ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

ボース=アインシュタイン凝縮

索引 ボース=アインシュタイン凝縮

ボース=アインシュタイン凝縮(ボース=アインシュタインぎょうしゅく、Bose-Einstein condensation英語では、凝縮する過程を condensation、凝縮した状態を condensate と言い分ける場合もある。)、または略してBECとは、ある転移温度以下で巨視的な数のボース粒子が最低エネルギー状態に落ち込む相転移現象 上田 (1998) E.A. Cornel ''et al.'' (1999) F. Dalfavo ''et al.'' (1999) W. Kettelrle ''et al.'' (1999)。量子力学的なボース粒子の満たす統計性であるボース=アインシュタイン統計の性質から導かれる。BECの存在はアルベルト・アインシュタインの1925年の論文の中で予言されたA. Pais (2005), chapter.23 。粒子間の相互作用による他の相転移現象とは異なり、純粋に量子統計性から引き起こされる相転移であり、アインシュタインは「引力なしの凝縮」と呼んだ。粒子間相互作用が無視できる理想ボース気体に近い中性原子気体のBECは、アインシュタインの予言から70年経った1995年に実現された。1995年にコロラド大学の研究グループはルビジウム87(87Rb)、マサチューセッツ工科大学(MIT)の研究グループはナトリウム23(23Na)の希薄な中性アルカリ原子気体でのBECを実現させた。中性アルカリ原子気体でBECが起こる数マイクロKから数百ナノKという極低温状態の実現には、レーザー冷却などの冷却技術やなどの捕獲技術の確立が不可欠であった (free access) (free access)。2001年のノーベル物理学賞は、これらのBEC実現の実験的成果に対し、授与された。.

109 関係: 励起子原子半導体半整数同位体同種粒子場の古典論対称性の破れ中性子中性子星幾何平均低温物理学位置空間と運動量空間位相位相空間 (物理学)化学平衡化学ポテンシャルナノナトリウムの同位体ノーベル物理学賞マイクロマクスウェル分布マサチューセッツ工科大学ポール・エーレンフェストポテンシャルリチウムの同位体リーマンゼータ関数ルビジウムの同位体レーザー冷却ヴォルフガング・ケターレボルツマン定数ボース分布関数ボース粒子ボース気体ヘリウムヘリウムの同位体プランクの法則プランク定数ピョートル・カピッツァピコフリッツ・ロンドンフォノンフガシティーダニエル・クレップナーアムステルダム大学アルベルト・アインシュタインイッテルビウムの同位体エリック・コーネルオーダー (物理学)カリウムの同位体...カール・ワイマンクラスター (物質科学)クロムの同位体ケルビンゲージ理論コロラド大学ボルダー校コヒーレンススピン偏極スピン角運動量セシウムの同位体サティエンドラ・ボース冷却原子気体円周群光子国際宇宙ステーションBCS理論理想気体秩序変数第1族元素箱の中の気体粘度粒子統計糖蜜結合定数結合エネルギー絶対零度熱力学的平衡熱的ド・ブロイ波長物性物理学相 (物質)相互作用相転移複合粒子調和振動子高周波超伝導超流動黒体放射量子状態自然放出酸化銅(I)電子逆温度陽子核子比熱容量水素の同位体波動関数波数ベクトル液体ヘリウム温度の比較準安定状態放射圧散乱振幅数密度整数1995年2005年2状態系 インデックスを展開 (59 もっと) »

励起子

励起子(れいきし、exciton)とは、半導体又は絶縁体中で電子と正孔の対がクーロン力によって束縛状態となったもの。エキシトンとも呼ばれる。.

新しい!!: ボース=アインシュタイン凝縮と励起子 · 続きを見る »

原子

原子(げんし、άτομο、atom)という言葉には以下の3つの異なった意味がある。.

新しい!!: ボース=アインシュタイン凝縮と原子 · 続きを見る »

半導体

半導体(はんどうたい、semiconductor)とは、電気伝導性の良い金属などの導体(良導体)と電気抵抗率の大きい絶縁体の中間的な抵抗率をもつ物質を言う(抵抗率だけで半導体を論じるとそれは抵抗器と同じ特性しか持ち合わせない)。代表的なものとしては元素半導体のケイ素(Si)などがある。 電子工学で使用されるICのような半導体素子はこの半導体の性質を利用している。 良導体(通常の金属)、半導体、絶縁体におけるバンドギャップ(禁制帯幅)の模式図。ある種の半導体では比較的容易に電子が伝導帯へと遷移することで電気伝導性を持つ伝導電子が生じる。金属ではエネルギーバンド内に空き準位があり、価電子がすぐ上の空き準位に移って伝導電子となるため、常に電気伝導性を示す。.

新しい!!: ボース=アインシュタイン凝縮と半導体 · 続きを見る »

半整数

半整数(はんせいすう、half-integer)とは有理数で、 を整数としたとき の形で表される数のことである。十進法の小数で表すと、小数点以下一桁の有限小数で小数第一位が 5 である。 例としては 3.5、-\frac、4\frac などがある。 ごくまれに半奇整数 と呼ばれることもある。.

新しい!!: ボース=アインシュタイン凝縮と半整数 · 続きを見る »

同位体

同位体(どういたい、isotope;アイソトープ)とは、同一原子番号を持つものの中性子数(質量数 A - 原子番号 Z)が異なる核種の関係をいう。この場合、同位元素とも呼ばれる。歴史的な事情により核種の概念そのものとして用いられる場合も多い。 同位体は、放射能を持つ放射性同位体 (radioisotope) とそうではない安定同位体 (stable isotope) の2種類に分類される。.

新しい!!: ボース=アインシュタイン凝縮と同位体 · 続きを見る »

同種粒子

同種粒子(Identical particles)は原理的に区別することができない粒子のことである。同種粒子に含まれるものとして、電子などの素粒子や、原子や分子などの複合粒子がある。 量子論では複数の同種粒子を含む系の状態ベクトルや物理量(オブザーバブル)は一定の対称性を持つものに限られる。その対称性は、基本変数を粒子の「位置と運動量」にとった量子論(量子力学)では少し不自然にも見える形で現れる(波動関数の対称性、反対称性など)。この不自然さは、個々の粒子に別々の「位置と運動量」を割り当てるのは粒子が区別できることが大前提であるのに、区別ができない粒子にそれをやってしまったことによる。そこで基本変数を「場」とその共役運動量にとれば、同種粒子の区別がつかないことや、状態ベクトルや物理量の対称性なども自動的に理論に組み込まれ、すっきりしたものになる。 同種粒子はボゾンとフェルミオンに大別できる。ボゾンは量子状態を共有でき、フェルミオンはパウリの排他原理のため量子状態を共有できない。ボゾンの例として、フォトン、グルーオン、フォノン、4He原子がある。フェルミオンの例として、電子、ニュートリノ、クォーク、プロトン、中性子、3He原子がある。 粒子が区別できないという事実は統計力学に重要な影響を与える。統計力学の計算では確率が大きく関係しており、確率は考えている対象が区別できるかどうかで決定的な違いが現れる。その結果、同種粒子は区別できる粒子とは大きく異なる統計的振る舞いを示す。その例がギブズのパラドックスである。.

新しい!!: ボース=アインシュタイン凝縮と同種粒子 · 続きを見る »

場の古典論

場の古典論、もしくは古典場の理論(classical field theory)は、(物理的な)場がどのように物質と相互作用するかについて研究する理論物理学の領域である。古典的という単語は、量子力学と協調する場の量子論(単に、場の理論とも言われる)と対比して使われる。 物理的な場は各々の空間と時間の点に物理量を対応させたとして考えることができる。例えば、天気図を考えると、ある国の一日を通じての風速は、空間の各々の点にベクトルを対応させることにより記述できる。各々のベクトルは、その点での大気の運動の方向を表現する。日が進むにつれて、ベクトルの指す方向はこの方向に応じて変化する。数学的な観点からは、古典場はファイバーバンドル((covariant classical field theory))の切断として記述される。古典場理論という用語は、電磁気と重力という自然界の基本的力のうちの 2つを記述する物理理論に共通に使われる。 物理的な場の記述は、相対論の発見の前に行われており、相対論に照らして修正された。従って、古典場の理論は通常、非相対論的と相対論的なカテゴリ分けがなされる。.

新しい!!: ボース=アインシュタイン凝縮と場の古典論 · 続きを見る »

対称性の破れ

対称性の破れ(たいしょうせいのやぶれ, Symmetry breaking, Symmetry violation)とは、場の量子論において、ある高い対称性を持ちうる理論が、より低い対称性を持つ状態になっていることを意味する。.

新しい!!: ボース=アインシュタイン凝縮と対称性の破れ · 続きを見る »

中性子

中性子(ちゅうせいし、neutron)とは、原子核を構成する粒子のうち、無電荷の粒子の事で、バリオンの1種である。原子核反応式などにおいては記号 n で表される。質量数は原子質量単位で約 、平均寿命は約15分でβ崩壊を起こし陽子となる。原子核は、陽子と中性子と言う2種類の粒子によって構成されている為、この2つを総称して核子と呼ぶ陽子1個で出来ている 1H と陽子3個で出来ている 3Li の2つを例外として、2015年現在の時点で発見報告のある原子の内、最も重い 294Og までの全ての"既知の"原子核は陽子と中性子の2種類の核子から構成されている。。.

新しい!!: ボース=アインシュタイン凝縮と中性子 · 続きを見る »

中性子星

'''中性子星''' 右上方向にジェットを放出するほ座のベラ・パルサー。中性子星自体は内部に存在し、ガスに遮蔽されて見えない 中性子星(ちゅうせいしせい、)とは、質量の大きな恒星が進化した最晩年の天体の一種である。.

新しい!!: ボース=アインシュタイン凝縮と中性子星 · 続きを見る »

幾何平均

幾何平均(きかへいきん、geometric mean)または相乗平均は数学における平均の一種で、数値群の代表値である。多くの人が平均と聞いて思い浮かべる算術平均と似ているが、それぞれの数値を足すのではなく掛け、その積の冪根(数値がn個ならn乗根)をとることで得られる。.

新しい!!: ボース=アインシュタイン凝縮と幾何平均 · 続きを見る »

低温物理学

低温物理学(ていおんぶつりがく)は、絶対零度に非常に近い超低温領域における物理学の1分野である。この様な超低温では、熱的な擾乱が小さくなるために、凝縮系内の微小な相互作用や巨視的な量子効果による特異な現象が現れてくる。.

新しい!!: ボース=アインシュタイン凝縮と低温物理学 · 続きを見る »

位置空間と運動量空間

物理学や幾何学では、密接に関連した2つのベクトル空間がある。これは通常は3次元であるが、一般的にはどんな有限次元の空間でもよい。 位置空間(いちくうかん、position space)、あるいは実空間(じつくうかん、real space)ないし座標空間(ざひょうくうかん、coordinate space)などとも呼ばれる、は空間の全ての位置ベクトル の集合で、長さの次元を持つ。位置ベクトルは空間中の場所を定義する。ある位置ベクトルは位置空間上の一つの点に対応づけられる。 点粒子の運動は時間を変数として位置ベクトルを与える関数によって表され、関数によって与えられる位置ベクトル全体の集合は、粒子の描く軌道に対応づけられる。 運動量空間(うんどうりょうくうかん、momentum space)は、系が持ちうる全ての運動量ベクトル の集合である。 粒子の運動量ベクトルは、粒子の運動に対応し、の次元を持つ。 数学的には、位置と運動量の双対性はポントリャーギン双対性の1つの例である。特に位置空間で関数 が与えられたとき、そのフーリエ変換は運動量空間における関数 となる。逆に、運動量空間の関数を逆変換したものは位置空間の関数となる。 これらの量や考えは古典物理学と量子物理学を含むすべての(微視的)理論に通底するものである。系は構成粒子の位置または運動量を用いて記述でき、どちらの形式でも考えている系について等価な情報を与える。 位置と運動量の他に、波動に対して定義すると有用な量がある。波数ベクトル (または単に"ベクトル"とも呼ばれる)は長さの逆数の次元を持ち、時間の逆数の次元を持つ角周波数 との類似性を持つ。全ての波数ベクトルの集合を空間という。 通常、位置 は波数 よりも直観的にわかりやすく単純であるが、固体物理学などではその逆のことが言える。 量子力学における位置と運動量の双対性について、基礎的な結果として(ハイゼンベルクの)不確定性原理とが挙げられる。不確定性原理 は、位置と運動量を同時に正確に知ることはできないことを述べている( はそれぞれ位置と運動量の不確定性を表す。 は換算プランク定数である)。ド・ブロイの関係式 は、自由粒子の運動量と波数は互いに比例関係にあることを述べている。 ド・ブロイの関係を念頭に置き、文脈に応じて「運動量」と「波数」という言葉を使い分けることがある。しかしド・ブロイの関係は結晶中において成り立たない。.

新しい!!: ボース=アインシュタイン凝縮と位置空間と運動量空間 · 続きを見る »

位相

位相(いそう、)は、波動などの周期的な現象において、ひとつの周期中の位置を示す無次元量で、通常は角度(単位は「度」または「ラジアン」)で表される。 たとえば、時間領域における正弦波を とすると、(ωt + &alpha) のことを位相と言う。特に t.

新しい!!: ボース=アインシュタイン凝縮と位相 · 続きを見る »

位相空間 (物理学)

物理学における位相空間(いそうくうかん、phase space)とは、力学系の位置と運動量を座標(直交軸)とする空間のことである。数学における位相空間()と区別するために、相空間と呼ぶ流儀もある。 ハミルトン形式においては位置と運動量が力学変数となり、力学変数の関数として表される物理量は位相空間上の関数となる。 1個の質点の運動の状態は、その位置と運動量を指定することで定まる。-次元空間における運動では、位置と運動量がそれぞれ 成分あり、合わせて 成分となる。これらを座標とする 次元の空間が位相空間である。1個の質点の運動の状態は位相空間上の1個の点として表現され、これは状態点と呼ばれる。運動方程式に従って位置と運動量は時間変化し、時間の経過とともに状態点は1本の軌跡を描く。 -次元空間を運動する 個の質点系の運動の状態は 次元位相空間上の 個の状態点の分布として表現され、時間とともにその分布が変化する。 質点系は上記の分布による表現だけではなく、 個の質点の各々の位置と運動量のすべてを座標とする -次元の位相空間を考えることができる。質点系の運動の状態はこの -次元空間上の1個の状態点として表現され、時間の経過とともに1本の軌跡を描く。.

新しい!!: ボース=アインシュタイン凝縮と位相空間 (物理学) · 続きを見る »

化学平衡

化学平衡(かがくへいこう、chemical equilibrium)とは可逆反応において、順方向の反応と逆方向との反応速度が釣り合って反応物と生成物の組成比が巨視的に変化しないことをいう。.

新しい!!: ボース=アインシュタイン凝縮と化学平衡 · 続きを見る »

化学ポテンシャル

化学ポテンシャル(かがくポテンシャル、)は熱力学で用いられる示強性状態量の一つである。 推奨される量記号は、μ(ミュー)である。 化学ポテンシャルはアメリカの化学者ウィラード・ギブズにより導入され、浸透圧や化学反応のようなマクロな物質量の移動が伴う現象で重要な量である。.

新しい!!: ボース=アインシュタイン凝縮と化学ポテンシャル · 続きを見る »

ナノ

ナノ(nano, 記号: n)は国際単位系 (SI) における接頭辞の一つで、以下のように、基礎となる単位の 10−9倍(.

新しい!!: ボース=アインシュタイン凝縮とナノ · 続きを見る »

ナトリウムの同位体

ナトリウムの同位体には13種の同位体が認められている。23Naのみが安定同位体であり、単核種元素かつモノアイソトピック元素であると考えられる。標準原子量は22.98976928(2) u。ナトリウムは2種の放射性宇宙線生成同位体を持つ(22Na, 半減期.

新しい!!: ボース=アインシュタイン凝縮とナトリウムの同位体 · 続きを見る »

ノーベル物理学賞

ノーベル物理学賞(ノーベルぶつりがくしょう、Nobelpriset i fysik)は、ノーベル賞の一部門。アルフレッド・ノーベルの遺言によって創設された6部門のうちの一つ。物理学の分野において重要な発見を行った人物に授与される。 ノーベル物理学賞のメダルは、表面にはアルフレッド・ノーベルの横顔(各賞共通)、裏面には宝箱を持ち雲の中から現れた自然の女神のベールを科学の神が持ち上げて素顔を眺めている姿(化学賞と共通)がデザインされている。.

新しい!!: ボース=アインシュタイン凝縮とノーベル物理学賞 · 続きを見る »

マイクロ

マイクロ(micro, 記号: μ)は国際単位系 (SI) における接頭辞の一つで、基礎となる単位の 10−6倍(.

新しい!!: ボース=アインシュタイン凝縮とマイクロ · 続きを見る »

マクスウェル分布

マクスウェル分布(マクスウェルぶんぷ、)とは、熱力学的平衡状態において、気体分子の速度が従う分布関数である。マクスウェル=ボルツマン分布()と呼ばれることもある。気体分子運動論により導かれたが、より一般化されたボルツマン分布からも導かれる。最初に見いだしたイギリスの物理学者J.C.マクスウェルにちなんで名付けられた。.

新しい!!: ボース=アインシュタイン凝縮とマクスウェル分布 · 続きを見る »

マサチューセッツ工科大学

マサチューセッツ工科大学(英語: Massachusetts Institute of Technology)は、アメリカ合衆国マサチューセッツ州ケンブリッジに本部を置く私立工科大学である。1865年に設置された。通称はMIT(エム・アイ・ティー。「ミット」は誤用で主に日本、欧州の極めて一部で用いられる)。 全米屈指のエリート名門校の1つとされ、ノーベル賞受賞者を多数(2014年までの間に1年以上在籍しMITが公式発表したノーベル賞受賞者は81名で、この数はハーバード大学の公式発表受賞者48名を上回る)輩出している。最も古く権威ある世界大学評価機関の英国Quacquarelli Symonds(QS)による世界大学ランキングでは、2012年以来2017年まで、ハーバード大学及びケンブリッジ大学を抑えて6年連続で世界第一位である。 同じくケンブリッジ市にあるハーバード大学とはライバル校であるが、学生達がそれぞれの学校の授業を卒業単位に組み込める単位互換制度(Cross-registration system)が確立されている。このため、ケンブリッジ市は「世界最高の学びのテーマパーク」とさえも称されている。物理学や生物学などの共同研究組織を立ち上げるなど、ハーバード大学との共同研究も盛んである。 MITはランドグラント大学でもある。1865年から1900年の間に約19万4千ドル(これは2008年時点の生活水準でいうところの380万ドルに相当)のグラントを得、また同時期にマサチューセッツ州から更なる約36万ドル(2008年時点の生活水準で換算して700万ドルに相当)の資金を獲得しているD.

新しい!!: ボース=アインシュタイン凝縮とマサチューセッツ工科大学 · 続きを見る »

ポール・エーレンフェスト

ポール・エーレンフェスト(パウル・エーレンフェスト)(Paul Ehrenfest、1880年1月18日 - 1933年9月25日)はオーストリア出身のオランダの物理学者。数学者。.

新しい!!: ボース=アインシュタイン凝縮とポール・エーレンフェスト · 続きを見る »

ポテンシャル

ポテンシャル(potential)は、潜在力、潜在性を意味する物理用語。 最初にポテンシャル(スカラーポテンシャル)の考え方を導入したのは、ジョゼフ=ルイ・ラグランジュである(1773年)。ラグランジュの段階ではポテンシャルとは言われておらず、これをポテンシャルと呼んだのは、ジョージ・グリーンである(1828年)。カール・フリードリヒ・ガウス、ウィリアム・トムソン、ペーター・グスタフ・ディリクレによってポテンシャル論における三つの基本問題として、ディリクレ問題、ノイマン問題、斜交微分の問題が注目されるようになった。 ポテンシャルエネルギー(位置エネルギー)のことをポテンシャルと呼ぶこともある。.

新しい!!: ボース=アインシュタイン凝縮とポテンシャル · 続きを見る »

リチウムの同位体

リチウム(Li) (標準原子量: 6.941(2) u)には天然に6Liと7Liの2つの同位体がある。7Liの存在比は92.5%である。また、7つの放射性同位体が同定されていて、最も安定な8Liの半減期は838ミリ秒であり、9Liの半減期は178.3ミリ秒である。その他の放射性同位体は8.6ミリ秒以下の半減期を持つ。最も不安定なものは4Liで、陽子放出によって、7.58043×10-23秒の半減期で崩壊する。 7Liは、ビッグバン原子核合成により生じた最初のうちの元素の1つである(6Liも恒星の中にわずかにできた)。リチウムの同位体分別は天然においても、鉱物の生成、代謝、イオン交換等、様々なプロセスにおいて行われる。例えば、リチウムイオンは、粘土中の鉱物の中で、マグネシウムや鉄と置換するが、ここでは6Liがより多く選択される。.

新しい!!: ボース=アインシュタイン凝縮とリチウムの同位体 · 続きを見る »

リーマンゼータ関数

1.

新しい!!: ボース=アインシュタイン凝縮とリーマンゼータ関数 · 続きを見る »

ルビジウムの同位体

ルビジウム(Rb)の同位体は24種類が知られる。天然に存在するルビジウムは天然存在比が72.2%の安定同位体85Rbと27.8%の放射性同位体87Rbの2種類である。放射能の強さは、30日から60日で写真フィルムを感光できるほどである。標準原子量は85.4678(3) uである。 87Rbの半減期は4.88×1010年であり、鉱物中のカリウムの代わりになるため、環境中に広く存在する。ルビジウムは年代測定に盛んに用いられてきた。87Rbは安定な87Srにベータ崩壊する。分画結晶が行われると、ストロンチウムは斜長石の画分に高濃度で現れ、ルビジウムは溶液中に残る。何度も繰り返されるうちにマグマの中のRb/Sr比が高くなり、Rb/Sr比の高い岩石が形成される。Rb/Sr比が10以上と最も高い岩石はペグマタイトである。もし最初のストロンチウム濃度を推定することができれば、Rb/Sr比と87Sr/86Sr比を測定することで岩石の年代を決定することができる。 半減期が1.273分の82Rbは、心臓のポジトロン断層法に用いられる。この同位体は天然には存在しないが、82Srの崩壊により作ることができる。.

新しい!!: ボース=アインシュタイン凝縮とルビジウムの同位体 · 続きを見る »

レーザー冷却

レーザー冷却(レーザーれいきゃく)とは、レーザー光を用いて、気体分子の温度を絶対零度近くまで冷却する方法のこと。おもに、単原子分子、もしくは単原子イオンに用いられる。.

新しい!!: ボース=アインシュタイン凝縮とレーザー冷却 · 続きを見る »

ヴォルフガング・ケターレ

ヴォルフガング・ケターレ(Wolfgang Ketterle、1957年10月21日 - )は、ドイツ生まれでアメリカ合衆国で活躍した物理学者である。2001年「希薄なアルカリ原子ガスでのボース=アインシュタイン凝縮の実現、および凝縮体の性質に関する基礎的研究」により、エリック・コーネルとカール・ワイマンと共にノーベル物理学賞を受賞した。1995年、ワイマンらとは独立にナトリウム原子のボース=アインシュタイン凝縮を実現した。 ハイデルベルクに生まれ、ハイデルベルク大学、ミュンヘン工科大学で学び、マックスプランク量子光学研究所でヘルベルト・ヴァルターらのもとで研究し、1990年マサチューセッツ工科大学(MIT)のディビッド・プリチャードのグループに加わった。1993年MITの助教授、1998年には教授となった。 1995年の気体原子のボース=アインシュタイン凝縮の成功の後、ケターレのグループは1997年に2つのボース=アインシュタイン凝縮した試料間の干渉を観測し、原子レーザーを初めて実現した。2003年には分子のボース=アインシュタイン凝縮を達成し、2005年にはフェルミ凝縮における超流動の実験的証拠を示した。.

新しい!!: ボース=アインシュタイン凝縮とヴォルフガング・ケターレ · 続きを見る »

ボルツマン定数

ボルツマン定数(ボルツマンていすう、Boltzmann constant)は、統計力学において、状態数とエントロピーを関係付ける物理定数である。統計力学の分野において重要な貢献をしたオーストリアの物理学者ルートヴィッヒ・ボルツマンにちなんで名付けられた。通常は記号 が用いられる。特にの頭文字を添えて で表されることもある。 ボルツマンの原理において、エントロピーは定まったエネルギー(及び物質量や体積などの状態量)の下で取りうる状態の数 の対数に比例する。これを と書いたときの比例係数 がボルツマン定数である。従って、ボルツマン定数はエントロピーの次元を持ち、熱力学温度をエネルギーに関係付ける定数として位置付けられる。国際単位系(SI)における単位はジュール毎ケルビン(記号: J K)が用いられる。.

新しい!!: ボース=アインシュタイン凝縮とボルツマン定数 · 続きを見る »

ボース分布関数

ボース分布関数()は、相互作用のないボース粒子の系において、一つのエネルギー準位に入る粒子の数(占有数)を与える理論式である。ボース–アインシュタイン分布関数 とも呼ばれる。 エネルギーが に等しい準位の占有数を与えるボース分布関数は で表される。パラメータ は逆温度で、熱力学温度 と で関係付けられる。 は系の化学ポテンシャルである。 である。 となるのは生成および消滅が起こる光子やフォノンなどの粒子系か、ボース–アインシュタイン凝縮を起こしている粒子系である。 量子数 で指定される準位のエネルギーを とすれば、このエネルギー準位の占有数 の統計的期待値は で与えられる。.

新しい!!: ボース=アインシュタイン凝縮とボース分布関数 · 続きを見る »

ボース粒子

ボース粒子 (ボースりゅうし) とは、スピン角運動量の大きさが\hbarの整数倍の量子力学的粒子である。ボソンまたはボゾン (Boson) とも呼ばれ、その名称はインドの物理学者、サティエンドラ・ボース (Satyendra Nath Bose) に由来する。.

新しい!!: ボース=アインシュタイン凝縮とボース粒子 · 続きを見る »

ボース気体

想ボース気体(Bose gas)とは、古典的な理想気体に類似した量子力学的な相のこと。整数値のスピンをもつボース粒子から構成され、ボース–アインシュタイン統計に従う。ボース粒子の統計力学は、サティエンドラ・ボースが光子において開拓した。アルベルト・アインシュタインは質量を持つ粒子に対してボース統計を拡張するとともに、ボース粒子の理想気体が十分に低温で凝縮し、古典的な理想気体とは挙動が異なることを示した。この凝縮はボース=アインシュタイン凝縮と呼ばれる。.

新しい!!: ボース=アインシュタイン凝縮とボース気体 · 続きを見る »

ヘリウム

ヘリウム (新ラテン語: helium, helium )は、原子番号 2、原子量 4.00260、元素記号 He の元素である。 無色、無臭、無味、無毒(酸欠を除く)で最も軽い希ガス元素である。すべての元素の中で最も沸点が低く、加圧下でしか固体にならない。ヘリウムは不活性の単原子ガスとして存在する。また、存在量は水素に次いで宇宙で2番目に多い。ヘリウムは地球の大気の 0.0005 % を占め、鉱物やミネラルウォーターの中にも溶け込んでいる。天然ガスと共に豊富に産出し、気球や小型飛行船のとして用いられたり、液体ヘリウムを超伝導用の低温素材としたり、大深度へ潜る際の呼吸ガスとして用いられている。.

新しい!!: ボース=アインシュタイン凝縮とヘリウム · 続きを見る »

ヘリウムの同位体

ヘリウムの同位体(ヘリウムのどういたい)は8種類が知られているが、3Heと4Heの2種類のみが安定である。地球の大気中には、HeとHeは1対100万の割合で存在するEmsley, John.

新しい!!: ボース=アインシュタイン凝縮とヘリウムの同位体 · 続きを見る »

プランクの法則

プランクの法則(プランクのほうそく、Planck's law)とは物理学における黒体から輻射(放射)される電磁波の分光放射輝度、もしくはエネルギー密度の波長分布に関する公式。プランクの公式とも呼ばれる。ある温度 における黒体からの電磁輻射の分光放射輝度を全波長領域において正しく説明することができる。1900年、ドイツの物理学者マックス・プランクによって導かれた。プランクはこの法則の導出を考える中で、輻射場の振動子のエネルギーが、あるエネルギー素量(現在ではエネルギー量子と呼ばれている) の整数倍になっていると仮定した。このエネルギーの量子仮説(量子化)はその後の量子力学の幕開けに大きな影響を与えている。.

新しい!!: ボース=アインシュタイン凝縮とプランクの法則 · 続きを見る »

プランク定数

プランク定数(プランクていすう、プランクじょうすう、)は、光子のもつエネルギーと振動数の比例関係をあらわす比例定数のことで、量子論を特徴付ける物理定数である。量子力学の創始者の一人であるマックス・プランクにちなんで命名された。作用の次元を持ち、作用量子とも呼ばれている。SIにおける単位はジュール秒(記号: J s)である。.

新しい!!: ボース=アインシュタイン凝縮とプランク定数 · 続きを見る »

ピョートル・カピッツァ

ピョートル・カピッツァ(Pyotr Leonidovich Kapitsa、ロシア語表記:Пётр Леонидович Капица、1894年6月26日(ユリウス暦)/7月9日(グレゴリオ暦) – 1984年4月8日) はロシアの物理学者である。1978年に低温物理学における基礎的発明および諸発見によりノーベル物理学賞を受賞した。.

新しい!!: ボース=アインシュタイン凝縮とピョートル・カピッツァ · 続きを見る »

ピコ

ピコ(pico, 記号:p)は国際単位系 (SI) における接頭辞の一つで、以下のように、基礎となる単位の 10−12倍(.

新しい!!: ボース=アインシュタイン凝縮とピコ · 続きを見る »

フリッツ・ロンドン

フリッツ・ロンドン フリッツ・ロンドン(Fritz Wolfgang London, 1900年3月7日 - 1954年5月30日)はドイツ生まれの物理学者である。後にアメリカ合衆国に帰化した。非分極分子間に働く分子間力、ロンドン力に名前を残している。弟に同じ物理学者のハインツ・ロンドンがいる。.

新しい!!: ボース=アインシュタイン凝縮とフリッツ・ロンドン · 続きを見る »

フォノン

フォノン(phonon)、音子、音響量子、音量子は、振動(主に結晶中での格子振動)を量子化した粒子(準粒子、素励起)である。 振幅が大きくなる、つまり振動が激しくなることはフォノンの数が増えることで表される。 フォノンを持つ液体としては、超流動を示すヘリウム4がある。 原子核表面の核子の振動を量子化したものもフォノンと言う。.

新しい!!: ボース=アインシュタイン凝縮とフォノン · 続きを見る »

フガシティー

フガシティ(fugacity)または逃散能、散逸能とは、物理化学の分野において、圧力の高い実在気体の化学平衡を扱うときにも、理想気体の化学ポテンシャルの形式が成り立つようにする意図で導入された概念である。 この概念はもとはウィラード・ギブズが という考えを熱力学的平衡に用いたことに由来し、ギルバート・ルイスが導入した。.

新しい!!: ボース=アインシュタイン凝縮とフガシティー · 続きを見る »

ダニエル・クレップナー

ダニエル・クレップナー(Daniel Kleppner、1932年12月16日 - )は、アメリカ合衆国の物理学者、マサチューセッツ工科大学名誉教授。原子物理学を専門とする。ニューヨーク市生まれ。 Robert J. Kolenkowとともに、人気のある力学の入門書を執筆した。クレップナーは1953年にウィリアムズ大学、1955年にケンブリッジ大学で学士号をとり、ノーマン・ラムゼーの指導の下、1959年にハーバード大学で博士号を取得した。.

新しい!!: ボース=アインシュタイン凝縮とダニエル・クレップナー · 続きを見る »

アムステルダム大学

アムステルダム大学(オランダ語:Universiteit van Amsterdam)はオランダのアムステルダムにある国立の総合大学。年間予算は約6億ユーロ。UvAと略される。 オランダの教育システム上、学部と大学院の区別はなく、人文科学、社会・行動科学、経済・経営学、法学、自然科学、医学、歯学の7つの学部で構成されている。近年では外国人学生の獲得にも力を入れ、2017年現在、100以上の修士レベルのプログラムが英語で提供されている。学士レベルのプログラムは、ほとんどがオランダ語のみ。30000名以上の学生が学んでいる。これまで総計9万人以上の卒業生を世に送り出した。 ヨーロッパ連合内の動きとして、1999年に合意されたボローニャ協定がアムステルダム大学では2003年に取り入れられ、大学内の構造に変化を与えた。その結果、オランダ古来の学位名は破棄され、イギリスをモデルとした学士・修士号が授与されることとなった。これにより、オランダの学位レベルの国際的比較が容易になった。.

新しい!!: ボース=アインシュタイン凝縮とアムステルダム大学 · 続きを見る »

アルベルト・アインシュタイン

アルベルト・アインシュタイン日本語における表記には、他に「アルト・アインシュタイン」(現代ドイツ語の発音由来)、「アルト・アインタイン」(英語の発音由来)がある。(Albert Einstein アルベルト・アインシュタイン、アルバート・アインシュタイン アルバ(ー)ト・アインスタイン、アルバ(ー)タインスタイン、1879年3月14日 - 1955年4月18日)は、ドイツ生まれの理論物理学者である。 特殊相対性理論および一般相対性理論、相対性宇宙論、ブラウン運動の起源を説明する揺動散逸定理、光量子仮説による光の粒子と波動の二重性、アインシュタインの固体比熱理論、零点エネルギー、半古典型のシュレディンガー方程式、ボーズ=アインシュタイン凝縮などを提唱した業績などにより、世界的に知られている偉人である。 「20世紀最高の物理学者」や「現代物理学の父」等と評され、それまでの物理学の認識を根本から変えるという偉業を成し遂げた。(光量子仮説に基づく光電効果の理論的解明によって)1921年のノーベル物理学賞を受賞。.

新しい!!: ボース=アインシュタイン凝縮とアルベルト・アインシュタイン · 続きを見る »

イッテルビウムの同位体

イッテルビウム(Yb)の同位体のうち天然には7種類の安定同位体168Yb、170Yb、171Yb、172Yb、173Yb、174Yb、176Ybが存在する。27種類の放射性同位体が知られ、最も安定な169Ybの半減期は32.026日、175Ybの半減期は4.185日、166Ybの半減期は56.7時間である。その他は全て2時間以内で、そのほとんどは20分以内である。12種類の核異性体もあり、最も安定なものは169mYb (半減期46秒)である。 原子量は147.9674から180.9562の間に存在し、最も安定な174Ybよりも軽い同位体は電子捕獲によりツリウムに、174Ybよりも重い同位体はベータ崩壊によりルテチウムに崩壊する。異なるイッテルビウムの同位体がそれぞれボース分布関数、フェルミ分布関数に従うことが近年の量子光学で注目を集めている。 標準原子量は173.04(3) uである。.

新しい!!: ボース=アインシュタイン凝縮とイッテルビウムの同位体 · 続きを見る »

エリック・コーネル

リック・コーネル(Eric Allin Cornell, 1961年12月19日 - )はアメリカ合衆国の物理学者。カール・ワイマンとともに1995年に初めてボース=アインシュタイン凝縮を確認した。この実験により、コーネル、ワイマンとヴォルフガング・ケターレに2001年度のノーベル物理学賞が贈られた。.

新しい!!: ボース=アインシュタイン凝縮とエリック・コーネル · 続きを見る »

オーダー (物理学)

ーダー(order)とは物理学や工学などでしばしば用いられる語で、10や100あるいは0.1や0.001など、桁数(10のべき乗)のことを意味する。物理学や工学系の現場では、最初から細かな計算を行うよりもまず、およそどの程度の大きさなのかを予測したり議論することがしばしばあり、その際に使われる。「スケール」ということもある。 単位の違い(長さならmm, m, km、質量ならmg, g, kg)を指すこともあり、この場合はおよそ1000倍の違いがあることを「オーダーが違う」と表現する。 イギリス英語でin the order of...またはof the order of...に相当するため、その「order」の部分のみを和製英語(カタカナ)として使用しているものであり、アメリカ英語ではaboutに相当する。.

新しい!!: ボース=アインシュタイン凝縮とオーダー (物理学) · 続きを見る »

カリウムの同位体

リウムの同位体(カリウムのどういたい)は、24種類が知られている。そのうち、39K (93.3%)・ 40K (0.012%)・41K (6.7%)の3種類が天然に生成し普遍的に存在する。標準原子量は39.0983(1) uである。39K・41Kの2つは安定同位体であるが、40Kは1.250×109年と比較的長い半減期を持つ放射性同位体である。40Kは、そのほとんどが電子捕獲のみによって安定な40Ar(11.2%)に崩壊するか、もしくは安定な40Ca(88.8%)にベータ崩壊する。 40Kから40Arへの崩壊は、岩石の年代測定に利用できる。王道を征くカリウム-アルゴン法による年代測定は、岩石は形成時にアルゴンを全く含んでおらず、岩石中で生成した40Arは全て岩石中に留まっているという仮定に基づいている。この測定法に適した鉱物には、黒雲母、白雲母、普通角閃石、長石等がある。 年代測定以外にも、カリウムの同位体は、気象学や生物地球化学循環の研究のトレーサーとしても用いられる。 健康な動物や人間では、40Kは炭素14(14C)以上の最大の放射線源である。体重70kgの人間では、1秒間に約4400個の40K原子核が崩壊している。.

新しい!!: ボース=アインシュタイン凝縮とカリウムの同位体 · 続きを見る »

カール・ワイマン

ール・ワイマン(Carl Edwin Wieman 、1951年3月26日 - )はアメリカ合衆国の物理学者である。 2001年に「希薄なアルカリ原子ガスでのボース=アインシュタイン凝縮の実現、および凝縮体の性質に関する基礎的研究」により、エリック・コーネルとヴォルフガング・ケターレと共にノーベル物理学賞を受賞した。.

新しい!!: ボース=アインシュタイン凝縮とカール・ワイマン · 続きを見る »

クラスター (物質科学)

ラスター (cluster) は集合体や塊を指す英語であるが、物質科学においては同種の原子あるいは分子が相互作用によって数個~数十個、もしくはそれ以上の数が結合した物体を指す。 それぞれの原子や分子同士を結びつける相互作用は、ファンデルワールス力や静電的相互作用、水素結合、金属結合、共有結合などが挙げられている。 クラスターのうち、電荷を帯びたものをクラスターイオンと呼ぶ。 代表的なクラスターとして、炭素原子60個が結合してサッカーボール状の構造を持つC60フラーレンがある。C60フラーレンは共有結合クラスターに分類される。 これらは、いわゆるバルクとも孤立した原子・分子とも違う状態であり(少数多体系・有限多体系と呼ばれる)、バルク-孤立原子・分子の間の新しい物質相であると考えられている。クラスターは、そのサイズに依存した特異的性質を示し、新規磁性・触媒材料など、応用面でも注目されている。.

新しい!!: ボース=アインシュタイン凝縮とクラスター (物質科学) · 続きを見る »

クロムの同位体

ムの同位体(クロムのどういたい)には3つの安定同位体52Cr、53Cr、54Crがあり、最も天然存在比が多いのは52Crで83.789%である。19個の放射性同位体が同定されていて、最も安定な50Cr(4.345%)の半減期は1.8×1017年以上、51Crの半減期が27.7日である。残りは全て24時間以内の半減期であり、そのほとんどは1分以下である。2つの核異性体が存在する。 53Crは53Mnの崩壊生成物である。クロムの同位体含有量はマンガンの同位体含有量と結びついており、同位体地質学で用いられる。マンガンとクロムの同位体組成比は、太陽系の初期に26Alと107Pdが存在したことを強く示唆している。小惑星における52Cr/53Cr及びMn/Crの構成比の多様性は、形成初期の様々な天体上で53Mnが崩壊したことを示している。 クロムの同位体の質量数は42から67の間である。質量数52以下のものは主に電子捕獲によって崩壊し、質量数が52以上のものは主にベータ崩壊する。 標準原子量は51.9961(6) uである。.

新しい!!: ボース=アインシュタイン凝縮とクロムの同位体 · 続きを見る »

ケルビン

ルビン(kelvin, 記号: K)は、熱力学温度(絶対温度)の単位である。国際単位系 (SI) において基本単位の一つとして位置づけられている。 ケルビンの名は、イギリスの物理学者で、絶対温度目盛りの必要性を説いたケルビン卿ウィリアム・トムソンにちなんで付けられた。なお、ケルビン卿の通称は彼が研究生活を送ったグラスゴーにあるから取られている。.

新しい!!: ボース=アインシュタイン凝縮とケルビン · 続きを見る »

ゲージ理論

ージ理論(ゲージりろん、gauge theory)とは、連続的な局所変換の下でラグランジアンが不変となるような系を扱う場の理論である。.

新しい!!: ボース=アインシュタイン凝縮とゲージ理論 · 続きを見る »

コロラド大学ボルダー校

ャンパスの遠景.

新しい!!: ボース=アインシュタイン凝縮とコロラド大学ボルダー校 · 続きを見る »

コヒーレンス

物理学において、コヒーレンス (coherence) とは、波の持つ性質の一つで、位相の揃い具合、すなわち、干渉のしやすさ(干渉縞の鮮明さ)を表す。.

新しい!!: ボース=アインシュタイン凝縮とコヒーレンス · 続きを見る »

スピン偏極

ピン偏極(Spin polarization, スピン分極とも言う)とは、スピンが空間的に偏極される(ある特定の方向に偏る)ことを言い、以下のような例がある。.

新しい!!: ボース=アインシュタイン凝縮とスピン偏極 · 続きを見る »

スピン角運動量

ピン角運動量(スピンかくうんどうりょう、spin angular momentum)は、量子力学上の概念で、粒子が持つ固有の角運動量である。単にスピンとも呼ばれる。粒子の角運動量には、スピン以外にも粒子の回転運動に由来する角運動量である軌道角運動量が存在し、スピンと軌道角運動量の和を全角運動量と呼ぶ。ここでいう「粒子」は電子やクォークなどの素粒子であっても、ハドロンや原子核や原子など複数の素粒子から構成される複合粒子であってもよい。 「スピン」という名称はこの概念が粒子の「自転」のようなものだと捉えられたという歴史的理由によるものであるが、現在ではこのような解釈は正しいとは考えられていない。なぜなら、スピンは古典極限 において消滅する為、スピンの概念に対し、「自転」をはじめとした古典的な解釈を付け加えるのは全くの無意味だからであるランダウ=リフシッツ小教程。 量子力学の他の物理量と同様、スピン角運動量は演算子を用いて定義される。この演算子(スピン角運動量演算子)は、スピンの回転軸の方向に対応して定義され、 軸、 軸、 軸方向のスピン演算子をそれぞれ\hat_x,\hat_y,\hat_z と書き表す。これらの演算子の固有値(=これら演算子に対応するオブザーバブルを観測したときに得られる値)は整数もしくは半整数である値 を用いて、 と書き表せる。値 は、粒子のみに依存して決まり、スピン演算子の軸の方向には依存せずに決まる事が知られている。この を粒子のスピン量子数という。 スピン量子数が半整数 になる粒子をフェルミオン、整数 になる粒子をボゾンといい、両者の物理的性質は大きく異る(詳細はそれぞれの項目を参照)。2016年現在知られている範囲において、.

新しい!!: ボース=アインシュタイン凝縮とスピン角運動量 · 続きを見る »

セシウムの同位体

ウム (Cs) は、少なくとも39種類の同位体を持つ。これはフランシウムに次ぐ数である。原子量は112から151に分布する。.

新しい!!: ボース=アインシュタイン凝縮とセシウムの同位体 · 続きを見る »

サティエンドラ・ボース

ティエンドラ・ボース サティエンドラ・ナート・ボース(英語:Satyendra Nath Bose 、ベンガル語:ソッテンドロナート・ボスゥ সত্যেন্দ্রনাথ বসু 、ヒンディー語:サティエーンドラ・ナート・バスゥ सत्येन्द्र नाथ बसु 、1894年1月1日 - 1974年2月4日)は、インドの物理学者。ボース=アインシュタイン統計を光子の統計として導入。ボース粒子(ボソン、ボーズ粒子/ボゾンとも)として名を残す。 ボースは1894年に英領インドのカルカッタに生れた。1909年からカルカッタのプレジデンシー大学に入学した。1916年から教職に就き、ダッカ大学(1921年~1945年)を経てカルカッタ大学(1945年~1956年)の教授となった。 ボースはダッカ大学時代の1924年、アインシュタインのもとに「プランクの放射法則と光量子仮説」と題する論文を送った。それを読んだアインシュタインは非常に高く評価し、ドイツ語に翻訳して物理学雑誌に掲載させた。ここからボースによる光子の統計法の理論が広まり、アインシュタイン自身によって発展させられた。.

新しい!!: ボース=アインシュタイン凝縮とサティエンドラ・ボース · 続きを見る »

冷却原子気体

冷却原子気体とは、レーザー冷却等の技術を用いて絶対零度の付近まで冷却された原子、あるいは原子気体のことである。典型的には、数十マイクロケルビン以下を記録する。このような極低温では、原子気体の量子力学的な性質が重要になる。実験的には、いくつかの技術を組み合わせてこの温度を実現する。通常、実験の初期段階では、原子を磁気光学トラップ中に捕捉し、レーザー冷却により冷却する。さらに限界まで冷却するためには、レーザー冷却された原子を磁気トラップや光学トラップに移し、蒸発冷却等の手法を用いる。 十分に冷却されると、原子気体は量子力学に支配された新たな物質状態を形成する。例えば、ボース原子の場合はボース=アインシュタイン凝縮(BEC)が、フェルミ原子の場合は縮退フェルミ気体が実現する。 冷却原子を用いて、量子相転移、BEC、ボソンの超流動、量子磁性、多体スピン・ダイナミクス、エフィモフ効果、BCS超流動、BCS−BECクロスオーバー等の量子現象が研究されている。.

新しい!!: ボース=アインシュタイン凝縮と冷却原子気体 · 続きを見る »

円周群

数学における円周群(えんしゅうぐん、circle group; 円群)は の複素数(単位複素数)全体(つまり複素数平面上の単位円)\mathbb T.

新しい!!: ボース=アインシュタイン凝縮と円周群 · 続きを見る »

光子

|mean_lifetime.

新しい!!: ボース=アインシュタイン凝縮と光子 · 続きを見る »

国際宇宙ステーション

CGによる完成予想図。 国際宇宙ステーション(こくさいうちゅうステーション、International Space Station、略称:ISS、Station spatiale internationale、略称:SSI、Междунаро́дная косми́ческая ста́нция、略称:МКС)は、アメリカ合衆国、ロシア、日本、カナダ及び欧州宇宙機関 (ESA) が協力して運用している宇宙ステーションである。地球及び宇宙の観測、宇宙環境を利用した様々な研究や実験を行うための巨大な有人施設である。地上から約400km上空の熱圏を秒速約7.7km(時速約27,700km)で地球の赤道に対して51.6度の角度で飛行し、地球を約90分で1周、1日で約16周する。なお、施設内の時刻は、協定世界時に合わせている。 1999年から軌道上での組立が開始され、2011年7月に完成した。当初の運用期間は2016年までの予定であったが、アメリカ、ロシア、カナダ、日本は少なくとも2024年までは運用を継続する方針を発表もしくは決定している。運用終了までに要する費用は1540億USドルと見積もられている(詳細は費用を参照)。.

新しい!!: ボース=アインシュタイン凝縮と国際宇宙ステーション · 続きを見る »

BCS理論

BCS理論(ビーシーエスりろん、BCS theory、Bardeen Cooper Schrieffer)とは、1911年の超伝導現象発見以来、初めてこの現象を微視的に解明した理論。1957年に米国、イリノイ大学のジョン・バーディーン、レオン・クーパー、ジョン・ロバート・シュリーファーの三人によって提唱された。三人の名前の頭文字からBCSと付けられた。この理論によると超伝導転移温度や比熱などが、式により表される。三人はこの業績により1972年のノーベル物理学賞を受賞した。.

新しい!!: ボース=アインシュタイン凝縮とBCS理論 · 続きを見る »

理想気体

想気体(りそうきたい、ideal gas)または完全気体(かんぜんきたい、)は、圧力が温度と密度に比例し、内部エネルギーが密度に依らない気体である。気体の最も基本的な理論モデルであり、より現実的な他の気体の理論モデルはすべて、低密度で理想気体に漸近する。統計力学および気体分子運動論においては、気体を構成する個々の粒子分子や原子など。の体積が無視できるほど小さく、構成粒子間には引力が働かない系である。 実際にはどんな気体分子気体を構成する個々の粒子のこと。気体分子運動論では、構成粒子が原子であってもこれを分子と呼ぶことが多い。にも体積があり、分子間力も働いているので理想気体とは若干異なる性質を持つ。そのような理想気体でない気体は実在気体または不完全気体と呼ばれる。実在気体も、低圧で高温の状態では理想気体に近い振る舞いをする。常温・常圧では実在気体を理想気体とみなせる場合が多い。.

新しい!!: ボース=アインシュタイン凝縮と理想気体 · 続きを見る »

秩序変数

秩序変数(ちつじょへんすう、order parameter)または秩序パラメータ、オーダーパラメータとは、相が持つ秩序を表すマクロな変数のことである。 例えば結晶では、原子の並び方にある一定の秩序がある。結晶の向きが異なる平衡状態は、エネルギーU、体積V、物質量Nなどの値が同じでも、圧縮率などの方向依存性により区別でき、マクロに見て異なる状態になる。つまり異方性がある物質では、マクロな平衡状態を指定するにはU,V,Nだけでは変数が足りない。 そこで熱力学の変数の組の中に、この秩序の様子を表すようなマクロ変数の組を加えておけば、結晶の向きの異なる平衡状態を区別する熱力学を構成することができる 。 相転移現象は、秩序変数の値の変化で特徴付けることができる。秩序変数は温度や圧力などの外的な変数の関数として振る舞い、例えば、温度による相転移の場合には、転移温度以下の低温相(対称性の破れた相、あるいは秩序相)において、有限の値を持ち、高温相(対称性を持つ相、あるいは無秩序相)においてゼロとなる。転移温度において、秩序変数が不連続に変化する相転移が一次相転移、連続的に変化する相転移が二次相転移である。.

新しい!!: ボース=アインシュタイン凝縮と秩序変数 · 続きを見る »

第1族元素

1族元素(だいいちぞくげんそ)とは、周期表において第1族に属する元素。水素・リチウム・ナトリウム・カリウム・ルビジウム・セシウム・フランシウムがこれに該当する。このうち、水素を除いた元素についてはアルカリ金属 (alkali metal) といい、単体では最外殻s軌道電子が自由電子として振舞うため金属的な性質を示す。 周期表の一番左側に位置する元素群で、価電子は最外殻のs軌道にある電子である。s軌道は1電子のみが占有する。.

新しい!!: ボース=アインシュタイン凝縮と第1族元素 · 続きを見る »

箱の中の気体

本項では、量子力学における箱の中の量子的な理想気体について述べる。すなわち、容器に多数の分子が入っており、熱化のプロセスで一瞬に行われる衝突を除けば、分子どうしの相互作用を行わない系である。この系の平衡状態における性質を調べるには、無限の深さの井戸型ポテンシャルに置かれた量子的粒子についての結果を用いることができる。 この単純なモデルは、質量をもつ理想フェルミ気体や、質量を持つ理想ボース気体、質量をもたないボース気体として扱うことが可能な黒体放射などの様々な量子理想気体だけでなく、古典的な理想気体も記述することができる。黒体放射における熱化は、フォトンおよび熱平衡状態にある物体との間の相互作用により促進されると仮定される。 マクスウェル=ボルツマン統計またはボース=アインシュタイン統計またはフェルミ=ディラック統計の結果を用い、箱の大きさが無限大だとすると、トーマス=フェルミ近似によりエネルギー状態の縮退度は微分として、状態の総和は積分として表現される。 これにより気体の熱力学的な性質は分配関数やグランドカノニカル分配関数を用いて計算できる。 ここではいくつかの簡単な例を示す。.

新しい!!: ボース=アインシュタイン凝縮と箱の中の気体 · 続きを見る »

粘度

粘度(ねんど、Viskosität、viscosité、viscosity)は、物質のねばりの度合である。粘性率、粘性係数、または(動粘度と区別する際には) 絶対粘度とも呼ぶ。一般には流体が持つ性質とされるが、粘弾性などの性質を持つ固体でも用いられる。 量記号にはμまたはηが用いられる。SI単位はPa·s(パスカル秒)である。CGS単位系ではP(ポアズ)が用いられた。 動粘度(後述)の単位として、cm/s.

新しい!!: ボース=アインシュタイン凝縮と粘度 · 続きを見る »

粒子統計

粒子統計 (りゅうしとうけい、Particle statistics) は、粒子の集団が従う統計力学的な性質を言う。.

新しい!!: ボース=アインシュタイン凝縮と粒子統計 · 続きを見る »

糖蜜

糖蜜(とうみつ)とは、以下に列記されるものをさす。.

新しい!!: ボース=アインシュタイン凝縮と糖蜜 · 続きを見る »

結合定数

結合定数(けつごうていすう).

新しい!!: ボース=アインシュタイン凝縮と結合定数 · 続きを見る »

結合エネルギー

結合エネルギー(けつごうエネルギー)とは、互いに引き合う複数の要素からなる系において、その系がひとところに寄り集まって存在する状態と、粒子がばらばらに存在する状態との間での、ポテンシャルエネルギーの差のこと。結合エネルギーが大きいほど、その結合は強固で安定であると言える。束縛エネルギーとも言う。 本来、保存力によって結合する系ならば、どのような系に対しても考えることが出来るが、この語が良く用いられるのは、化学分野における分子中の原子間結合の場合と、原子核の核子間相互作用の場合である。 英語表記は、bond energy や binding energy 等があるが、前者は主に化学分野において、後者は主に原子核物理学分野において用いられる。.

新しい!!: ボース=アインシュタイン凝縮と結合エネルギー · 続きを見る »

絶対零度

絶対零度(ぜったいれいど、Absolute zero)とは、絶対温度の下限で、理想気体のエントロピーとエンタルピーが最低値になった状態、つまり 0 度を表す。理想気体の状態方程式から導き出された値によるとケルビンやランキン度の0 度は、セルシウス度で −273.15 ℃、ファーレンハイト度で −459.67 である。 絶対零度は最低温度とされるが、エンタルピーは0にはならない。統計力学では0 K未満の負温度が存在する。.

新しい!!: ボース=アインシュタイン凝縮と絶対零度 · 続きを見る »

熱力学的平衡

熱力学的平衡(ねつりきがくてきへいこう、)は、熱力学的系が熱的、力学的、化学的に平衡であることをいう。このような状態では、物質やエネルギー(熱)の正味の流れや相転移(氷から水への変化など)も含めて、熱力学的(巨視的)状態量は変化しない。逆に言えば、系の状態が変化するときは、多少なりとも熱力学的平衡からずれていることを意味する。極限として、限りなく熱力学的平衡に近い状態を保って行われる状態変化は、準静的変化とよばれる。また、系が熱力学的平衡であるとき、あるいは局所的に平衡とみなせる部分について、系の温度や圧力などの示強性状態量を定義することができる。 熱力学的に非平衡 (non-equilibrium) であるとは、上記の熱的、力学的、化学的平衡のいずれかが満たされていない状態であり、系に物質またはエネルギーの正味の流れ、あるいは相転移などが生じる。またこのような非平衡状態は不安定であるため別の状態へ転移するが、転移速度が極めて遅いために不安定な状態が維持される場合、この状態を準安定状態という。.

新しい!!: ボース=アインシュタイン凝縮と熱力学的平衡 · 続きを見る »

熱的ド・ブロイ波長

統計力学において、熱的ド・ブロイ波長(thermal de Broglie wavelength)、または熱的波長(thermal wavelength)とは、ある温度における粒子の量子力学的な広がりの度合いを表す特性長。対象とする系が古典統計力学で扱えるか、または量子統計力学の適用が必要かを示す指標となる。粒子の質量が軽く、温度が低温であるほど、熱的ド・ブロイ波長は広がり、量子力学的性質が顕著となる。熱的ド・ブロイ波長が粒子間の平均距離に近づくと、系を古典統計力学で扱うことはできず、量子統計力学の適用が必要となる。ボーズ気体では、熱的ド・ブロイ波長が平均粒子間距離に近づく極低温でまで冷却していくと、各粒子の波動関数が重なり始め、ボーズ=アインシュタイン凝縮と呼ばれる量子的な相転移現象が生じる。.

新しい!!: ボース=アインシュタイン凝縮と熱的ド・ブロイ波長 · 続きを見る »

物性物理学

物性物理学(ぶっせいぶつりがく)は、物質のさまざまな巨視的性質を微視的な観点から研究する物理学の分野。量子力学や統計力学を理論的基盤とし、その理論部門を物性論(ぶっせいろん)と呼ぶことも多い。これらは日本の物理学界独特の名称であるが、しばしば凝縮系物理学に比定される。狭義には固体物理学を指し、広義には固体物理学(結晶・アモルファス・合金)およびソフトマター物理学・表面物理学・物理化学、プラズマ・流体力学などの周辺分野を含む。.

新しい!!: ボース=アインシュタイン凝縮と物性物理学 · 続きを見る »

相 (物質)

(そう、phase)とは、化学的組成及び物理的状態が一様な物質系の実体であるIUPAC GOLD phase, http://goldbook.iupac.org/P04528.html。 相とは化学組成及び物理的状態が全体的に一様な形態のものである。 気体、液体、固体は、物質の三つの形態(物質の三態)として知られているが、固体や液体には複数の違った形態をとる場合があることもまた知られている。そこで、これらを区別する別の用語が必要になる―それに相という用語が使用される。 例えば完全に溶解した食塩水はどの部分を取り出しても同一の組成、物性を示すので1つの相だけからなる。氷水はどの部分を取り出しても水分子だけからなる同一の組成を持つが、固体と液体という異なる物性を示す2つの部分があるので、その氷が一つの塊であろと、クラッシュアイスであろうと、2つの相からなる。 牛乳のようなコロイド溶液は肉眼ではどの部分も同じように見えるが、限外顕微鏡でみると乳脂肪からなる油滴の部分と水の部分に分かれているので2つの相からなる。 また、たとえば土壌は、固相、液相(水相)、気相の三相からなり、固相は土壌粒子、気相は土壌空気、水相は土壌水と呼ばれる また、大気は、そのほとんどを気相が占めるが、エアロゾル(厳密にはエアロゾル分散媒)が 清浄な空気でも8 x 10-5 m3-エアロゾル/m3-大気が存在する松田 エアロゾルの濃度,http://kccn.konan-u.ac.jp/konan/kankyo/03matsuda/030304.html。 エアロゾルは、水相と固相の二相からなるので、大気もまた、固相、気相、液相の三相により構成される。 もっとも分かりやすい相の分類は固相、液相、気相であろう。多くの純物質は温度や圧力を変化させた場合、固体、液体、気体の3つの状態をとる。これらそれぞれの状態に対応する相が固相、液相、気相である。ただし、多くの物質は複数の固相を持つ。たとえば.

新しい!!: ボース=アインシュタイン凝縮と相 (物質) · 続きを見る »

相互作用

互作用(そうごさよう)、交互作用(こうごさよう)、相互交流(そうごこうりゅう)、インタラクションとは、 interaction、 Interaktion 等にあてられた訳語・音写語であり、原語では広義には二つ以上の存在が互いに影響を及ぼしあうことを指している。 ヨーロッパ系の言語では、interaction(英語・フランス語)、Interaktion(ドイツ語)などと表記され、同系統の言葉である。根本にある発想が同一であり、国境や分野を超えてその根本概念は共有されている。一方、日本語には、あくまで前述の語の訳語として登場し、「交互作用」「相互作用」「相互交流」などの様々な訳語、あるいは「インタラクション」などの音写語などもあり、用いられる分野ごとに様々な表記で用いられている。ただし、これらのいかなるの訳語・音写語があてられていようが、等しく重要な概念である。 ヨーロッパ圏の人が interaction という語を使う時、その語の他分野での用法なども多かれ少なかれ意識しながら使っていることは多い。一方、訳語というものは絶対的なものではなく、同一分野ですら時代とともに変化することがある。原著で同一の語で表記されているものが、訳語の選択によって概念の連続性が分断されてしまい歴史が読み取れなくなることは非常に不便であるし、訳語の異同によって分野ごとに細分化されては原著者の深い意図が汲み取れなくなる恐れもある。よって、これらを踏まえて本項ではヨーロッパ諸言語で interaction 系の語(派生語の interactive なども含む)で表記される概念についてまとめて扱うこととし、各分野における標準的な和訳と、その分野での具体的な用法や概念の展開について、広く解説することにする。.

新しい!!: ボース=アインシュタイン凝縮と相互作用 · 続きを見る »

相転移

転移(そうてんい、英語:phase transition)とは、ある系の相(phase)が別の相へ変わることを指す。しばしば相変態(そうへんたい、英語:phase transformation)とも呼ばれる。熱力学または統計力学において、相はある特徴を持った系の安定な状態の集合として定義される。一般には物質の三態(固体・固相、液体・液相、気体・気相)の相互変化として理解されるが、同相の物質中の物性変化(結晶構造や密度、磁性など)や基底状態の変化に対しても用いられる。相転移に現れる現象も単に「相転移」と呼ぶことがある。.

新しい!!: ボース=アインシュタイン凝縮と相転移 · 続きを見る »

複合粒子

複合粒子 (ふくごうりゅうし, composite particle) とは、素粒子の複合体である粒子の総称である。それ以上分割できない粒子である素粒子(または基本粒子)と対をなす概念である。素粒子物理学の進展によって、素粒子と考えられていたものが複合粒子であると判明することがある。.

新しい!!: ボース=アインシュタイン凝縮と複合粒子 · 続きを見る »

調和振動子

調和振動子(ちょうわしんどうし、harmonic oscillator)とは、質点が定点からの距離に比例する引力を受けて運動する系である。調和振動子は定点を中心として振動する系であり、その運動は解析的に解くことができる。.

新しい!!: ボース=アインシュタイン凝縮と調和振動子 · 続きを見る »

高周波

周波(こうしゅうは)とは、電波、音波など、波形を構成するスペクトラムのうち比較的周波数の高いものを指す。音波の場合は、超音波と呼ばれることが多い。 「高周波」あるいは「低周波」は周波数に関する事項ではあるが、慣習上、「周波」と言い換えている。.

新しい!!: ボース=アインシュタイン凝縮と高周波 · 続きを見る »

超伝導

超伝導(ちょうでんどう、superconductivity)とは、特定の金属や化合物などの物質を非常に低い温度へ冷却したときに、電気抵抗が急激にゼロになる現象。「超電導」と表記されることもある。1911年、オランダの物理学者ヘイケ・カメルリング・オンネスにより発見された。この現象と同時に、マイスナー効果により外部からの磁力線が遮断されることから、電気抵抗の測定によらなくとも、超伝導状態が判別できる。この現象が現れるときの温度は超伝導転移温度と呼ばれ、この温度を室温程度に上昇させること(室温超伝導)は、現代物理学の重要な研究目標の一つ。.

新しい!!: ボース=アインシュタイン凝縮と超伝導 · 続きを見る »

超流動

超流動(英語:superfluidity)とは、極低温において液体ヘリウムの流動性が高まり、容器の壁面をつたって外へ溢れ出たり、原子一個が通れる程度の隙間に浸透したりする現象で、量子効果が巨視的に現れたものである。1937年、ヘリウム4が超流動性を示すことをピョートル・カピッツァが発見した。.

新しい!!: ボース=アインシュタイン凝縮と超流動 · 続きを見る »

黒体放射

黒体放射()とは黒体が放出する熱放射で黒体の温度のみで定まり、実在する物体の放射度は、概して黒体の放射度よりも小さく、黒体放射の波長はプランクの放射式によって理論的に定まる。 温度が低いときは赤っぽく、温度が高いほど青白くなる。夜空に輝く星々も青白い星ほど温度が高い。温度はK(ケルビン)で表示される。 理想的な黒体放射をもっとも再現するとされる空洞放射が温度のみに依存するという法則は、1859年にグスタフ・キルヒホフにより発見された。以来、空洞放射のスペクトルを説明する理論が研究され、最終的に1900年にマックス・プランクによりプランク分布が発見されたことで、その理論が完成された。 物理的に黒体放射をプランク分布で説明するためには、黒体が電磁波を放出する(電気双極子が振動する)ときの振動子の量子化を仮定する必要がある(プランクの法則)。つまり、振動子が持ちうるエネルギー は振動数 の整数倍に比例しなければならない。 この比例定数 は、後にプランク定数とよばれ、物理学の基本定数となった。これは、物理量は連続な値をとり量子化されない、とする古典力学と反する仮定であったが、1905年にアルベルト・アインシュタインがこのプランクの量子化の仮定と光子の概念とを用いて光電効果を説明したことにより、この量子化の仮定に基づいた量子力学が築かれることとなった。.

新しい!!: ボース=アインシュタイン凝縮と黒体放射 · 続きを見る »

量子状態

量子状態(りょうしじょうたい、)とは、量子論で記述される系(量子系)がとる状態のことである。 これは系の物理量(可観測量、オブザーバブル)を測定したとき、その測定値のバラつき具合を表す確率分布によって定義される。 以下に述べるように、量子状態には、純粋状態と混合状態とがある。.

新しい!!: ボース=アインシュタイン凝縮と量子状態 · 続きを見る »

自然放出

自然放出(しぜんほうしゅつ、英語:spontaneous emission)とは、光源となる物質 (原子、分子、原子核など) が励起状態からよりエネルギーの低い量子状態 (たとえば基底状態) へ移り、その際に光子を放出する過程のことである。 自然放出と誘導放出の異なる点は、自然放出の場合には自発的に励起状態から別のエネルギー状態への遷移が起こることであり、自然放出による光の強さは、外部から入力される光の強さに比例しない。 半古典論による取り扱いでは自然放出は記述できず、誘導放出しか理論に現れない。量子化された光を用いることで自然放出が記述できるようになる。量子化された電磁波 (つまり調和振動子の集まり) の零点振動に誘起されるものが自然放出である。 自然放出は多くの自然現象で重要な役割を果たし、応用面においても、蛍光灯や、テレビなどのモニターに用いられるブラウン管、プラズマディスプレイ、発光ダイオード (LED) などに利用されている。.

新しい!!: ボース=アインシュタイン凝縮と自然放出 · 続きを見る »

酸化銅(I)

酸化銅(I)(さんかどう いち、copper(I) oxide)は化学式 Cu2O で表される銅の酸化物で、赤色ないし赤褐色の結晶または結晶性粉末。CAS登録番号は 。水にほとんど溶けない。希塩酸及び希硫酸、塩化アンモニウム溶液、アンモニア水に可溶。有機溶媒に不溶。融点は1232 で、1800 で分解して酸素を失う。乾燥空気中で安定であるが湿った空気中では徐々に酸化され酸化銅(II)に変わる。フェーリング反応に陽性の物質は、フェーリング液を還元し酸化銅(I)を沈殿させる。類似した用途に使われるベネジクト液も、同様の反応を起こす。濃塩酸に溶けて HCuCl2 を生成する。 酸化銅(I)は整流作用を持つ物質であり、シリコンが標準となるよりかなり前の1924年に、酸化銅(I)を使用した整流ダイオードが作られ、産業的に利用されていた。天然では赤銅鉱として産出する。赤銅鉱は宝石にも利用される鉱物である。 航行中の摩擦抵抗の増加による燃費の悪化を招くフジツボの付着を防止する作用があり、有機スズ化合物に比べ毒性が低いため船底塗料に使用されるが、異種金属間のが生じるため、アルミニウム艇や繊維強化プラスチック、木製の船底には、これに代わり酸化亜鉛が採用される。.

新しい!!: ボース=アインシュタイン凝縮と酸化銅(I) · 続きを見る »

電子

電子(でんし、)とは、宇宙を構成するレプトンに分類される素粒子である。素粒子標準模型では、第一世代の荷電レプトンに位置付けられる。電子は電荷−1、スピンのフェルミ粒子である。記号は e で表される。また、ワインバーグ=サラム理論において弱アイソスピンは−、弱超電荷は−である。.

新しい!!: ボース=アインシュタイン凝縮と電子 · 続きを見る »

逆温度

逆温度(ぎゃくおんど、inverse temperature) は、統計力学によって定義される物理量。統計集団を用いて平衡状態を記述する際に重要な役割を担うパラメーターとして現れる。逆温度βは絶対温度Tとボルツマン定数kBを用いて次のように定義される。.

新しい!!: ボース=アインシュタイン凝縮と逆温度 · 続きを見る »

陽子

陽子(ようし、())とは、原子核を構成する粒子のうち、正の電荷をもつ粒子である。英語名のままプロトンと呼ばれることも多い。陽子は電荷+1、スピン1/2のフェルミ粒子である。記号 p で表される。 陽子とともに中性子によって原子核は構成され、これらは核子と総称される。水素(軽水素、H)の原子核は、1個の陽子のみから構成される。電子が離れてイオン化した水素イオン(H)は陽子そのものであるため、化学の領域では水素イオンをプロトンと呼ぶことが多い。 原子核物理学、素粒子物理学において、陽子はクォークが結びついた複合粒子であるハドロンに分類され、2個のアップクォークと1個のダウンクォークで構成されるバリオンである。ハドロンを分類するフレーバーは、バリオン数が1、ストレンジネスは0であり、アイソスピンは1/2、超電荷は1/2となる。バリオンの中では最も軽くて安定である。.

新しい!!: ボース=アインシュタイン凝縮と陽子 · 続きを見る »

核子

核子(かくし、nucleon)は、原子核を構成する陽子と中性子の総称。原子の原子核は陽子と中性子により構成されていることにより、これらを総称して核子と呼ぶ。陽子も中性子もバリオンの一種であるため、核子もまたバリオンの一種である。 核子はダウンクォーク(d)とアップクォーク(u)により構成される(中性子は2個のdと1個のu、陽子は1個のdと2個のu)。これに対し、ストレンジという重いクォークを含んだ重いバリオンをハイペロンと呼び、Λ(アイソスピン0、uds), Σ(アイソスピン1、uus, uds, dds), Ξ(アイソスピン1/2、uss, dss), Ω(アイソスピン0, sss)と呼ばれる。また、原子核を構成する粒子にハイペロンを含んだ核をハイパー核と呼ぶ。.

新しい!!: ボース=アインシュタイン凝縮と核子 · 続きを見る »

比熱容量

比熱容量(ひねつようりょう、英語:specific heat capacity)とは、圧力または体積一定の条件で、単位質量の物質を単位温度上げるのに必要な熱量のこと。単位は J kg−1 K−1 もしくは J g−1 K−1 が用いられる。水の比熱容量(18℃)は、1 cal g−1 K−1.

新しい!!: ボース=アインシュタイン凝縮と比熱容量 · 続きを見る »

水素の同位体

左から軽水素、重水素、三重水素の記号および原子図。 水素(H、標準原子量: 1.008原子量表 (2017).

新しい!!: ボース=アインシュタイン凝縮と水素の同位体 · 続きを見る »

波動関数

波動関数(はどうかんすう、wave function)は、もともとは波動現象一般を表す関数のことだが、現在では量子状態(より正確には純粋状態)を表す複素数値関数のことを指すことがほとんどである。.

新しい!!: ボース=アインシュタイン凝縮と波動関数 · 続きを見る »

波数ベクトル

物理学における波数ベクトルとは、波動を記述するのに用いられるベクトルである。 全てのベクトルのように大きさと方向を持ち、これら両方が重要である。 その大きさは波の波数または角波数であり、波長に反比例する。 その方向は通常、の方向であるが、いつもそうとは限らない(以下を参照)。 特殊相対論の文脈では、波数ベクトルは4元ベクトルとしても定義できる。.

新しい!!: ボース=アインシュタイン凝縮と波数ベクトル · 続きを見る »

液体ヘリウム

容器の中の液体ヘリウム ヘリウムは、-269 ℃(約4 K)という極低温で液体として存在する。ヘリウムの安定な同位体には大多数を占めるヘリウム4と非常に希少なヘリウム3の2種類しかないが、沸点や臨界点は、同位体によって異なる。1気圧、沸点でのヘリウム4の密度は、約125 g/lである。 物性研究においても特に超伝導体や高磁場を発生する電磁石の冷却のために寒剤として多用される。このため規模の大きい大学や研究機関では、利便性の向上やコスト低減のために利用後の気化したヘリウムの回収配管とともに液化装置を所有していることが多い。.

新しい!!: ボース=アインシュタイン凝縮と液体ヘリウム · 続きを見る »

温度の比較

本項では、(熱力学的)温度の比較(おんどのひかく)ができるよう、昇順に表にする。.

新しい!!: ボース=アインシュタイン凝縮と温度の比較 · 続きを見る »

準安定状態

準安定状態(じゅんあんていじょうたい、Metastable state(s) )は、真の安定状態では無いが、大きな乱れが与えられない限り安定に存在できるような状態。準安定状態は小さな乱れに対しては安定であるが、大きな乱れが与えられると不安定になり、真の安定状態へ変化してしまう。 準安定状態は非平衡状態なので、いつかは真の安定状態へ変化するが、その変化の時間が非常に長いのが特徴である。「自由エネルギーが極小値をとるような状態」という記述がされることが多いが、それはあくまでイメージであることに注意しなければならない。そもそも平衡熱力学では平衡状態しか予言できないので準安定状態は扱えない。 準安定状態は、一つだけとは限らず、多数存在し得る。準安定状態同士、準安定状態と最安定状態の間には、乗り越えるべきエネルギー障壁が存在する。障壁は高い場合もあれば、低い場合もありまちまちである。障壁を乗り越えるような駆動力(熱など)があれば、より安定な状態へと移っていく。 準安定な状態の例としては、過冷却状態、過飽和状態、ガラス状態、常温・常圧におけるダイヤモンド(最も安定なのはグラファイト)、アナターゼ型の二酸化チタンなどがある。.

新しい!!: ボース=アインシュタイン凝縮と準安定状態 · 続きを見る »

放射圧

放射圧(ほうしゃあつ、radiation pressure)とは電磁放射を受ける物体の表面に働く圧力である。日本語では輻射圧・光圧とも呼ばれる。放射圧の大きさは、放射が物体に吸収される場合には入射するエネルギー流束密度(単位時間に単位面積を通過するエネルギー)を光速で割った値となり、放射が完全反射される場合にはその2倍の値になる。例えば、地球の位置での太陽光のエネルギー流束密度(太陽定数)は なので、その放射圧は(太陽光が吸収される場合) となる。.

新しい!!: ボース=アインシュタイン凝縮と放射圧 · 続きを見る »

散乱振幅

散乱振幅(さんらんしんぷく、)は、量子力学の散乱理論において、定常状態の散乱過程での入射平面波に対する、外向き球面波の振幅である 。.

新しい!!: ボース=アインシュタイン凝縮と散乱振幅 · 続きを見る »

数密度

数密度(すうみつど)は単位体積あたりの対象物の個数を表す物理量である。 対象物の粒子数に注目したいときには、密度よりも広く用いられるが、粒子1個あたりの平均質量が分かっていれば、密度と数密度は互いに換算できる。 例えば、摂氏0度、1気圧の1モルの気体は、22.4リットルの体積中にアボガドロ数に等しい数の気体分子を含む。このときの分子数密度は、6.02×10 / 0.0224.

新しい!!: ボース=アインシュタイン凝縮と数密度 · 続きを見る »

整数

数学における整数(せいすう、integer, whole number, Ganze Zahl, nombre entier, número entero)は、0 とそれに 1 ずつ加えていって得られる自然数 (1, 2, 3, 4, …) および 1 ずつ引いていって得られる数 (−1, −2, −3, −4, …) の総称である。 整数は数直線上の格子点として視覚化される 整数の全体からなる集合は普通、太字の Z または黒板太字の \mathbb Z で表す。これはドイツ語 Zahlen(「数」の意・複数形)に由来する。 抽象代数学、特に代数的整数論では、しばしば「代数体の整数環」の元という意味で代数的整数あるいは「整数」という言葉を用いる。有理数全体の成す体はそれ自身が代数体の最も簡単な例であり、有理数体の代数体としての整数環すなわち、「有理数の中で整なもの」の全体の成す環は、本項でいう意味での整数全体の成す環である。一般の「整数」との区別のためにここでいう意味の整数を有理整数 (rational integer) と呼ぶことがある接頭辞「有理(的)」(rational) はそもそも「整数比」であるという意味なので、この呼称は自己循環的にもみえる。しかし、有理整数と呼ぶ場合の「有理」は「有理数の中で」という程度の意味の単なる符牒であって、「整数比」という本来の意味合いに拘るのは徒労である。。.

新しい!!: ボース=アインシュタイン凝縮と整数 · 続きを見る »

1995年

この項目では、国際的な視点に基づいた1995年について記載する。.

新しい!!: ボース=アインシュタイン凝縮と1995年 · 続きを見る »

2005年

この項目では、国際的な視点に基づいた2005年について記載する。.

新しい!!: ボース=アインシュタイン凝縮と2005年 · 続きを見る »

2状態系

量子力学において、2状態系(2じょうたいけい、two-state system)とは、2つの独立な量子状態から構成される量子系である。自明ではない量子系としては最も簡単なものであるが、量子力学の特徴的な性質を備える。コインの表裏のような古典対応物と異なり、2状態系の量子状態を記述する状態ベクトルは、2つの独立な状態の重ね合わせの比率と位相差が異なる無限に多くの状態を取り得る。こうした性質は量子情報理論での量子ビットの基礎をなす。2状態系として記述される系は電子や原子核のスピン の系、光子の偏光状態、共鳴波長の光に応答する原子の2準位系、ニュートリノ振動、アンモニア分子の反転モードなどの豊富な物理現象を含む。また、核磁気共鳴やアンモニアメーザーの理論的な基礎付けを与えている。J. J. Sakurai の著書 "Modern quantum mechanics" ではノーベル賞受賞者で2状態系の解析に携わった者として、7人の名を挙げている。.

新しい!!: ボース=アインシュタイン凝縮と2状態系 · 続きを見る »

ここにリダイレクトされます:

ボース–アインシュタイン凝縮ボース・アインシュタイン凝縮ボースアインシュタイン凝縮ボース凝縮ボーズ・アインシュタイン凝縮ボーズ=アインシュタイン凝縮

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »