもので、アルゴリズムは正方行列や対角行列などといった行列の特定の構造に合わせて仕立てられており、有限要素法やそのほかの計が効率的に処理される。惑星運動論や原子論では無限次行列が現れる。関数のテイラー級数に対して作用する微分の表現行列は、無限次行列の簡単な例である。.

新しい!!: 行列と行列 · 続きを見る »

行列力学

行列力学(ぎょうれつりきがく、)は、量子力学における理論形式の一つで、量子論をハイゼンベルク描像で行列表示で定式化したものである。マトリックス力学とも呼ばれる。1925年に物理学者ヴェルナー・ハイゼンベルクによって提唱され、マックス・ボルン、パスクアル・ヨルダンらともに展開された。.

新しい!!: 行列と行列力学 · 続きを見る »

行列の定値性

線型代数学における行列の定値性(ていちせい、definiteness)は、その行列に付随する二次形式が一定の符号を持つか否か (二次形式の定値性) と密接な関係を持つ概念だが、付随する二次形式を経ることなくその行列自身の持つ性質によって特徴づけることもできる。 この概念は対称行列およびエルミート行列に対して定義するのが通例であるが、そうではない行列を含むように「定値性」の概念を一般化して適用する文献もある。.

新しい!!: 行列と行列の定値性 · 続きを見る »

行列の乗法

数学において、行列の対から別の行列を作り出す二項演算としての行列の乗法は、実数や複素数などの数が初等的な四則演算でいうところの乗法を持つことと対照的に、そのような「数の配列」の間の乗法として必ずしも一意的な演算を指しうるものではない。そのような意味では、一般に「行列の乗法」は幾つかの異なる二項演算を総称するものと考えることができる。行列の乗法の持つ重要な特徴には、与えられた行列の行および列の数(行列の型やサイズあるいは次元と呼ばれるもの)が関係して、得られる行列の成分がどのように特定されるかが述べられるということが挙げられる。 例えば、ベクトルの場合と同様に、任意の行列に対してスカラーを掛けるという操作が、その行列の全ての成分に同じ数を掛けるという方法で与えられる。また、の場合と同様に、同じサイズの行列に対して成分ごとの乗法を入れることによって定まる行列の積はアダマール積と呼ばれる。それ以外にも、二つの行列のクロネッカー積は区分行列として得られる。 このようにさまざまな乗法が定義できるという事情の中にあっても、しかし最も重要な行列の乗法は連立一次方程式やベクトルの一次変換に関するもので、応用数学や工学へも広く応用がある。これは通例、行列の積(ぎょうれつのせき、matrix product)と呼ばれるもので、 が 行列で、 が 行列ならば、それらの行列の積 が 行列として与えられ、その成分は の各行の 個の成分がそれぞれ順番に の各列の 個の成分と掛け合わされる形で与えられる(後述)。 この通常の積は可換ではないが、結合的かつ行列の加法に対して分配的である。この行列の積に関する単位元(数において を掛けることに相当するもの)は単位行列であり、正方行列は逆行列(数における逆数に相当)を持ち得る。行列の積に関して行列式は乗法的である。一次変換や行列群あるいは群の表現などの理論を考える上において行列の積は重要な演算となる。 行列のサイズが大きくなれば、二つあるいはそれ以上の行列の積の計算を定義に従って行うには、非常に膨大な時間が掛かるようになってしまうため、効果的に行列の積を計算できるアルゴリズムが考えられてきた。.

新しい!!: 行列と行列の乗法 · 続きを見る »

行列の分解

線型代数学という数学の分野において,行列の分解(ぎょうれつのぶんかい,matrix decomposition, matrix factorization)とは,行列の行列の積への分解である.多くの異なった行列の分解があり,それぞれがある問題のために利用される..

新しい!!: 行列と行列の分解 · 続きを見る »

行列の相似

線型代数学において、ふたつの n 次正方行列 A, B が相似(そうじ、similar)であるとは、n 次正則行列 P で となるようなものが存在するときに言う。互いに相似な行列は同じ線型写像を異なる基底に関して表現するもので、さきほどの P はそれらの基底の間の基底変換 (change of basis) を与える行列である。上記のような変換はしばしば、変換行列 P に関する相似変換 (similarity transformation) と呼ばれる。線型代数群の文脈では、行列の相似性は(群の元としての)共軛性として言及されることも多い。.

新しい!!: 行列と行列の相似 · 続きを見る »

行列の階数

線型代数学における行列の階数(かいすう、rank; ランク)は、行列の最も基本的な特性数 (characteristic) の一つで、その行列が表す線型方程式系および線型変換がどのくらい「非退化」であるかを示すものである。行列の階数を定義する方法は同値なものがいくつもある。 例えば、行列 の階数 (あるいは または丸括弧を落として )は、 の列空間(列ベクトルの張るベクトル空間)の次元に等しく、また の行空間の次元とも等しい。行列の階数は、対応する線型写像の階数である。.

新しい!!: 行列と行列の階数 · 続きを見る »

行列式

数学における行列式(ぎょうれつしき、)とは、正方行列に対して定義される量で、歴史的には行列が表す一次方程式の可解性を判定する指標として導入された。幾何的には線型空間またはより一般の有限生成自由加群上の自己準同型に対して定義され、線型変換によって空間の体積要素が何倍に変わるかという概念を抽象化したものと見なすことができる。行列の可逆性を判定する指標として線型代数学における最も重要な指標の一つと見なされている。.

新しい!!: 行列と行列式 · 続きを見る »

行列ノルム

線型代数学における行列ノルム(ぎょうれつノルム、matrix norm)は、ベクトルのノルムを行列に対し自然に一般化したものである。.

新しい!!: 行列と行列ノルム · 続きを見る »

行空間

数学の線型代数学の分野における、ある行列の行空間(ぎょうくうかん、)とは、その行列の各行ベクトルの線型結合として起こり得るすべてのものからなる集合のことを言う。K を(実数や複素数の全体などのような)体とする。K に属する成分からなる m × n 行列の行空間は、n-空間 Kn の線型部分空間である。行空間の次元は、その行列の'''行ランク'''と呼ばれる。 整数の全体などのような環 K についての行列に対しても、同様の定義が存在する。.

新しい!!: 行列と行空間 · 続きを見る »

複素数

数学における複素数(ふくそすう、complex number)は、実数の対 と と線型独立な(実数ではない)要素 の線型結合 の形に表される数(二元数: 実数体上の二次拡大環の元)で、基底元 はその平方が になるという特別な性質を持ち虚数単位と呼ばれる。 複素数全体の成す集合を太字の あるいは黒板太字で と表す。 は、実数全体の成す集合 と同様に、可換体の構造を持ち、とくに を含む代数閉体を成す。複素数体はケイリー–ディクソン代数(四元数、八元数、十六元数など)の基点となる体系であり、またさまざまな超複素数系の中で最もよく知られた例である。 複素数の概念は、一次元の実数直線を二次元の複素数平面に拡張する。複素数は自然に二次元平面上に存在すると考えることができるから、複素数全体の成す集合上に自然な大小関係(つまり全順序)をいれることはできない。すなわち は順序体でない。 ある数学的な主題や概念あるいは構成において、それが複素数体を基本の体構造として考えられているとき、そのことはしばしばそれら概念等の名称に(おおくは接頭辞「複素-」を付けることで)反映される。例えば、複素解析、複素行列、複素(係数)多項式、複素リー代数など。.

新しい!!: 行列と複素数 · 続きを見る »

解析学

解析学(かいせきがく、英語:analysis, mathematical analysis)とは、極限や収束といった概念を扱う数学の分野である 日本数学会編、『岩波数学辞典 第4版』、岩波書店、2007年、項目「解析学」より。ISBN978-4-00-080309-0 C3541 。代数学、幾何学と合わせ数学の三大分野をなす。 数学用語としての解析学は要素還元主義とは異なっており、初等的には微積分や級数などを用いて関数の変化量などの性質を調べる分野と言われることが多い。これは解析学がもともとテイラー級数やフーリエ級数などを用いて関数の性質を研究していたことに由来する。 例えばある関数の変数を少しだけずらした場合、その関数の値がどのようにどのぐらい変化するかを調べる問題は解析学として扱われる。 解析学の最も基本的な部分は、微分積分学、または微積分学と呼ばれる。また微分積分学を学ぶために必要な数学はprecalculus(calculusは微積分の意、接頭辞preにより直訳すれば微積分の前といった意味になる)と呼ばれ、現代日本の高校1、2年程度の内容に相当する。また解析学は応用分野において微分方程式を用いた理論やモデルを解くためにも発達し、物理学や工学といった数学を用いる学問ではよく用いられる数学の分野の一つである。 解析学は微積分をもとに、微分方程式や関数論など多岐に渡って発達しており、現代では確率論をも含む。 現代日本においては解析学の基本的分野は概ね高校2年から大学2年程度で習い、進度の差はあれ世界中の高校や大学等で教えられている。.

新しい!!: 行列と解析学 · 続きを見る »

計量ベクトル空間

線型代数学における計量ベクトル空間(けいりょうベクトルくうかん、metric vector space)は、内積と呼ばれる付加的な構造を備えたベクトル空間であり、内積空間(ないせきくうかん、inner product space)とも呼ばれる。この付加構造は、空間内の任意の二つのベクトルに対してベクトルの内積と呼ばれるスカラーを対応付ける。内積によって、ベクトルの長さや二つのベクトルの間の角度などの直観的な幾何学的概念に対する厳密な導入が可能になる。また内積が零になることを以ってベクトルの間の直交性に意味を持たせることもできる。内積空間は、内積として点乗積(スカラー積)を備えたユークリッド空間を任意の次元(無限次元でもよい)のベクトル空間に対して一般化するもので、特に無限次元のものは函数解析学において研究される。 内積はそれに付随するノルムを自然に導き、内積空間はノルム空間の構造を持つ。内積に付随するノルムの定める距離に関して完備となる空間はヒルベルト空間と呼ばれ、必ずしも完備でない内積空間は(内積の導くノルムに関する完備化がヒルベルト空間となるから)前ヒルベルト空間 (pre-Hilbert space) と呼ばれる。複素数体上の内積空間はしばしばユニタリ空間 (unitary spaces) とも呼ばれる。.

新しい!!: 行列と計量ベクトル空間 · 続きを見る »

跡 (線型代数学)

数学、特に線型代数学における行列の跡(せき、trace; トレース、Spur; シュプール)あるいは対角和(たいかくわ)は行列の主対角成分の総和である。それは基底変換に関して不変であり、また固有値の総和(固有値和)に等しい。即ち、行列の跡は行列の相似を除いて定まり、したがって一般に行列に対応する線型写像の跡として定義することができる。 行列の跡は、正方行列に対してのみ定義されることに注意せよ。この語は(この同じ数学的対象を意味する)ドイツ語のSpurからの翻訳借用である。.

新しい!!: 行列と跡 (線型代数学) · 続きを見る »

転置写像

線型代数学におけるベクトル空間の間の線型写像の転置(てんち、transpose)は、各ベクトル空間の双対空間の間に誘導される。そのような転置写像 (transpose of a linear map) はもとの線型写像を知るためにしばしば有用である。この概念は随伴函手によって一般化することができる。.

新しい!!: 行列と転置写像 · 続きを見る »

転置行列

転置行列(てんちぎょうれつ、transpose, transposed matrix)とは 行 列の行列 に対して の 要素と 要素を入れ替えた 行 列の行列、つまり対角線で成分を折り返した行列のことである。転置行列は などと示される。行列の転置行列を与える操作のことを転置(てんち、transpose)といい、「 を転置する」などと表現する。.

新しい!!: 行列と転置行列 · 続きを見る »

部分群

二項演算 * に関して群 G が与えられたとする。 G の部分集合である H が G の部分群であるということは、 H が演算 * に関して群になるということである。より正確に表現すると、 H が G の部分群であるということは、群の演算 * を H×H (Hの直積)に制限したときに、 H における群の演算になっているということである。この関係は通常、 H ≤ G という記号で表現し、「 H は G の部分群である」と読む。 G の真部分群とは、部分群 H が G の真部分集合である(つまり H≠G である)ことである。任意の群 G に対し、G 自身と単位元のみからなる集合 は常に G の部分群である。 H が G の部分群であるとき、 G は H の拡大群であると表現する場合がある。 G が任意の半群であるときも、G の部分群の定義はそのまま通用するが、本項では群の部分群についてのみを扱うにとどめる。群 G は順序対 (G, &lowast) として記述されることもあるが、このように書くのは普通、G を台となる集合としてその上に演算 "∗" が代数的構造(あるいはもっとほかの構造)を定めるということを強調するためである。 以下では、通常の慣習に倣って ∗ を省略し、積 a ∗ b を単に ab と表記する。また、群の演算を単に「積」と表記する場合もある。.

新しい!!: 行列と部分群 · 続きを見る »

関孝和

関 孝和 記念切手1992年 関 孝和(せき たかかず/こうわ、寛永19年(1642年)3月? - 宝永5年10月24日(1708年12月5日))は、日本の江戸時代の和算家(数学者)である。本姓は藤原氏。旧姓は内山氏、通称は新助。字は子豹、自由亭と号した。.

新しい!!: 行列と関孝和 · 続きを見る »

関数解析学

関数解析学(かんすうかいせきがく、functional analysis)は数学(特に解析学)の一分野で、フーリエ変換や微分方程式、積分方程式などの研究に端を発している。特定のクラスの関数からなるベクトル空間にある種の位相構造を定めた関数空間や、その公理化によって得られる線形位相空間の構造が研究される。主な興味の対象は、様々な関数空間上で積分や微分によって定義される線型作用素の振る舞いを通じた積分方程式や微分方程式の線型代数学的取り扱いであり、無限次元ベクトル空間上の線型代数学と捉えられることも多い。.

新しい!!: 行列と関数解析学 · 続きを見る »

閉集合

閉集合(へいしゅうごう、closed set)は、その補集合が開集合となる集合のこと。距離空間の場合はその部分集合の元からなる任意の収束点列の極限がその部分集合の元であることと一致するので、それを定義としてもよい。 例えば、数直線上で不等式 0 ≤ x ≤ 1 によって定まる集合は閉区間と呼ばれるが、これは閉集合である。なぜならば、その補集合である x < 0 または x > 1 を満たす区間が開集合となるからである。 不等式を 0 < x < 1 としたものや 0 ≤ x < 1 としたものは、閉集合ではない。 また、連続関数 f(x,y) を使って、\ と表される集合は平面の閉集合である。円周も平面の閉集合である。 次の性質を満たす集合 X の部分集合の族 F があると、 F の元が閉集合であるような位相が X に定まる。.

新しい!!: 行列と閉集合 · 続きを見る »

量子力学

量子力学(りょうしりきがく、quantum mechanics)は、一般相対性理論と同じく現代物理学の根幹を成す理論として知られ、主として分子や原子、あるいはそれを構成する電子など、微視的な物理現象を記述する力学である。 量子力学自身は前述のミクロな系における力学を記述する理論だが、取り扱う系をそうしたミクロな系の集まりとして解析することによって、ニュートン力学に代表される古典論では説明が困難であった巨視的な現象についても記述することができる。たとえば量子統計力学はそのような応用例の一つである。従って、生物や宇宙のようなあらゆる自然現象もその記述の対象となり得る。 代表的な量子力学の理論として、エルヴィン・シュレーディンガーによって創始された、シュレーディンガー方程式を基礎に置く波動力学と、ヴェルナー・ハイゼンベルク、マックス・ボルン、パスクアル・ヨルダンらによって構成された、ハイゼンベルクの運動方程式を基礎に置く行列力学がある。ただしこの二つは数学的に等価である。 基礎科学として重要で、現代の様々な科学や技術に必須な分野である。 たとえば科学分野について、太陽表面の黒点が磁石になっている現象は、量子力学によって初めて解明された。 技術分野について、半導体を利用する電子機器の設計など、微細な領域に関するテクノロジーのほとんどは量子力学を基礎として成り立っている。そのため量子力学の適用範囲の広さと現代生活への影響の大きさは非常に大きなものとなっている。一例として、パソコンや携帯電話、レーザーの発振器などは量子力学の応用で開発されている。工学において、電子工学や超伝導は量子力学を基礎として展開している。.

新しい!!: 行列と量子力学 · 続きを見る »

量子力学の数学的基礎

量子力学の数学的基礎(りょうしりきがくのすうがくてききそ、die Mathematische Grundlagen der Quantenmechanik)は、ジョン・フォン・ノイマン(ら)によってなされた、量子力学で扱う物理量や状態といった概念の基礎付け(形式化)の仕事、およびそれについて1932年に刊行した論文および書籍のタイトルである。 これにより、ハイゼンベルク-ボルン-ジョルダンによる行列力学とシュレディンガーによる波動力学を抽象ヒルベルト空間のクラスに帰属する理論として統一が行なわれたただし、その統一にあたってはディラックによる擬関数(現:超関数)であるδ関数を数学的フィクションとして認容した上で行なわれた。。.

新しい!!: 行列と量子力学の数学的基礎 · 続きを見る »

自己準同型環

抽象代数学において、アーベル群 X の自己準同型環(endomorphism ring) は、X からそれ自身への準同型写像( 上の自己準同型)すべてからなる集合である。加法は(後述)で定義され、積は写像の合成で定義される。 自己準同型環の元となる「準同型」が何を指すものかは文脈によって異なり、これは考えている対象の圏に依存する。その結果、自己準同型環は対象のいくつかの内在的な性質を受け継いでいる。自己準同型環はしばしばある環上の多元環(代数)であり、自己準同型多元環(endomorphism algebra; 自己準同型代数)とも呼ばれる。.

新しい!!: 行列と自己準同型環 · 続きを見る »

自由加群

数学において、自由加群(じゆうかぐん、free module) とは、加群の圏におけるである。集合 が与えられたとき、 上の自由加群とは を基底 にもつ自由加群である。たとえば、すべてのベクトル空間は自由であり、集合上の自由ベクトル空間は集合上の自由加群の特別な場合である。任意の加群はある自由加群の準同型像である。.

新しい!!: 行列と自由加群 · 続きを見る »

配置集合

数学の集合論における配置集合(はいちしゅうごう、Belegungsmenge)あるいは集合の冪(べき、exponentiation ensembliste)は、二つの集合 に対する演算で、 から への写像全体の集合を割り当てるものである。この集合は や などと書かれる。これはまた、 で添字付けられた の元の族の全体 F^E.

新しい!!: 行列と配置集合 · 続きを見る »

零行列

数学において、零行列(ぜろぎょうれつ、れいぎょうれつ、zero matrix, null matrix)とは、その成分(要素)が全て 0 の行列。O あるいは 0 と記述されることが多い。 \end また、下付き添字によって行列の型を明記することもある。 O_.

新しい!!: 行列と零行列 · 続きを見る »

集合

数学における集合 (しゅうごう、set, ensemble, Menge) とは、大雑把に言えばいくつかの「もの」からなる「集まり」である。集合を構成する個々の「もの」のことを元 (げん、; 要素) という。 集合は、集合論のみならず現代数学全体における最も基本的な概念の一つであり、現代数学のほとんどが集合と写像の言葉で書かれていると言ってよい。 慣例的に、ある種の集合が系 (けい、) や族 (ぞく、) などと呼ばれることもある。実際には、これらの呼び名に本質的な違いはないが細かなニュアンスの違いを含むと考えられている。たとえば、方程式系(「相互に連立する」方程式の集合)、集合族(「一定の規則に基づく」集合の集合)、加法族(「加法的な性質を持つ」集合族)など。.

新しい!!: 行列と集合 · 続きを見る »

連続写像

位相空間論において函数や写像が連続(れんぞく、continuous)であるというのは、ある特定の意味で位相空間の間の位相的構造を保つある種の準同型となっていることを意味し、それ自体が位相空間論における興味の対象ともなる。数学の他の領域における各種の連続性の定義も、位相空間論における連続性の定義から導出することができる。連続性は、空間の位相が同相(位相同型)であることの基礎となる概念であり、特に全単射な連続写像が同相写像であるための必要十分条件は、その逆写像もまた連続となることである。 連続でない写像あるいは函数は、不連続であると言う。 連続性と近しい関係にある概念として、一様連続性、同程度連続性、作用素の有界性などがある。 位相空間の間の写像の連続性の概念は、それが距離空間の間の連続函数の場合のような明確な「距離」の概念を一般には持たない分、より抽象的である。位相空間というのは、集合 とその上の位相(あるいは開集合系)と呼ばれる の部分集合族で(距離空間における開球体全体の成す族の持つ性質を一般化するように)合併と交叉に関する特定の条件を満足するものを組にしたもので、位相空間においても与えられた点の近傍について考えることができる。位相に属する各集合は の(その位相に関する)開部分集合と呼ばれる。.

新しい!!: 行列と連続写像 · 続きを見る »

LU分解

数学における行列のLU分解(エルユーぶんかい)とは、正方行列 A を下三角行列 L と上三角行列 U の積に分解すること。すなわち A.

新しい!!: 行列とLU分解 · 続きを見る »

MATLAB

MATLAB(マトラボ)は、アメリカ合衆国のMathWorks社が開発している数値解析ソフトウェアであり、その中で使うプログラミング言語の名称でもある。MATLABは、行列計算、関数とデータの可視化、アルゴリズム開発、グラフィカルインターフェイスや、他言語(C/C++/Java/Python)とのインターフェイスの機能を有している。MATLABは、主に、数値計算を扱う事ができるが、追加のオプションを使うことで、数式処理の能力を得ることができる。2004年で、MATLABは産業界、教育界において100万人ユーザーを達成しており、工学、理学、経済学など幅広い業種で利用されている。.

新しい!!: 行列とMATLAB · 続きを見る »

QR分解

QR分解(キューアールぶんかい、QR decomposition, QR factorization)とは、m × n 実行列 Aを、 m 次直交行列 Q と m × n 上三角行列 R との積への分解により表すことまたはそう表した表現をいう。このような分解は常に存在する。 QR分解は線型最小二乗問題を解くために使用される。また、固有値問題の解法の1つである、QR法の基礎となっている。 QR分解を計算する手法として、ギブンス回転、ハウスホルダー変換、グラム・シュミット分解などがある。.

新しい!!: 行列とQR分解 · 続きを見る »

R言語

R言語(あーるげんご)はオープンソース・フリーソフトウェアの統計解析向けのプログラミング言語及びその開発実行環境である。 R言語はニュージーランドのオークランド大学のRoss IhakaとRobert Clifford Gentlemanにより作られた。現在ではR Development Core Team によりメンテナンスと拡張がなされている。 R言語のソースコードは主にC言語、FORTRAN、そしてRによって開発された。 なお、R言語の仕様を実装した処理系の呼称名はプロジェクトを支援するフリーソフトウェア財団によれば『GNU R』である が、他の実装形態が存在しないために日本語での慣用的呼称に倣って、当記事では、仕様・実装を纏めて適宜にR言語や単にR等と呼ぶ。.

新しい!!: 行列とR言語 · 続きを見る »

S&P グローバル

S&P グローバル(S&P Global Inc.)は、アメリカ合衆国・ニューヨーク市に本拠を置く金融サービス企業。S&P グローバル・レーティングやS&P ダウ・ジョーンズ・インデックスなど、4つの事業体の親会社にあたる。旧社名はマグロウヒルファイナンシャル。ニューヨーク証券取引所上場企業()。.

新しい!!: 行列とS&P グローバル · 続きを見る »

核 (代数学)

数学において、準同型の核(かく、kernel)とは、その準同型の単射からのずれの度合いを測る道具である。代数系における準同型の核が "自明" (trivial) であることとその準同型が単射であることとが同値となる。.

新しい!!: 行列と核 (代数学) · 続きを見る »

正則表現 (数学)

数学、特に群の表現論において、群 G の正則表現(せいそくひょうげん、regular representation)とは、G の G 自身への移動による群作用によって与えられる線型表現を言う。 左移動により与えられる左正則表現 (left regular representation) λ と右移動の逆により与えられる右正則表現 (right regular representation) ρ がある。.

新しい!!: 行列と正則表現 (数学) · 続きを見る »

正則行列

正則行列(せいそくぎょうれつ、regular matrix)、非特異行列(ひとくいぎょうれつ、non-singular matrix)あるいは可逆行列(かぎゃくぎょうれつ、invertible matrix)とは行列の通常の積に関する逆元を持つ正方行列のこと、言い換えると逆行列が存在する行列のことである。 ある体上の同じサイズの正則行列の全体は一般線型群と呼ばれる群を成す。多項式の根として定められる部分群はあるいは行列群と呼ばれる代数群の一種で、その表現論が代数的整数論などに広い応用を持つ幾何学的対象である。.

新しい!!: 行列と正則行列 · 続きを見る »

正規行列

数学の特に線型代数学において正規行列(せいきぎょうれつ、normal matrix)は、複素数に成分をとる正方行列であって、自身のエルミート共軛と可換となるような行列を言う。式で書けば、複素正方行列 が正規であるとは、 が成り立つことを言う。ただし、 の共軛転置を で表した。 成分が実数の行列 に対しては が成り立つから、それが正規であるのは が成り立つときである。 正規性に対しては、対角化可能性を調べるのが便利である。すなわち、行列が正規であるための必要十分条件は、それが対角行列とユニタリ行列に関して相似となることである。即ち、 を満たす任意の行列 は対角化可能である。 正規行列の概念は無限次元ヒルベルト空間上の正規作用素の概念、および ''C''∗-環における正規元の概念に拡張することができる。行列の場合には正規性は可換性を保つが、非可換な状況に置いても拡張は可能である。これにより、正規作用素や C∗-環の正規元は、より解析学と馴染む。.

新しい!!: 行列と正規行列 · 続きを見る »

正方行列

正方行列(せいほうぎょうれつ、square matrix)とは、行要素の数と列要素の数が一致する行列である。サイズが n × n つまり、n 行 n 列であるとき、n 次正方行列という。 \end.

新しい!!: 行列と正方行列 · 続きを見る »

指数関数

実解析における指数関数(しすうかんすう、exponential function)は、冪における指数 を変数として、その定義域を主に実数の全体へ拡張して定義される初等超越関数の一種である。対数関数の逆関数であるため、逆対数 と呼ばれることもある。自然科学において、指数関数は量の増加度に関する数学的な記述を与えるものとして用いられる(や指数関数的減衰の項を参照)。 一般に、 かつ なる定数 に関して、(主に実数の上を亙る)変数 を へ送る関数は、「a を'''底'''とする指数函数」と呼ばれる。「指数関数」との名称は、与えられた底に関して冪指数を変数とする関数であることを示唆するものであり、冪指数を固定して底を独立変数とする冪関数とは対照的である。 しばしば、より狭義の関数を意図して単に「指数関数」と呼ぶこともある。そのような標準的な (the) 指数関数(あるいはより明示的に「自然指数関数」)はネイピア数 を底とする関数 である。これを のようにも書く。この関数は、導関数が自分自身に一致するなど、他の指数関数と比べて著しい性質を持つ。底 を他の底 に取り換えるには自然対数 を用いて、等式 を適用すればよいから、以下本項では主に自然指数関数について記述し、多くの場合「指数関数」は自然指数関数の意味で用いる。.

新しい!!: 行列と指数関数 · 続きを見る »

有理数

有理数(ゆうりすう、rational number) とは、二つの整数 a, b (ただし b は 0 でない)をもちいて a/b という分数で表せる数のことをいう。b.

新しい!!: 行列と有理数 · 続きを見る »

有限体

有限体(ゆうげんたい、英語:finite field)とは、代数学において、有限個の元からなる体、すなわち四則演算が定義され閉じている有限集合のことである。主に計算機関連の分野においては、発見者であるエヴァリスト・ガロアにちなんでガロア体あるいはガロア域(ガロアいき、Galois field)などとも呼ぶ。 有限体においては、体の定義における乗法の可換性についての条件の有無は問題にはならない。実際、ウェダーバーンの小定理と呼ばれる以下の定理 が成り立つことが知られている。別な言い方をすれば、有限体において乗法の可換性は、体の有限性から導かれるということである。.

新しい!!: 行列と有限体 · 続きを見る »

有限群

数学および抽象代数学において、有限群(ゆうげんぐん、finite group)とは台となっている集合Gが有限個の元しか持たないような群のことである。20世紀の間数学者は、特に有限群のや、可解群や冪零群 の理論などといった、有限群の理論のさまざまな面を深く研究していた。全ての有限群の構造の完全な決定は余りに遠大な目標だった: あり得る構造の数はすぐに圧倒的に大きくなった。しかし、単純群の完全な分類という目標は達成された。つまり任意の有限群の「組み立て部品」は現在では完全に知られている(任意の有限群は組成列を持つ)。 20世紀の後半には、シュヴァレーやといった数学者によってや関連する群の有限類似の理解が深まった。それらの群の族の一つには有限体上の一般線型群がある。 有限群は、ある数学的・物理的対象の構造を保つ変換が有限個しかない場合に、その対象の対称性を考えるときに出て来る群である。他方で、""を扱っているようにもみなせるリー群の理論は、関連するワイル群の影響を強く受ける。有限次ユークリッド空間に作用する鏡映によって生成される有限群も存在する。それゆえ、有限群の特性は、理論物理学や化学などの分野で役目を持つ。.

新しい!!: 行列と有限群 · 続きを見る »

有限要素法

有限要素法(ゆうげんようそほう、Finite Element Method, FEM)は数値解析手法の一つ。解析的に解くことが難しい微分方程式の近似解を数値的に得る方法の一つである。方程式が定義された領域を小領域(要素)に分割し、各小領域における方程式を比較的単純で共通な補間関数で近似する。構造力学分野で発達し、他の分野でも広く使われている手法。その背景となる理論は、関数解析と結びついて、数学的に整然としている。.

新しい!!: 行列と有限要素法 · 続きを見る »

斜体 (数学)

斜体(しゃたい、skew field; 歪体, Schiefkörper, corps, corps gauche)は加減乗除が可能な代数系である。除法の可能な環であるという意味で可除環(かじょかん、, )ともいう。係数環を持ち、多元環の構造を持つことを強調する場合は、特に多元体(たげんたい、,; 可除多元環)と呼称することも多いいかなる斜体も、その中心を係数体として多元環と見ることができるので、この区別は文脈上で立場を明確にする必要のある場合を除いてはさほど重要ではない。非可換な積を持つ体を非可換体(ひかかんたい、, )という。.

新しい!!: 行列と斜体 (数学) · 続きを見る »

族 (数学)

数学における族(ぞく、family)は、添字付けされた元(要素)の(一般には非可算無限個の)集まりで、対、n-組、列などの概念の一般化である。系(けい、collection)と呼ぶこともある。元がどのような対象であるかによって、点族、集合族(集合系)、関数族(関数系)などと呼ばれる。.

新しい!!: 行列と族 (数学) · 続きを見る »

数学

数学(すうがく、μαθηματικά, mathematica, math)は、量(数)、構造、空間、変化について研究する学問である。数学の範囲と定義については、数学者や哲学者の間で様々な見解がある。.

新しい!!: 行列と数学 · 続きを見る »

数式処理システム

数式処理システム(すうしきしょりシステム、Computer algebra system、CAS,Formula Manipulation System,広義にはSymbolic Computation System)は、コンピュータを用いて数式を記号的に処理するソフトウェアである。コンピュータによる通常の数値計算処理では実数を有限精度の数値(浮動小数点数)で近似し、数値と演算に対して丸め誤差を許容して計算を行なうので数学的に厳密な結果を得ることが困難もしくは不可能であるのに対して、数式処理システムでは主に抽象度の高い記号列を取り扱い,可能な範囲で代数的な規則に基づきながら厳密な記号処理を行う。ただし最近では応用性と実用性の観点から、数値とその演算に対して浮動小数点数も扱える(数値・数式の)融合計算システムとでも呼べるような数式処理システムも増えて来た。 また,数式処理システムに向けた計算アルゴリズムを研究する分野も数式処理(あるいは computer algebra の直訳として計算機代数)と呼ぶ。.

新しい!!: 行列と数式処理システム · 続きを見る »

数値解析

バビロニアの粘土板 YBC 7289 (紀元前1800-1600年頃) 2の平方根の近似値は60進法で4桁、10進法では約6桁に相当する。1 + 24/60 + 51/602 + 10/603.

新しい!!: 行列と数値解析 · 続きを見る »

数論

数論(すうろん、number theory)とは数、特に整数およびそれから派生する数の体系(代数体、局所体など)の性質について研究する数学の一分野である。整数論とも言う。ふつうは代数学の一分野とみなされることが多い。おおむね次の四つに分けられる。;初等整数論;代数的整数論;解析的整数論;数論幾何学 フェルマーの最終定理のように、数論のいくつかの問題については、他の数学の分野に比して問題そのものを理解するのは簡単である。しかし、使われる手法は多岐に渡り、また非常に高度であることが多い。 ガウスは次のような言葉を残している。.

新しい!!: 行列と数論 · 続きを見る »

括弧

括弧(かっこ)は、約物の一つ。言語の記述の中で、その一部を一対の括弧で囲むことにより、その中と外とを区切る役割を果たす。または目立たせる。 括弧は対で使用され、先に記述される括弧を括弧開き(かっこひらき)または始め括弧(はじめかっこ)、後に記述される括弧を括弧閉じ(かっことじ)または終わり括弧(おわりかっこ)と呼ぶ。横書き表記の記述においては、相対的に左括弧(ひだりかっこ)・右括弧(みぎかっこ)とも呼ぶ。また、対となる括弧がそれぞれ縦並びの括弧を縦括弧(たてかっこ)、横並びの括弧を横括弧(よこかっこ)と呼ぶ。仮名とは異なり、縦書きか横書きかで形が変わる。この項目では横書き表記ですべて取り扱われているが、縦書きの場合は右90度回転されたものになる。 なお、数学においても括弧は頻繁に用いられ、特殊な意味を持つ。.

新しい!!: 行列と括弧 · 続きを見る »

ここにリダイレクトされます:

マトリックス (数学)実行列列ベクトル行ベクトル行列 (数学)行列論複素行列

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »