ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

ボーア=ファン・リューエンの定理

索引 ボーア=ファン・リューエンの定理

ボーア=ファン・リューエンの定理(―のていり、Bohr-van Leeuwen theorem)は固体物理学の定理であり、古典力学を適用すると熱平衡にある物質の磁化は0であるという定理である。これは古典力学では電子の集団の自由エネルギーは磁場に依存しないことから導かれる。これにより磁性は量子力学的効果だけによるものであり、よって古典物理学では反磁性、常磁性、強磁性などを説明できないということを意味する。ヴァン・ヴレックはボーア=ファン・リューエンの定理を簡潔に「いかなる有限の温度、有限の電場・磁場の下でも、熱平衡にある電子集団の磁化は結局はないに等しい。」と述べた。.

17 関係: 反磁性古典電磁気学常磁性交換法則強磁性ボルツマン分布プラズマ物理ニールス・ボーア分配関数ジョン・ヴァン・ヴレック固体物理学特殊相対性理論相対性理論跡 (線型代数学)量子力学電気工学1911年

反磁性

反磁性(はんじせい、diamagnetism)とは、磁場をかけたとき、物質が磁場の逆向きに磁化され(=負の磁化率)、磁場とその勾配の積に比例する力が、磁石に反発する方向に生ずる磁性のことである 。 反磁性体は自発磁化をもたず、磁場をかけた場合にのみ反磁性の性質が表れる。反磁性は、1778年にセバールド・ユスティヌス・ブルグマンス によって発見され、その後、1845年にファラデーがその性質を「反磁性」と名づけた。 原子中の対になった電子(内殻電子を含む)が必ず弱い反磁性を生み出すため、実はあらゆる物質が反磁性を持っている。しかし、反磁性は非常に弱いため、強磁性や常磁性といったスピンによる磁性を持つ物質では隠れて目立たない。つまり、差し引いた結果の磁性として反磁性があらわれている物質のことを反磁性体と呼ぶに過ぎない。 このように、ほとんどの物質において反磁性は非常に弱いが、超伝導体は例外的に強い反磁性を持つ(後述)。なお、標準状態において最も強い反磁性をもつ物質はビスマスである。 なお、反強磁性(antiferromagnetism)は反磁性とは全く違う現象である。.

新しい!!: ボーア=ファン・リューエンの定理と反磁性 · 続きを見る »

古典電磁気学

古典電磁気学または古典電気力学は、電荷と電流の間の電磁気力について研究する理論物理学の一分野である。対応する長さや電磁場の強さが量子力学的効果に影響されないほど十分大きければ、電磁現象をうまく説明できる(量子電磁力学参照)。古典電磁気学の基礎物理学的側面は、『ファインマン物理学』、パノフスキーらの『電磁気学』、『ジャクソン電磁気学』などで紹介されている。 電磁気学は19世紀に発展したが、その中でも特にジェームズ・クラーク・マクスウェルが重要な役割を果たした。電磁気学の歴史については、パウリの『相対性理論』、数学者E・T・ホイッタカーの著書、A・パイスのアインシュタインの伝記などに詳しい。 Ribarič and Šušteršič (1990)では、1903年から1989年までの約240の文献を参照・研究し、古典電気力学の分野で現代においても未解決の1ダースほどの問題を提示している。ジャクソンが古典電気力学最大の問題としたのは、基本方程式について2つの極端な場合においてしか解が得られていないという点である。すなわち、電荷または電流が与えられ、そこから電磁場を計算して求める場合と、外部の電磁場が与えられ、荷電粒子や電流の動きを計算して求める場合である。時折、この2つを組み合わせることもある。しかし、その場合の取り扱いは段階的に行われる。まず、外部電磁場内の荷電粒子の動きをそれ自身の電磁放射を無視して計算し、次いでその軌道に基づいてその電荷の電磁放射を計算する。このような電気力学における問題の扱い方は近似的な妥当性しか持ち得ないことは明らかである。電荷と電流の相互作用やそれらが放射する電磁場は無視することができず、結果としてそうした電気力学系についての我々の理解は限定的なものとなっている。1世紀に渡る努力にもかかわらず、広く受け入れられた荷電粒子の古典的運動方程式は未だに存在しないし、関連する実験データも存在しない。.

新しい!!: ボーア=ファン・リューエンの定理と古典電磁気学 · 続きを見る »

常磁性

常磁性(じょうじせい、英語:paramagnetism)とは、外部磁場が無いときには磁化を持たず、磁場を印加するとその方向に弱く磁化する磁性を指す。熱ゆらぎによるスピンの乱れが強く、自発的な配向が無い状態である。 常磁性の物質の磁化率(帯磁率)χは温度Tに反比例する。これをキュリーの法則と呼ぶ。 比例定数Cはキュリー定数と呼ばれる。.

新しい!!: ボーア=ファン・リューエンの定理と常磁性 · 続きを見る »

交換法則

交換法則(こうかんほうそく、Commutative property) は数学における法則の一つ。可換則(かかんそく)や交換律(こうかんりつ)ともいう。.

新しい!!: ボーア=ファン・リューエンの定理と交換法則 · 続きを見る »

強磁性

強磁性 (きょうじせい、ferromagnetism) とは、隣り合うスピンが同一の方向を向いて整列し、全体として大きな磁気モーメントを持つ物質の磁性を指す。そのため、物質は外部磁場が無くても自発磁化を持つことが出来る。 室温で強磁性を示す単体の物質は少なく、鉄、コバルト、ニッケル、ガドリニウム(18℃以下)である。 単に強磁性と言うとフェリ磁性を含めることもあるが、日本語ではフェリ磁性を含まない狭義の強磁性をフェロ磁性と呼んで区別することがある。なおフェロ (ferro) は鉄を意味する。.

新しい!!: ボーア=ファン・リューエンの定理と強磁性 · 続きを見る »

ボルツマン分布

ボルツマン分布(ボルツマンぶんぷ、)は、一つのエネルギー準位にある粒子の数(占有数)の分布を与える理論式の一つである。ギブス分布とも呼ばれる。気体分子の速度の分布を与えるマクスウェル分布をより一般化したものに相当する。 量子統計力学においては、占有数の分布がフェルミ分布に従うフェルミ粒子と、ボース分布に従うボース粒子の二種類の粒子に大別できる。ボルツマン分布はこの二種類の粒子の違いが現れないような条件におけるフェルミ分布とボーズ分布の近似形(古典近似)である。ボルツマン分布に従う粒子は古典的粒子とも呼ばれる。 核磁気共鳴および電子スピン共鳴などにおいても、磁場の中で分裂した2つの準位の占有率はボルツマン分布に従う。.

新しい!!: ボーア=ファン・リューエンの定理とボルツマン分布 · 続きを見る »

プラズマ物理

プラズマ物理(プラズマぶつり)では、プラズマを理解するのに有用なもろもろの物理的概念を解説する。プラズマの全般的解説については項目プラズマを参照。.

新しい!!: ボーア=ファン・リューエンの定理とプラズマ物理 · 続きを見る »

ニールス・ボーア

ニールス・ヘンリク・ダヴィド・ボーア(Niels Henrik David Bohr、1885年10月7日 - 1962年11月18日)は、デンマークの理論物理学者。量子論の育ての親として、前期量子論の展開を指導、量子力学の確立に大いに貢献した。王立協会外国人会員。.

新しい!!: ボーア=ファン・リューエンの定理とニールス・ボーア · 続きを見る »

分配関数

統計力学において、分配関数(ぶんぱいかんすう、Partition function)または状態和(じょうたいわ、state sum, sum over states)は、ある系の物理量の統計集団的平均を計算する際に用いられる規格化定数を指す。単に分配関数と呼ぶときはカノニカル分布における分配関数を指し、ドイツ語で状態和を表す語Zustandssummeに由来する記号Zで表すW.

新しい!!: ボーア=ファン・リューエンの定理と分配関数 · 続きを見る »

ジョン・ヴァン・ヴレック

ョン・ハスブルーク・ヴァン・ヴレック(John Hasbrouck van Vleck, 1899年3月13日 - 1980年10月27日)はアメリカ合衆国の物理学者である。磁性の量子論の分野や金属錯体の結合に関する結晶場理論のパイオニアで、1977年「磁性体と無秩序系の電子構造の理論的研究」の功績によりフィリップ・アンダーソン 、ネヴィル・モットとノーベル物理学賞を受賞した。 コネチカット州のミドルタウンに祖父のジョン・モンロー・ヴァン・ヴレック、父のエドワード・バー・ヴァン・ヴレックも数学の大学教授という家系に生まれた。ハーバード大学で学び1923年ミネソタ大学の助教授になり、ウィスコンシン大学をへて、1928年からハーバード大学の教授となった。磁性の量子論や金属錯体の結合理論の基礎を築いた。 1953年には、国際理論物理学会 東京&京都 で来日した。.

新しい!!: ボーア=ファン・リューエンの定理とジョン・ヴァン・ヴレック · 続きを見る »

固体物理学

固体物理学(こたいぶつりがく、Solid-state physics)とは物理学の一分野であり、より広い意味で使われる物性物理学に含まれる分野である。.

新しい!!: ボーア=ファン・リューエンの定理と固体物理学 · 続きを見る »

特殊相対性理論

特殊相対性理論(とくしゅそうたいせいりろん、Spezielle Relativitätstheorie、Special relativity)とは、慣性運動する観測者が電磁気学的現象および力学的現象をどのように観測するかを記述する、物理学上の理論である。アルベルト・アインシュタインが1905年に発表した論文に端を発する。特殊相対論と呼ばれる事もある。.

新しい!!: ボーア=ファン・リューエンの定理と特殊相対性理論 · 続きを見る »

相対性理論

一般相対性理論によって記述される、2次元空間と時間の作る曲面。地球の質量によって空間が歪むとして記述して、重力を特殊相対性理論に取り入れる。実際の空間は3次元であることに注意すべし。 相対性理論(そうたいせいりろん、Relativitätstheorie, theory of relativity)または相対論は特殊相対性理論と一般相対性理論の総称である。量子論に対し古典論に分類される物理の分野としては、物理史的には最後の「大物」であった。量子力学と並び、いわゆる現代物理の基本的な理論である。 特殊と一般の、いずれもアルベルト・アインシュタインにより記述された。まず、等速運動する慣性系の間において物理法則は互いに不変であるはずという原理(相対性原理)と光速度不変の原理から導かれたのが、特殊相対性理論である(1905年)。特殊相対性理論は、時間と空間に関する相互間の変換が、相対速度が光速に近づくと、従来のいわゆる「ニュートン時空」的に信じられていたガリレイ変換の結果とは違ったものになること、そういった場合にはローレンツ変換が正しい変換であることを示した(「ミンコフスキー時空」)。 続いて、等価原理により加速度によるいわゆる「見かけの重力」と重力場を「等価」として、慣性系以外にも一般化したのが一般相対性理論である(1915〜1916年)。.

新しい!!: ボーア=ファン・リューエンの定理と相対性理論 · 続きを見る »

跡 (線型代数学)

数学、特に線型代数学における行列の跡(せき、trace; トレース、Spur; シュプール)あるいは対角和(たいかくわ)は行列の主対角成分の総和である。それは基底変換に関して不変であり、また固有値の総和(固有値和)に等しい。即ち、行列の跡は行列の相似を除いて定まり、したがって一般に行列に対応する線型写像の跡として定義することができる。 行列の跡は、正方行列に対してのみ定義されることに注意せよ。この語は(この同じ数学的対象を意味する)ドイツ語のSpurからの翻訳借用である。.

新しい!!: ボーア=ファン・リューエンの定理と跡 (線型代数学) · 続きを見る »

量子力学

量子力学(りょうしりきがく、quantum mechanics)は、一般相対性理論と同じく現代物理学の根幹を成す理論として知られ、主として分子や原子、あるいはそれを構成する電子など、微視的な物理現象を記述する力学である。 量子力学自身は前述のミクロな系における力学を記述する理論だが、取り扱う系をそうしたミクロな系の集まりとして解析することによって、ニュートン力学に代表される古典論では説明が困難であった巨視的な現象についても記述することができる。たとえば量子統計力学はそのような応用例の一つである。従って、生物や宇宙のようなあらゆる自然現象もその記述の対象となり得る。 代表的な量子力学の理論として、エルヴィン・シュレーディンガーによって創始された、シュレーディンガー方程式を基礎に置く波動力学と、ヴェルナー・ハイゼンベルク、マックス・ボルン、パスクアル・ヨルダンらによって構成された、ハイゼンベルクの運動方程式を基礎に置く行列力学がある。ただしこの二つは数学的に等価である。 基礎科学として重要で、現代の様々な科学や技術に必須な分野である。 たとえば科学分野について、太陽表面の黒点が磁石になっている現象は、量子力学によって初めて解明された。 技術分野について、半導体を利用する電子機器の設計など、微細な領域に関するテクノロジーのほとんどは量子力学を基礎として成り立っている。そのため量子力学の適用範囲の広さと現代生活への影響の大きさは非常に大きなものとなっている。一例として、パソコンや携帯電話、レーザーの発振器などは量子力学の応用で開発されている。工学において、電子工学や超伝導は量子力学を基礎として展開している。.

新しい!!: ボーア=ファン・リューエンの定理と量子力学 · 続きを見る »

電気工学

電気工学(でんきこうがく、electrical engineering)は、電気や磁気、光(電磁波)の研究や応用を取り扱う工学分野である。電気磁気現象が広汎な応用範囲を持つ根源的な現象であるため、通信工学、電子工学をはじめ、派生した技術でそれぞれまた学問分野を形成している。電気の特徴として「エネルギーの輸送手段」としても「情報の伝達媒体」としても大変有用であることが挙げられる。この観点から、前者を「強電」、後者を「弱電」と二分される。.

新しい!!: ボーア=ファン・リューエンの定理と電気工学 · 続きを見る »

1911年

記載なし。

新しい!!: ボーア=ファン・リューエンの定理と1911年 · 続きを見る »

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »