ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
インストール
ブラウザよりも高速アクセス!
 

ホログラフィック原理

索引 ホログラフィック原理

ホログラフィック原理 (holographic principle) は、空間の体積の記述はある領域の境界、特にのような光的境界の上に符号化されていると見なすことができるという量子重力および弦理論の性質である。ヘーラルト・トホーフトによって最初に提唱され、レオナルド・サスキンドによって精密な弦理論による解釈が与えられた。サスキンドはトホーフトとのアイデアを組み合わせることからこの解釈を導いた。ソーンは1978年に弦理論はより低次元の記述が可能であり、ここから現在ホログラフィック的と呼ばれるやり方で重力が現れることを見出していた。 より大きなより思弁的な意味では、この理論は、全宇宙は宇宙の地平面上に「描かれた」2次元の情報構造と見なすことができ、我々が観測する3次元は巨視的スケールおよび低エネルギー領域での有効な記述にすぎないことを示唆する。宇宙の地平面は、有限の領域で時間とともに膨張していることもあり、数学的には正確に定義されていない。 ホログラフィック原理はブラックホール熱力学から着想された。ブラックホール熱力学ではどんなスケールの領域でも最大エントロピーはその領域の半径の三乗ではなく二乗に比例することを示唆する。ブラックホールの場合、ブラックホールに落ち込んだすべての物体が持つ情報は事象の地平面の表面の変動に完全に含まれることが推測される。ホログラフィック原理はブラックホール情報パラドックスを弦理論の枠組み内で解決する。.

72 関係: AdS/CFT対応同型写像境界 (位相空間論)宇宙対数密度行列事象の地平面弦理論微視的マーゴラス=レヴィンチンの定理ネイチャーモデムヤコブ・ベッケンシュタインルートヴィッヒ・ボルツマンレオナルド・サスキンドロバート・ボイルヴィラソロ代数ボルツマンの公式ヘーラルト・トホーフトブラックホールブラックホールの熱力学ブラックホール情報パラドックスブレーンワールドプランク単位系ビットフアン・マルダセナフィジカル・レビューフェルミ国立加速器研究所ホログラフィーホーキング放射ベッケンシュタイン境界アインシュタイン方程式インテグラル (宇宙望遠鏡)ウィリアム・ブレイクエントロピーエントロピック重力ガンマ線バーストクロード・シャノンゲージ理論ジョン・ロックジョン・ホイーラースティーヴン・ホーキングタイプII超弦理論サイエンティフィック・アメリカン現代宇宙論磁場空間素粒子熱力学熱力学第二法則...DVDE=mc2観測可能な宇宙詳細釣り合い高エネルギー物理学重力重力場重力波量子状態量子重力理論量子色力学自由度電場M理論欧州宇宙機関波動関数測地線情報情報科学情報量2次元3次元 インデックスを展開 (22 もっと) »

AdS/CFT対応

論物理学では、AdS/CFT対応(AdS/CFTたいおう、anti-de Sitter/conformal field theory correspondence)は、マルダセーナ双対(Maldacena duality)あるいはゲージ/重力双対(gauge/gravity duality)とも呼ばれ、2つの物理理論の種類の間の関係を予言するものである。対応の片側は、共形場理論 (CFT) で、場の量子論で基本粒子を記述するヤン=ミルズ理論の類似物を意味し、対応する反対側は、反ド・ジッター空間(AdS)で、量子重力の理論で使われる空間である。この対応は弦理論やM-理論のことばで定式化された。 双対性は、弦理論と量子重力の理解の主要な発展の現れである。この理由は、双対性がある境界条件を持つ弦理論の(non-perturbative)な定式化であるからであり、注目を浴びている量子重力のアイデアのホログラフィック原理を最もうまく実現しているからである。ホログラフィック原理は、もともとジェラルド・トフーフトが提唱し、レオナルド・サスキンドにより改善されている。 加えて、の場の量子論の研究への強力なツールを提供している。 双対性の有益さの大半は、強弱双対性から来ている。つまり、場の量子論が強い相互作用である場合に、重力理論の側は弱い相互作用であるので、数学的に取り扱い易くなっている。この事実は、強結合の理論を強弱対称性により数学的に扱い易い弱結合の理論に変換することにより、原子核物理学や物性物理学での多くの研究に使われてきている。 AdS/CFT対応は、最初に1997年末、フアン・マルダセナにより提起された。この対応の重要な面は、、、アレクサンドル・ポリヤコフの論文や、エドワード・ウィッテンの論文により精査された。2014にはマルダセナの論文の引用は10000件を超え、高エネルギー物理学の分野の最も多く引用される論文となっている。.

新しい!!: ホログラフィック原理とAdS/CFT対応 · 続きを見る »

同型写像

数学において,同型写像(isomorphismfrom the Ancient Greek: ἴσος isos "equal", and μορφή morphe "form" or "shape")あるいは単に同型とは,は準同型写像あるいは射であって,逆射を持つものである逆関数ではない..2つの数学的対象が同型 (isomorphic) であるとは,それらの間に同型写像が存在することをいう.自己同型写像は始域と終域が同じ同型写像である.同型写像の興味は2つの同型な対象は写像を定義するのに使われる性質のみを使って区別できないという事実にある.したがって同型な対象はこれらの性質やその結果だけを考える限り同じものと考えてよい. 群や環を含むほとんどの代数的構造に対して,準同型写像が同型写像であることと全単射であることは同値である. 位相幾何学において,射とは連続写像のことであるが,同型写像は同相写像あるいは双連続写像とも呼ばれる.解析学において,射は可微分関数であり,同型写像は微分同相とも呼ばれる. 標準的な同型写像 (canonical isomorphism) は同型であるようなである.2つの対象が標準的に同型 (canonically isomorphic) であるとは,それらの間に標準的な同型写像が存在することをいう.例えば,有限次元ベクトル空間 から二重双対空間への標準的な写像は標準的な同型写像である.一方, は双対空間に同型であるが,一般には標準的にではない. 同型写像は圏論を用いて形式化される.ある圏の射 が同型射であるとは,両側逆射を持つことをいう,すなわち,その圏における別の射 があって, かつ となる,ただし と はそれぞれ と の恒等射である..

新しい!!: ホログラフィック原理と同型写像 · 続きを見る »

境界 (位相空間論)

一般位相において位相空間 X の部分集合 S の境界(きょうかい、boundary, frontier)とは、S の中からも外からも近づくことのできる点の全体の成す X の部分集合のことである。もうすこし形式的に言えば、S の触点(閉包に属する点)のうち、S の内点(開核に属する点)ではないものの全体の成す集合のことである。S の境界に属する点のことを、S の境界点(boundary point) と呼ぶ。S が境界を持たない (boundaryless) とは、S が自身の境界を包含しないこと、あるいは同じことだが境界点がひとつも S に属さないことをいう。集合 S の境界を表すのに、bd(S), fr(S), ∂S最初のふたつはそれぞれ boundary, frontier の省略形からきている(が、省略の仕方は変えてもいいし省略しなくてもいい)。これ以外の記法としては、松坂では frontier の頭文字を右肩に載せる Sf を用いている。内部 (interior).

新しい!!: ホログラフィック原理と境界 (位相空間論) · 続きを見る »

宇宙

宇宙(うちゅう)とは、以下のように定義される。.

新しい!!: ホログラフィック原理と宇宙 · 続きを見る »

対数

対数(たいすう、logarithm)とは、ある数 を数 の冪乗 として表した場合の冪指数 である。この は「底を とする の対数(x to base; base logarithm of )」と呼ばれ、通常は と書き表される。また、対数 に対する は(しんすう、antilogarithm)と呼ばれる。数 に対応する対数を与える関数を考えることができ、そのような関数を対数関数と呼ぶ。対数関数は通常 と表される。 通常の対数 は真数, 底 を実数として定義されるが、実数の対数からの類推により、複素数や行列などの様々な数に対してその対数が定義されている。 実数の対数 は、底 が でない正数であり、真数 が正数である場合この条件は真数条件と呼ばれる。 について定義される。 これらの条件を満たす対数は、ある と の組に対してただ一つに定まる。 実数の対数関数 はb に対する指数関数 の逆関数である。この性質はしばしば対数関数の定義として用いられるが、歴史的には対数の出現の方が指数関数よりも先であるネイピア数 のヤコブ・ベルヌーイによる発見が1683年であり、指数関数の発見もその頃である。詳細は指数関数#歴史と概観や を参照。。 y 軸を漸近線に持つ。.

新しい!!: ホログラフィック原理と対数 · 続きを見る »

密度行列

密度行列(みつどぎょうれつ、density matrix)は、量子力学における混合状態を表現するために使われる行列である。そこで本項ではまず混合状態とは何かについて解説し、その後に密度行列について解説する。.

新しい!!: ホログラフィック原理と密度行列 · 続きを見る »

事象の地平面

事象の地平面(じしょうのちへいめん、)は、物理学・相対性理論の概念で、情報伝達の境界面である。シュバルツシルト面や事象の地平線(じしょうのちへいせん)ということもある。 情報は光や電磁波などにより伝達され、その最大速度は光速であるが、光などでも到達できなくなる領域(距離)が存在し、ここより先の情報を我々は知ることができない。この境界を指し「事象の地平面」と呼ぶ。.

新しい!!: ホログラフィック原理と事象の地平面 · 続きを見る »

弦理論

弦理論(げんりろん、string theory)は、粒子を0次元の点ではなく1次元の弦として扱う理論、仮説のこと。ひも理論、ストリング理論とも呼ばれる。.

新しい!!: ホログラフィック原理と弦理論 · 続きを見る »

微視的

微視的(びしてき、)とは、肉眼で見えない微小な物や事ブリタニカ国際大百科事典-小項目電子辞書版。。ミクロスコピックまたはミクロともいい、通常は物の構成要素(分子、原子、原子核、素粒子)を意味する。顕微鏡で見られる大きさの物を対象とすることもある。広義には、一つの体系を構成する個々の要素またはその挙動も意味する。 これに対して、巨視的(きょしてき、、マクロ)は、本来は肉眼で見える大きさの物や事柄を意味するが、分子、原子などの多数の集合体の意味として用いられている。巨視的な対象が古典力学で記述されるのに対し、微視的な対象はしばしば現代物理学である量子力学での取り扱いを要する。.

新しい!!: ホログラフィック原理と微視的 · 続きを見る »

マーゴラス=レヴィンチンの定理

マーゴラス=レヴィンチンの定理 (Margolus–Levitin theorem) は、量子計算(厳密には計算の全ての形態)の根源的な限界を与える。この定理によると、量子コンピュータの処理速度は一秒あたりエネルギーのジュールあたり6 × 1033 演算を越えることはできない。この定理は、マーゴラス (en) およびレヴィンチン (en) により見いだされた。 この定理は、量子計算以外の分野でも興味深いものである。例えば、それはホログラフィック原理、デジタル物理学、シミュレーテッドリアリティ、数学的宇宙仮説、およびと関連している。.

新しい!!: ホログラフィック原理とマーゴラス=レヴィンチンの定理 · 続きを見る »

ネイチャー

『ネイチャー』()は、1869年11月4日、イギリスで天文学者ノーマン・ロッキャーによって創刊された総合学術雑誌である。 世界で特に権威のある学術雑誌のひとつと評価されており、主要な読者は世界中の研究者である。雑誌の記事の多くは学術論文が占め、他に解説記事、ニュース、コラムなどが掲載されている。記事の編集は、イギリスの Nature Publishing Group (NPG) によって行われている。NPGからは、関連誌として他に『ネイチャー ジェネティクス』や『ネイチャー マテリアルズ』など十数誌を発行し、いずれも高いインパクトファクターを持つ。.

新しい!!: ホログラフィック原理とネイチャー · 続きを見る »

モデム

モデム(modem)は、ディジタル通信の送受信装置である。modemという語は、送信のためのデータに基づく変調装置(モジュレータ、modulator)と、受信した信号からデータを取出す復調装置(デモジュレータ、demodulator)のそれぞれの前半を取り出してつなげた一種のかばん語である。ディジタル信号を伝送路の特性に合わせたアナログ信号にデジタル変調して送信するとともに、伝送路からのアナログ信号をデジタル信号に復調して受信するデータ回線終端装置の機能部分であり、通信方式は、ITU-Tにより標準化されている。.

新しい!!: ホログラフィック原理とモデム · 続きを見る »

ヤコブ・ベッケンシュタイン

ヤコブ・ベッケンシュタイン(Jacob David Bekenstein, 1947年5月1日 - 2015年8月16日)はイスラエルの物理学者。ブラックホール熱力学の創立に、また情報と重力のあいだの他の見方について貢献したことで知られる。 メキシコのメキシコシティ生まれ。ヘブライ大学の理論物理学の教授である。.

新しい!!: ホログラフィック原理とヤコブ・ベッケンシュタイン · 続きを見る »

ルートヴィッヒ・ボルツマン

ウィーンにあるボルツマンの墓にはエントロピーの公式が刻まれている。 ルートヴィッヒ・エードゥアルト・ボルツマン(Ludwig Eduard Boltzmann, 1844年2月20日 - 1906年9月5日)は、オーストリア・ウィーン出身の物理学者、哲学者でウィーン大学教授。統計力学の端緒を開いた功績のほか、電磁気学、熱力学、数学の研究で知られる。.

新しい!!: ホログラフィック原理とルートヴィッヒ・ボルツマン · 続きを見る »

レオナルド・サスキンド

レオナルド・サスキンド(Leonard Susskind、1940年 - )はアメリカの物理学者。素粒子物理学における弦理論の創始者の一人。.

新しい!!: ホログラフィック原理とレオナルド・サスキンド · 続きを見る »

ロバート・ボイル

バート・ボイル(Sir Robert Boyle、1627年1月25日 - 1691年12月31日)は、アイルランド・出身の貴族、自然哲学者、化学者、物理学者、発明家。神学に関する著書もある。ロンドン王立協会フェロー。ボイルの法則で知られている。彼の研究は錬金術の伝統を根幹としているが、近代化学の祖とされることが多い。特に著書『懐疑的化学者』 (The Sceptical Chymist) は化学という分野の基礎を築いたとされている。.

新しい!!: ホログラフィック原理とロバート・ボイル · 続きを見る »

ヴィラソロ代数

数学・物理学においてヴィラソロ代数(ヴィラソロだいすう、Virasoro algebra)は円周上定義される複素多項式ベクトル場の中心拡大として与えられる無限次元複素リー環で、共形場理論や弦理論において広く用いられる。名称は物理学者のに由来する。.

新しい!!: ホログラフィック原理とヴィラソロ代数 · 続きを見る »

ボルツマンの公式

統計力学において、ボルツマンの公式(ボルツマンの原理、ボルツマンの関係式)とは、マクロな世界の熱力学におけるエントロピーSと、そのマクロ状態に相当するミクロ状態の数Wを結びつける以下の関係式のことである。 ここでkはボルツマン定数(1.38062 x 10−23 J/K)、Wは与えられたマクロ状態に相当するミクロ状態の数である。 また、"log"は自然対数である。よって、そのことを強調して以下のように表記されることもある。 1934年にスイスの物理化学者は、ボルツマンの公式を用いて、ゴム分子の状態方程式を導出することに成功した。これはゴムのエントロピーモデルとして知られる。.

新しい!!: ホログラフィック原理とボルツマンの公式 · 続きを見る »

ヘーラルト・トホーフト

ヘーラルト・トホーフト(Gerardus ("Gerard") 't Hooft 、1946年7月5日 - )は、オランダの理論物理学者。1999年、電弱相互作用の量子構造の解明によりノーベル物理学賞をマルティヌス・フェルトマンと受賞した。 デン・ヘルダー出身。大おじにノーベル物理学受賞者のフリッツ・ゼルニケ、おじに理論物理学者のニコラス・ファン・カンペンがいる。 1971年、当時ユトレヒト大学のフェルトマンの研究室の大学院生であったトホーフトは、ゲージ理論によって弱い力と電磁気力を統一しようとする試みに残されていた課題を、フェルトマンから与えられて1年あまりで解決した。量子色力学、超ひも理論の発展させる重要な業績となった。 弟子にダイクラーフ・ヴァッファ理論のロベルト・ダイクラーフがいる。 彼にちなんで小惑星9491に「トホーフト」という名が与えられたが、「Thooft」とスペルミスをされて登録されてしまった。.

新しい!!: ホログラフィック原理とヘーラルト・トホーフト · 続きを見る »

ブラックホール

ブラックホール(black hole)とは、極めて高密度かつ大質量で、強い重力のために物質だけでなく光さえ脱出することができない天体である。.

新しい!!: ホログラフィック原理とブラックホール · 続きを見る »

ブラックホールの熱力学

物理学において、ブラックホール熱力学(ブラックホールねつりきがく、black hole thermodynamics)は、ブラックホールの事象の地平線の存在を含む熱力学の法則を探す研究分野である。黒体輻射 (black body radiation) の統計力学の研究が量子力学の到来を促したのと同じように、ブラックホールの統計力学を理解しようとする努力は、量子重力理論の理解に深い影響を与えてきており、ホログラフィック原理の定式化を導いた。 -->.

新しい!!: ホログラフィック原理とブラックホールの熱力学 · 続きを見る »

ブラックホール情報パラドックス

ブラックホールのイメージ ブラックホール情報パラドックス(Black hole information paradox)は、量子力学と一般相対性理論の組合せに起因するパラドックスである。物理的情報は、ブラックホールの中で永遠に消失するため、多くの量子状態が同じ状態を取ることを許容する。これは、ある時点での物理系に関する完全な情報は、別の時点での状態を決定するべきだという、科学的方法の原則から逸脱するため、論争を呼んだ。量子力学の基礎的な前提では、系の完全な情報は、波動関数の収縮まで、波動関数の中に埋め込まれる。波動関数の進化は、ユニタリ作用素によって決定され、ユニタリティは、情報は量子状態に保存されることを示唆する。これは、決定論の厳しい形である。.

新しい!!: ホログラフィック原理とブラックホール情報パラドックス · 続きを見る »

ブレーンワールド

ブレーンワールド(膜宇宙、braneworld)またはブレーン宇宙論(brane cosmology)とは、『我々の認識している4次元時空(3次元空間+時間)の宇宙は、さらに高次元の時空(バルク(bulk))に埋め込まれた膜(ブレーン(brane))のような時空なのではないか』と考える宇宙モデルである。低エネルギーでは(我々自身を含む)標準模型の素粒子の相互作用が4次元世界面(ブレーン)上に閉じ込められ、重力だけが余剰次元(5次元目以降の次元)方向に伝播できる、とする。.

新しい!!: ホログラフィック原理とブレーンワールド · 続きを見る »

プランク単位系

プランク単位系(プランクたんいけい)は、マックス・プランクによって提唱された自然単位系である。 プランク単位系では以下の物理定数の値を 1 として定義している。 プランク単位系は物理学者によって「神の単位」と半ばユーモラスに言及される。自然単位系は「人間中心的な自由裁量が除かれた単位系」であり、ごく一部の物理学者は「地球外の知的生命体も同じ単位系を使用しているに違いない」と信じている。 プランク単位系は、物理学者が問題を再構成するのに役立つ。.

新しい!!: ホログラフィック原理とプランク単位系 · 続きを見る »

ビット

ビット (bit, b) は、ほとんどのデジタルコンピュータが扱うデータの最小単位。英語の binary digit (2進数字)の略であり、2進数の1けたのこと。量子情報科学においては古典ビットと呼ばれる。 1ビットを用いて2通りの状態を表現できる(二元符号)。これらの2状態は一般に"0"、"1"と表記される。 情報理論における選択情報およびエントロピーの単位も「ビット」と呼んでいるが、これらの単位は「シャノン」とも呼ばれる(詳細は情報量を参照)。 省略記法として、バイトの略記である大文字の B と区別するために、小文字の b と表記する。.

新しい!!: ホログラフィック原理とビット · 続きを見る »

フアン・マルダセナ

フアン・マルティン・マルダセナ(Juan Martin MALDACENA、1968年9月10日 - )は、アルゼンチンのブエノスアイレス出身の理論物理学者である。専門は素粒子理論。アメリカ合衆国のプリンストンにある高等研究所自然科学部門の教授を務めている。.

新しい!!: ホログラフィック原理とフアン・マルダセナ · 続きを見る »

フィジカル・レビュー

『フィジカル・レビュー』(英語:Physical Review)はアメリカ物理学会が発行する学術雑誌で、物理学の専門誌としては最も権威がある。現在、Physical Review AからEまでの領域別専門誌と、物理学全領域を扱う速報誌Physical Review Lettersに分かれており、特にPhysical Review Lettersに論文を載せることは物理学者の一つの目標となっている。.

新しい!!: ホログラフィック原理とフィジカル・レビュー · 続きを見る »

フェルミ国立加速器研究所

フェルミ国立加速器研究所(フェルミこくりつかそくきけんきゅうじょ、英称:Fermi National Accelerator Laboratory、通称:フェルミ研究所、Fermilab、FNAL)は、アメリカ合衆国イリノイ州シカゴ近郊バタヴィアにある米国エネルギー省の国立高エネルギー物理学研究所。 超伝導磁石を用いた大型(直径約2km、磁場の最大強さ2テスラ)の陽子・反陽子衝突型加速器テバトロン (Tevatron) を有し、トップクォークの検出に成功したことでも有名。 研究所の名前は、「原子炉の父」こと原子物理学者エンリコ・フェルミに由来する。.

新しい!!: ホログラフィック原理とフェルミ国立加速器研究所 · 続きを見る »

ホログラフィー

ホログラフィー(holography, ギリシア語の ὅλος (全体の) + γραφή (記録) から)は、3次元像を記録した写真ホログラム の製造技術のことである。ホログラフィーは情報の記録にも利用することができる。.

新しい!!: ホログラフィック原理とホログラフィー · 続きを見る »

ホーキング放射

ホーキング放射(ホーキングほうしゃ、Hawking radiation)またはホーキング輻射(ふくしゃ)とは、スティーヴン・ホーキングが存在を提唱・指摘した、ブラックホールからの熱的な放射のことである。 「ブラックホールは熱的な特性を持つだろう」と予言したヤコブ・ベッケンシュタインの名前を取って、ベッケンシュタイン・ホーキング輻射()と呼ぶこともある。.

新しい!!: ホログラフィック原理とホーキング放射 · 続きを見る »

ベッケンシュタイン境界

物理学では、ベッケンシュタイン境界(Bekenstein bound)は、エントロピー S、あるいは、情報量 I の上界であり、与えられた有限な領域の空間内には有限なエネルギーしか持たない、また逆に、与えられた量子レベルへ落とした物理系を完全に記述する情報の最大量があることを意味する。Jacob D. Bekenstein,, Physical Review D, Vol.

新しい!!: ホログラフィック原理とベッケンシュタイン境界 · 続きを見る »

アインシュタイン方程式

一般相対性理論におけるアインシュタイン方程式(アインシュタインほうていしき、)アインシュタインの重力場方程式(じゅうりょくばのほうていしき、Einstein's field equations;EFE)とも呼ばれる。は、万有引力・重力場を記述する場の方程式である。アルベルト・アインシュタインによって導入された。 アイザック・ニュートンが導いた万有引力の法則を、強い重力場に対して適用できるように拡張した方程式であり、中性子星やブラックホールなどの高密度・大質量天体や、宇宙全体の幾何学などを扱える。.

新しい!!: ホログラフィック原理とアインシュタイン方程式 · 続きを見る »

インテグラル (宇宙望遠鏡)

インテグラル(INTErnational Gamma-Ray Astrophysics Laboratory、INTEGRAL)は、欧州宇宙機関 (ESA) が運営し地球の周囲を周回している、ガンマ線観測人工衛星である。 2002年に、宇宙から来る強い放射線を検出するために打ち上げられた。これまで打ち上げられた中で、最も感度の良いガンマ線観測装置である。 インテグラルは、ESAがロシア連邦宇宙局 (FKA) およびアメリカ航空宇宙局 (NASA) と共同で進めているミッションである。謎の「鉄クエーサー」の検出等、いくつかの顕著な業績を挙げている。またガンマ線バーストやブラックホールの実在の証拠の調査等でも大きな成功を収めている。.

新しい!!: ホログラフィック原理とインテグラル (宇宙望遠鏡) · 続きを見る »

ウィリアム・ブレイク

ウィリアム・ブレイク(William Blake, 1757年11月28日 - 1827年8月12日)は、イギリスの詩人、画家、銅版画職人。預言書『ミルトン』の序詞「古代あの足が(And did those feet in ancient time)」が1918年にヒューバート・パリーによって音楽が付けられたものが聖歌『エルサレム』としてまたは事実上のイングランドの国歌として現在のイギリスではたいへんよく知られている。.

新しい!!: ホログラフィック原理とウィリアム・ブレイク · 続きを見る »

エントロピー

ントロピー(entropy)は、熱力学および統計力学において定義される示量性の状態量である。熱力学において断熱条件下での不可逆性を表す指標として導入され、統計力学において系の微視的な「乱雑さ」「でたらめさ」と表現されることもある。ここでいう「でたらめ」とは、矛盾や誤りを含んでいたり、的外れであるという意味ではなく、相関がなくランダムであるという意味である。を表す物理量という意味付けがなされた。統計力学での結果から、系から得られる情報に関係があることが指摘され、情報理論にも応用されるようになった。物理学者ののようにむしろ物理学におけるエントロピーを情報理論の一応用とみなすべきだと主張する者もいる。 エントロピーはエネルギーを温度で割った次元を持ち、SIにおける単位はジュール毎ケルビン(記号: J/K)である。エントロピーと同じ次元を持つ量として熱容量がある。エントロピーはサディ・カルノーにちなんで一般に記号 を用いて表される。.

新しい!!: ホログラフィック原理とエントロピー · 続きを見る »

エントロピック重力

ントロピック重力(Entropic gravity)または創発的重力(emergent gravity)は、現代物理学の理論であり、重力をエントロピックな力として記述する。エントロピックな力は、(電磁気力の光子や強い核力のグルーオンのような)場の量子論やゲージ理論を媒介とした基本相互作用ではなく、物理系のエントロピーを増加させようとする傾向の確率論的な結果のことを言う。この提案は、物理学会で論争されていて、重力の熱力学的性質の研究の新しい方向を呼び起こした。.

新しい!!: ホログラフィック原理とエントロピック重力 · 続きを見る »

ガンマ線バースト

1999年1月23日に起きたガンマ線バースト GRB 990123 の可視光での残光(白い四角形の中の輝点。右は拡大図)。残光の上部に伸びるフィラメント状の天体はバースト源をもつと思われる銀河。この銀河は別の銀河との衝突によって形が歪んでいる。 ガンマ線バースト(ガンマせんバースト、、)は、天文学の分野で知られている中で最も光度の高い物理現象である。 ガンマ線バーストではガンマ線が数秒から数時間にわたって閃光のように放出され、そのあとX線の残光が数日間見られる。この現象は天球上のランダムな位置で起こり、一日に数回起きている。 ガンマ線バーストを起こす元となる仮想的な天体をガンマ線バースターと呼ぶ。2005年現在では、ガンマ線バーストは極超新星と関連しているという説が最も有力である。超大質量の恒星が一生を終える時に極超新星となって爆発し、これによってブラックホールが形成され、バーストが起こるとされる。多くのガンマ線バーストは何十億光年も離れた場所で生じている事実は、この現象が極めてエネルギーが高く(太陽が100億年間で放出するエネルギーを上回る)、かつめったに起こらない現象である事を示唆している(1つの銀河で数百万年に一度しか発生しない)。これまで観測された全てのガンマ線バーストは銀河系の外で生じている。似たような現象として軟ガンマ線リピーターがあるが、これは銀河系内のマグネターによるものである。ガンマ線バーストが銀河系で生じ、地球方向に放出された場合、大量絶滅を引き起こすと仮定されている。 しかし天体物理学界ではガンマ線バーストの詳細な発生機構についての合意は得られていない。.

新しい!!: ホログラフィック原理とガンマ線バースト · 続きを見る »

クロード・シャノン

ード・エルウッド・シャノン(Claude Elwood Shannon, 1916年4月30日 - 2001年2月24日)はアメリカ合衆国の電気工学者、数学者。20世紀科学史における、最も影響を与えた科学者の一人である。 情報理論の考案者であり、情報理論の父と呼ばれた。情報、通信、暗号、データ圧縮、符号化など今日の情報社会に必須の分野の先駆的研究を残した。アラン・チューリングやジョン・フォン・ノイマンらとともに今日のコンピュータ技術の基礎を作り上げた人物として、しばしば挙げられる。.

新しい!!: ホログラフィック原理とクロード・シャノン · 続きを見る »

ゲージ理論

ージ理論(ゲージりろん、gauge theory)とは、連続的な局所変換の下でラグランジアンが不変となるような系を扱う場の理論である。.

新しい!!: ホログラフィック原理とゲージ理論 · 続きを見る »

ジョン・ロック

ョン・ロック(John Locke、1632年8月29日 - 1704年10月28日)は、イギリスの哲学者。哲学者としては、イギリス経験論の父と呼ばれ、主著『人間悟性論』(『人間知性論』)において経験論的認識論を体系化した。また、政治哲学者としての側面も非常に有名である。『統治二論』などにおける彼の自由主義的な政治思想は名誉革命を理論的に正当化するものとなり、その中で示された社会契約や抵抗権についての考えはアメリカ独立宣言、フランス人権宣言に大きな影響を与えた。.

新しい!!: ホログラフィック原理とジョン・ロック · 続きを見る »

ジョン・ホイーラー

ョン・アーチボルト・ホイーラー(John Archibald Wheeler, 1911年7月9日 - 2008年4月13日)は、アメリカ合衆国の物理学者である。.

新しい!!: ホログラフィック原理とジョン・ホイーラー · 続きを見る »

スティーヴン・ホーキング

ティーヴン・ウィリアム・ホーキング(Stephen William Hawking、1942年1月8日 - 2018年3月14日)は、イギリスの理論物理学者である。大英帝国勲章(CBE)受勲、FRS(王立協会フェロー)、FRA(ロイヤル・ソサエティ・オブ・アーツフェロー)。スティーブン・ホーキングとも。 一般相対性理論と関わる分野で理論的研究を前進させ、1963年にブラックホールの特異点定理を発表し世界的に名を知られた。1971年には「宇宙創成直後に小さなブラックホールが多数発生する」とする理論を提唱、1974年には「ブラックホールは素粒子を放出することによってその勢力を弱め、やがて爆発により消滅する」とする理論(ホーキング放射)を発表、量子宇宙論という分野を形作ることになった。現代宇宙論に多大な影響を与えた人物である。 また、一般人向けに現代の理論的宇宙論を平易に解説するサイエンス・ライターの才能も持ち合わせており、その著作群が各国で翻訳されており、これでも人々によく知られている(日本語版は『ホーキング、宇宙を語る』など)。 「車椅子の物理学者」としても知られる。1960年代、学生の頃に筋萎縮性側索硬化症(ALS)を発症したとされている。ALSは長い間、発症から5年程度で死に至る病であると考えられていたが、途中で進行が急に弱まり、発症から50年以上にわたり研究活動を続けた。晩年は意思伝達のために重度障害者用意思伝達装置を使っており、スピーチや会話ではコンピュータプログラムによる合成音声を利用していた。.

新しい!!: ホログラフィック原理とスティーヴン・ホーキング · 続きを見る »

タイプII超弦理論

タイプII超弦理論(英語:type II superstring theory)とは、10次元時空において定義される5種類の超弦理論のうちの2つ(タイプIIA、タイプIIB)のことである。この2つの理論は、ともに最大の超対称性(32の超対称性チャージ)を持っている。これらはともに向き付けのある閉じた弦の理論であるが、世界面上でのGSO射影の課し方による違いがある。.

新しい!!: ホログラフィック原理とタイプII超弦理論 · 続きを見る »

サイエンティフィック・アメリカン

『サイエンティフィック・アメリカン』(Scientific American)は、アメリカ合衆国の一般読者向け科学雑誌。1845年8月28日創刊で、一般向け科学雑誌としては世界最古、また現在定期刊行されているアメリカの雑誌としても最古である。学術雑誌のような査読は行っていないが、主として第一線の研究者自らが執筆しており、内容は高く評価されている。 現在は月刊だが、初期は週刊の新聞風刊行物だった。 日本版としては『日経サイエンス』が発行されている(以前は『サイエンス』と称したが、学術誌の『サイエンス』と勘違いされるため変更した)。これはアメリカ版の翻訳記事が中心となっているが、独自の記事も加えて編集されている。そのほかイタリア版の"Le Scienze"など、多数の外国版が出ている。.

新しい!!: ホログラフィック原理とサイエンティフィック・アメリカン · 続きを見る »

現代宇宙論

代宇宙論(げんだいうちゅうろん、)は、すなわち、現代の宇宙論である。現代の科学者が「現代宇宙論」という言葉で指しているのは、おおむね英語の (フィジカル・コスモロジー)に相当する。フィジカル・コスモロジーは、物理学と天文物理学の一部門であり、宇宙の大規模構造および宇宙の生成や宇宙の変化に関する根本的な問題を扱っている。.

新しい!!: ホログラフィック原理と現代宇宙論 · 続きを見る »

磁場

磁場(じば、Magnetic field)は、電気的現象・磁気的現象を記述するための物理的概念である。工学分野では、磁界(じかい)ということもある。 単に磁場と言った場合は磁束密度Bもしくは、「磁場の強さ」Hのどちらかを指すものとして用いられるが、どちらを指しているのかは文脈により、また、どちらの解釈としても問題ない場合も多い。後述のとおりBとHは一定の関係にあるが、BとHの単位は国際単位系(SI)でそれぞれWb/m², A/m であり、次元も異なる独立した二つの物理量である。Hの単位はN/Wbで表すこともある。なお、CGS単位系における、磁場(の強さ)Hの単位は、Oeである。 この項では一般的な磁場の性質、及びHを扱うこととする。 磁場は、空間の各点で向きと大きさを持つ物理量(ベクトル場)であり、電場の時間的変化または電流によって形成される。磁場の大きさは、+1のN極が受ける力の大きさで表される。磁場を図示する場合、N極からS極向きに磁力線の矢印を描く。 小学校などの理科の授業では、砂鉄が磁石の周りを囲むように引きつけられる現象をもって、磁場の存在を教える。このことから、磁場の影響を受けるのは鉄だけであると思われがちだが、強力な磁場の中では、様々な物質が影響を受ける。最近では、磁場や電場(電磁場、電磁波)が生物に与える影響について関心が寄せられている。.

新しい!!: ホログラフィック原理と磁場 · 続きを見る »

空間

間(くうかん)とは、.

新しい!!: ホログラフィック原理と空間 · 続きを見る »

素粒子

物理学において素粒子(そりゅうし、elementary particle)とは、物質を構成する最小の単位のことである。基本粒子とほぼ同義語である。.

新しい!!: ホログラフィック原理と素粒子 · 続きを見る »

熱力学

熱力学(ねつりきがく、thermodynamics)は、物理学の一分野で、熱や物質の輸送現象やそれに伴う力学的な仕事についてを、系の巨視的性質から扱う学問。アボガドロ定数個程度の分子から成る物質の巨視的な性質を巨視的な物理量(エネルギー、温度、エントロピー、圧力、体積、物質量または分子数、化学ポテンシャルなど)を用いて記述する。 熱力学には大きく分けて「平衡系の熱力学」と「非平衡系の熱力学」がある。「非平衡系の熱力学」はまだ、限られた状況でしか成り立たないような理論しかできていないので、単に「熱力学」と言えば、普通は「平衡系の熱力学」のことを指す。両者を区別する場合、平衡系の熱力学を平衡熱力学、非平衡系の熱力学を非平衡熱力学 と呼ぶ。 ここでいう平衡 とは熱力学的平衡、つまり熱平衡、力学的平衡、化学平衡の三者を意味し、系の熱力学的(巨視的)状態量が変化しない状態を意味する。 平衡熱力学は(すなわち通常の熱力学は)、系の平衡状態とそれぞれの平衡状態を結ぶ過程とによって特徴付ける。平衡熱力学において扱う過程は、その始状態と終状態が平衡状態であるということを除いて、系の状態に制限を与えない。 熱力学と関係の深い物理学の分野として統計力学がある。統計力学は熱力学を古典力学や量子力学の立場から説明する試みであり、熱力学と統計力学は体系としては独立している。しかしながら、系の平衡状態を統計力学的に記述し、系の状態の遷移については熱力学によって記述するといったように、一つの現象や定理に対して両者の結果を援用している 。しかしながら、アインシュタインはこの手法を否定している。.

新しい!!: ホログラフィック原理と熱力学 · 続きを見る »

熱力学第二法則

熱力学第二法則(ねつりきがくだいにほうそく、)は、エネルギーの移動の方向とエネルギーの質に関する法則である。またエントロピーという概念に密接に関係するものである。この法則は科学者ごとにさまざまな言葉で表現されているが、どの表現もほぼ同じことを示している。 例えば、電気エネルギーが電熱線を使って熱エネルギーに変換するが、電熱線に熱エネルギーを与えても、電気エネルギーには変換しないことは経験上知られている。つまり、電気エネルギーは質の高いエネルギーであるが、熱エネルギーの質は低い。.

新しい!!: ホログラフィック原理と熱力学第二法則 · 続きを見る »

DVD

市販のDVDレコーダー(ソニー製) 市販のDVD録画用生ディスク(パナソニック製DVD-RAM) DVD(ディー・ブイ・ディー)は、デジタルデータの記録媒体である第2世代光ディスクの一種である。.

新しい!!: ホログラフィック原理とDVD · 続きを見る »

E=mc2

(イー・イコール・エム・シーじじょう、イー・イコール・エム・シー・スクエアド、E equals m c squared)とは、 の物理学的関係式を指し、「質量とエネルギーの等価性」とその定量的関係を表している。アルベルト・アインシュタインにより、特殊相対性理論の帰結として、1905年の論文『物体の慣性はその物体の含むエネルギーに依存するであろうか』内で発表された。 この等価性の帰結として、質量の消失はエネルギーの発生を、エネルギーの消失は質量の発生をそれぞれ意味する。したがってエネルギーを転換すれば無から質量が生まれる。.

新しい!!: ホログラフィック原理とE=mc2 · 続きを見る »

観測可能な宇宙

IPAC'')。 ビッグバン宇宙論でいう観測可能な宇宙(かんそくかのうなうちゅう、observable universe)とは、中心にいる観測者が領域内の物体を十分に観測できるほど小さい、つまり、ビッグバン以後のどの時点でその物体から放出された信号であっても、それが光速で進んで、現在の観測者のもとに届くまでに十分な時間があるような球状の空間領域である。宇宙のどの場所にもその場所にとっての観測可能な宇宙があり、それは地球を中心とするものと重なる部分も重ならない部分もある。.

新しい!!: ホログラフィック原理と観測可能な宇宙 · 続きを見る »

詳細釣り合い

詳細釣り合い(しょうさいつりあい、英語:detailed balance)は、熱平衡におけるミクロな状態変化を考えた場合、そこに含まれるどの過程の起こる頻度も、その逆過程の起こる頻度と等しいことを指す。その原理を「詳細釣り合いの原理」という。これは、時間反転を行っても、力学的な法則が不変であるところから導かれる。.

新しい!!: ホログラフィック原理と詳細釣り合い · 続きを見る »

高エネルギー物理学

ネルギー物理学は、加速器で作られる高エネルギーを持った基本粒子の衝突反応を詳しく調べ、素粒子と呼ばれる究極の物質の構造や、その基本的相互作用について研究する分野である。.

新しい!!: ホログラフィック原理と高エネルギー物理学 · 続きを見る »

重力

重力(じゅうりょく)とは、.

新しい!!: ホログラフィック原理と重力 · 続きを見る »

重力場

重力場の概念図 重力場(じゅうりょくば、)とは、万有引力(重力)が作用する時空中に存在する場のこと。 重力を記述する手法としては、ニュートンの重力理論に基づく手法と、アインシュタインによる一般相対性理論に基づく手法がある。.

新しい!!: ホログラフィック原理と重力場 · 続きを見る »

重力波

重力波(じゅうりょくは) 次の2つの現象は異なるものだが、日本語ではどちらも重力波と呼ばれる。.

新しい!!: ホログラフィック原理と重力波 · 続きを見る »

量子状態

量子状態(りょうしじょうたい、)とは、量子論で記述される系(量子系)がとる状態のことである。 これは系の物理量(可観測量、オブザーバブル)を測定したとき、その測定値のバラつき具合を表す確率分布によって定義される。 以下に述べるように、量子状態には、純粋状態と混合状態とがある。.

新しい!!: ホログラフィック原理と量子状態 · 続きを見る »

量子重力理論

量子重力理論(りょうしじゅうりょくりろん、)は、重力相互作用(重力)を量子化した理論である。単に量子重力(りょうしじゅうりょく:Quantum Gravity(QG), Quantum Gravitation)または重力の量子論(Quantum Theory of Gravity)などとも呼ばれる。 ユダヤ系ロシア人のマトベイ・ブロンスタインがパイオニアとされる。一般相対性理論と量子力学の双方を統一する理論と期待されている。物理学の基礎概念である時間、空間、物質、力を統一的に理解するための鍵であり、物理学における最重要課題の一つと言われている。 量子重力理論は現時点ではまったく未完成の未知の理論である。量子重力を考える上で最大の問題点はその指針とすべき基本的な原理がよく分かっていないということである。そもそも重力は自然界に存在する四つの力(基本相互作用)の中で最も弱い。従って、量子化された重力が関係していると考えられる現象が現在到達できる技術レベルでは観測できないためである。.

新しい!!: ホログラフィック原理と量子重力理論 · 続きを見る »

量子色力学

量子色力学(りょうしいろりきがく、、略称: QCD)とは、素粒子物理学において、SU(3)ゲージ対称性に基づき、強い相互作用を記述する場の量子論である。.

新しい!!: ホログラフィック原理と量子色力学 · 続きを見る »

自由度

自由度(じゆうど、degree of freedom)とは、一般に、変数のうち独立に選べるものの数、すなわち、全変数の数から、それら相互間に成り立つ関係式(束縛条件、拘束条件)の数を引いたものである。数学的に言えば、多様体の次元である。「自由度1」、「1自由度」などと表現する。 自由度は、力学、機構学、統計学などで使用され、意味は上記の定義に準じるが、それぞれの具体的に示唆する処は異なる。.

新しい!!: ホログラフィック原理と自由度 · 続きを見る »

電場

電場(でんば)または電界(でんかい)(electric field)は、電荷に力を及ぼす空間(自由電子が存在しない空間。絶縁空間)の性質の一つ。E の文字を使って表されることが多い。おもに理学系では「電場」、工学系では「電界」ということが多い。また、電束密度と明確に区別するために「電場の強さ」ともいう。時間によって変化しない電場を静電場(せいでんば)または静電界(せいでんかい)とよぶ。また、電場の強さ(電界強度)の単位はニュートン毎クーロンなので、アンテナの実効長または実効高を掛けると、アンテナの誘起電圧 になる。.

新しい!!: ホログラフィック原理と電場 · 続きを見る »

M理論

M理論(Mりろん)とは、現在知られている5つの超弦理論を統合するとされる、11次元(空間次元が10個、時間次元が1個)の仮説理論である。尚、この理論には弦は存在せず、2次元の膜(メンブレーン)や5次元の膜が構成要素であると考えられている。.

新しい!!: ホログラフィック原理とM理論 · 続きを見る »

欧州宇宙機関

欧州宇宙機関(おうしゅううちゅうきかん、, ASE、, ESA)は、1975年5月30日にヨーロッパ各国が共同で設立した、宇宙開発・研究機関である。設立参加国は当初10か国、現在は19か国が参加し、2000人を超えるスタッフがいる。 本部はフランスに置かれ、その活動でもフランス国立宇宙センター (CNES) が重要な役割を果たし、ドイツ・イタリアがそれに次ぐ地位を占める。主な射場としてフランス領ギアナのギアナ宇宙センターを用いている。 人工衛星打上げロケットのアリアンシリーズを開発し、アリアンスペース社(商用打上げを実施)を通じて世界の民間衛星打ち上げ実績を述ばしている。2010年には契約残数ベースで過去に宇宙開発などで存在感を放ったソビエト連邦の後継国のロシア、スペースシャトル、デルタ、アトラスといった有力な打ち上げ手段を持つアメリカに匹敵するシェアを占めるにおよび、2014年には受注数ベースで60%のシェアを占めるにいたった。 ESA は欧州連合と密接な協力関係を有しているが、欧州連合の専門機関ではない。加盟各国の主権を制限する超国家機関ではなく、加盟国の裁量が大きい政府間機構として形成された。リスボン条約によって修正された欧州連合の機能に関する条約の第189条第3項では、「欧州連合は欧州宇宙機関とのあいだにあらゆる適切な関係を築く」と規定されている。.

新しい!!: ホログラフィック原理と欧州宇宙機関 · 続きを見る »

波動関数

波動関数(はどうかんすう、wave function)は、もともとは波動現象一般を表す関数のことだが、現在では量子状態(より正確には純粋状態)を表す複素数値関数のことを指すことがほとんどである。.

新しい!!: ホログラフィック原理と波動関数 · 続きを見る »

測地線

測地線(そくちせん、)とは、直線の概念を曲がった空間において一般化したものである。 計量が定義される空間においては、測地線は、2つの離れた点を結ぶ(局所的に)最短な線として定義される。アフィン接続が定義される空間においては、測地線は、曲線のうち、その接ベクトルが曲線に沿って移動しても平行に保たれるような曲線(測地的曲率が常に0)として定義される。測地線の中でその長さが2点間の距離に等しくなるものを最短測地線という。 言葉の由来は、測地学からであり、地球上の2点間の最短ルート(大円の一部)による。この概念は、数学的な空間にも拡張され、例えばグラフ理論ではグラフ上の2つの頂点(vertex)や結節点 () 間の測地線が定義されている。一般相対性理論では、光は曲がった空間での測地線を進むという原理に基づいて構築されている。.

新しい!!: ホログラフィック原理と測地線 · 続きを見る »

情報

情報(じょうほう、英語: information、ラテン語: informatio インフォルマーティオー)とは、.

新しい!!: ホログラフィック原理と情報 · 続きを見る »

情報科学

情報科学という語は日本語では多義的に用いられている。.

新しい!!: ホログラフィック原理と情報科学 · 続きを見る »

情報量

情報量(じょうほうりょう)やエントロピー(entropy)は、情報理論の概念で、あるできごと(事象)が起きた際、それがどれほど起こりにくいかを表す尺度である。ありふれたできごと(たとえば「風の音」)が起こったことを知ってもそれはたいした「情報」にはならないが、逆に珍しいできごと(たとえば「曲の演奏」)が起これば、それはより多くの「情報」を含んでいると考えられる。情報量はそのできごとが本質的にどの程度の情報を持つかの尺度であるとみなすこともできる。 なおここでいう「情報」とは、あくまでそのできごとの起こりにくさ(確率)だけによって決まる数学的な量でしかなく、個人・社会における有用性とは無関係である。たとえば「自分が宝くじに当たった」と「見知らぬAさんが宝くじに当たった」は、前者の方が有用な情報に見えるが、両者の情報量は全く同じである(宝くじが当たる確率は所与条件一定のもとでは誰でも同じであるため)。.

新しい!!: ホログラフィック原理と情報量 · 続きを見る »

2次元

2次元(にじげん、二次元)は、空間の次元が2であること。次元が2である空間を2次元空間と呼ぶ。 なおここでいう空間とは、物理空間に限らず、数学的な一般の意味での空間であり、さまざまなものがある(詳細は「次元」を参照)。.

新しい!!: ホログラフィック原理と2次元 · 続きを見る »

3次元

3次元(さんじげん、三次元)は、ある概念が直交あるいは独立な(しかし同等な)要素3つの組によって一意に決定可能な場合にしばしば用いられる術語である。.

新しい!!: ホログラフィック原理と3次元 · 続きを見る »

ここにリダイレクトされます:

ホログラフィック理論

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »