ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

ホッジ双対

索引 ホッジ双対

数学において、ホッジスター作用素(ホッジスターさようそ、Hodge star operator)、もしくは、ホッジ双対(ホッジそうつい、Hodge dual)は、(Hodge)により導入された線型写像である。ホッジ双対は、有限次元の向き付けられた内積空間の外積代数の上で定義される -ベクトルのなす空間から-ベクトルのなす空間への線形同型である。 他のベクトル空間に対する多くの構成と同様に、ホッジスター作用素は多様体の上のベクトルバンドルへの作用に拡張することができる。 たとえば余接束の外積代数(すなわち、多様体上の微分形式の空間)に対して、ホッジスター作用素を用いてラプラス=ド・ラーム作用素を定義し、コンパクトなリーマン多様体上の微分形式のホッジ分解を導くことができる。.

40 関係: 同型写像向き外微分外積外積代数対合対称双線型形式交代行列余接空間微分形式マクスウェルの方程式ポアンカレ双対ユークリッド空間ラプラス作用素リーマン多様体リースの表現定理テンソルド・ラームコホモロジーホッジ理論ベクトル空間ベクトル解析ベクトル束エディントンのイプシロンキップ・ソーンクロス積コンパクト空間ジョン・ホイーラー勾配 (ベクトル解析)回転 (ベクトル解析)線型写像発散 (ベクトル解析)行列式計量テンソル計量ベクトル空間自己準同型退化形式Lp空間標準束擬リーマン多様体擬ベクトル

同型写像

数学において,同型写像(isomorphismfrom the Ancient Greek: ἴσος isos "equal", and μορφή morphe "form" or "shape")あるいは単に同型とは,は準同型写像あるいは射であって,逆射を持つものである逆関数ではない..2つの数学的対象が同型 (isomorphic) であるとは,それらの間に同型写像が存在することをいう.自己同型写像は始域と終域が同じ同型写像である.同型写像の興味は2つの同型な対象は写像を定義するのに使われる性質のみを使って区別できないという事実にある.したがって同型な対象はこれらの性質やその結果だけを考える限り同じものと考えてよい. 群や環を含むほとんどの代数的構造に対して,準同型写像が同型写像であることと全単射であることは同値である. 位相幾何学において,射とは連続写像のことであるが,同型写像は同相写像あるいは双連続写像とも呼ばれる.解析学において,射は可微分関数であり,同型写像は微分同相とも呼ばれる. 標準的な同型写像 (canonical isomorphism) は同型であるようなである.2つの対象が標準的に同型 (canonically isomorphic) であるとは,それらの間に標準的な同型写像が存在することをいう.例えば,有限次元ベクトル空間 から二重双対空間への標準的な写像は標準的な同型写像である.一方, は双対空間に同型であるが,一般には標準的にではない. 同型写像は圏論を用いて形式化される.ある圏の射 が同型射であるとは,両側逆射を持つことをいう,すなわち,その圏における別の射 があって, かつ となる,ただし と はそれぞれ と の恒等射である..

新しい!!: ホッジ双対と同型写像 · 続きを見る »

向き

数学における実ベクトル空間の向き(むき、orientation) または向き付けとは、基底の順序付き組に対し「正」の向きまたは「負」の向きを指定する規約のことである。3次元ユークリッド空間における2種類の向きはそれぞれ右手系や左手系(あるいは右キラル・左キラル)と呼ばれる。しばしば右手系が正の向きにとられるものの、右手系を負の向きとするような向き付けももちろんありうる。 実ベクトル空間における向きの概念を基礎として、実多様体などの様々な幾何学的対象にも向きを考えることができる。.

新しい!!: ホッジ双対と向き · 続きを見る »

外微分

可微分多様体上、外微分(がいびぶん、exterior derivative)は関数の微分の概念を高次の微分形式に拡張する。外微分はエリ・カルタンによって最初に現在の形式で記述された。それによってベクトル解析のストークスの定理、ガウスの定理、グリーンの定理の自然な、距離に依存しない一般化ができる。 形式を無限小 次元平行面体を通る流量を測るものと考えれば、その外微分を -平行面体の境界を通る正味の流れを測るものと考えることができる。.

新しい!!: ホッジ双対と外微分 · 続きを見る »

外積

外積(がいせき)とは、.

新しい!!: ホッジ双対と外積 · 続きを見る »

外積代数

数学におけるベクトルの外積(がいせき、exterior product)あるいは楔積(くさびせき、ウェッジ積、wedge product)はクロス積をある特定の性質に着目して、より高次元の場合へ一般化する代数的な構成である。クロス積やスカラー三重積のようにベクトル同士の外積はユークリッド幾何学において面積や体積およびそれらの高次元における類似物の研究に用いられる。線型代数学において外積は、線型変換の行列式や小行列式を記述する基底の取り方に依存しない抽象代数的な仕方を提供し、階数や線型独立性といった概念に根本的に関係してくる。 外積代数(がいせきだいすう、exterior algebra)は、ヘルマン・グラスマンに因んでグラスマン代数(グラスマンだいすう、Grassmann algebra)としても知られ、与えられた体 上のベクトル空間 上の外積によって生成される多元環である。多重線型代数やその関連分野と同様に、微分形式の成す多元環を通じて現代幾何学、特に微分幾何学と代数幾何学において広く用いられる。 形式的には、外積代数は あるいは で表され、 を線型部分空間として含む、楔積あるいは外積と呼ばれる で表される乗法を持つ、体 上の単位的結合代数である。楔積は結合的で双線型な乗法 であり、本質的な性質として 上の交代性 を持つものである。これは以下の性質 をも特別の場合として含む。 圏論の言葉で言えば、外積代数は普遍構成によって与えられる、ベクトル空間の圏上の函手の典型である。この普遍構成によって、体上のベクトル空間だけに限らず、可換環上の加群やもっとほかの興味ある構造にたいしても外積代数を定義することができる。外積代数は双代数のひとつの例である。つまり、外積代数の(ベクトル空間としての)双対空間にも乗法が定義され、その双対的な乗法が楔積と両立する。この双対代数は特に 上の重線型形式全体の成す多元環で、外積代数とその双対代数との双対性は内積によって与えられる。.

新しい!!: ホッジ双対と外積代数 · 続きを見る »

対合

対合(たいごう、ついごう、involution)は、自分自身をその逆として持つ写像である。 これは空間上の変換であって、二回繰り返すと恒等変換となる(元に戻る)という性質 を持つものと言ってもよい。ただし、それ自身が恒等変換となるものは通常は除いて考える。またこれは変換群に属する位数 2 の元 を指すと言っても同じことであり、それを理由に一般の群(抽象群)においても位数 2 の元を対合と呼ぶことがある。.

新しい!!: ホッジ双対と対合 · 続きを見る »

対称双線型形式

線型代数学における対称双線型形式(たいしょうそうせんけいけいしき、symmetric bilinear form, symmetric bilinear functional)は、ベクトル空間上の対称な双線型形式を言う。平たく言えば、実ベクトル空間上の標準内積を一般化した概念である。対称双線型形式は、直交極性や二次曲面の研究に非常に重要である。 文脈上、双線型形式について述べていると明らかな場合は、単に短く対称形式と呼ぶこともある。対称双線型形式は二次形式と近しい関係にあり、この両者の差異に関する詳細はの項目を参照。.

新しい!!: ホッジ双対と対称双線型形式 · 続きを見る »

交代行列

線型代数学において、交代行列(こうたいぎょうれつ、alternative matrix)、歪対称行列(わいたいしょうぎょうれつ、skew-symmetric matrix)または反対称行列(はんたいしょうぎょうれつ、antisymmetric matrix, antimetric matrix; 反称行列)は、正方行列 であってその転置 が自身の 倍となるものをいう。すなわち、転置に対して反対称性を持つ行列は交代行列である。交代行列とは逆に、転置に対して対称な行列は対称行列と呼ばれる。本項において(何も言わなければ)、係数体の標数 は でない と仮定する。標数が のとき、任意のスカラーは自身を反数として持つので、任意の歪対称行列は対称行列の概念に一致する。歪対称行列に付随する双線型形式は歪対称形式であり、標数 のときは対称形式になる。一方、付随する双線型形式が交代形式であるような行列を「交代行列」と呼べば、標数 のとき「交代行列」は歪対称(.

新しい!!: ホッジ双対と交代行列 · 続きを見る »

余接空間

微分幾何学において、滑らかな(あるいは可微分)多様体の各点 x に x における余接空間 (cotangent space) と呼ばれるベクトル空間を取り付けることができる。余接空間は、より直接的な定義があるが(下記参照)、典型的には、x における接空間の双対空間として定義される。余接空間の元は余接ベクトル (cotangent vector) あるいは接余ベクトル (tangent covector) と呼ばれる。.

新しい!!: ホッジ双対と余接空間 · 続きを見る »

微分形式

数学における微分形式(びぶんけいしき、differential form)とは、微分可能多様体上に定義される共変テンソル場である。微分形式によって多様体上の局所的な座標の取り方によらない関数の微分が表現され、また多様体の内在的な構造のみによる積分は微分形式に対して定義される。微分多様体上の微分形式は共変テンソルとしての座標変換性によって、あるいは接ベクトル空間上の線型形式の連続的な分布として定式化される。また、代数幾何学・数論幾何学や非可換幾何学などさまざまな幾何学の分野でそれぞれ、この類推として得られる微分形式の概念が定式化されている。.

新しい!!: ホッジ双対と微分形式 · 続きを見る »

マクスウェルの方程式

マクスウェルの方程式(マクスウェルのほうていしき、Maxwell's equations)は、電磁場のふるまいを記述する古典電磁気学の基礎方程式である。マイケル・ファラデーが幾何学的考察から見出した電磁力に関する法則が1864年にジェームズ・クラーク・マクスウェルによって数学的形式として整理された。マクスウェル-ヘルツの電磁方程式、電磁方程式などとも呼ばれ、マクスウェルはマックスウェルとも表記される。 真空中の電磁気学に限れば、マクスウェルの方程式の一般解は、ジェフィメンコ方程式として与えられる。 なお、電磁気学の単位系は、国際単位系に発展したMKSA単位系のほか、ガウス単位系などがあるが、以下では原則として、国際単位系を用いることとする。.

新しい!!: ホッジ双対とマクスウェルの方程式 · 続きを見る »

ポアンカレ双対

数学において,ポワンカレ双対性定理は,多様体のホモロジー群とコホモロジー群の構造に関する基本的な結果である.名前はアンリ・ポワンカレにちなむ.定理の主張は以下のようである. を 次元の向き付けられた閉多様体(コンパクトかつ境界を持たない)とすると, の 次コホモロジー群はすべての整数 に対して 次ホモロジー群と同型である: ポワンカレ双対性は,係数環に関して向きを取る限り,任意の係数環に対して成り立つ.特に,すべての多様体は 2 を法として一意的な向き付けを持つので,ポワンカレ双対性は向きの仮定なしに 2 を法として成り立つ..

新しい!!: ホッジ双対とポアンカレ双対 · 続きを見る »

ユークリッド空間

数学におけるユークリッド空間(ユークリッドくうかん、Euclidean space)は、エウクレイデス(ユークリッド)が研究したような幾何学(ユークリッド幾何学)の場となる平面や空間、およびその高次元への一般化である。エウクレイデスが研究した平面や空間はそれぞれ、2次元ユークリッド空間、3次元ユークリッド空間に当たり、これらは通常、ユークリッド平面、ユークリッド空間などとも呼ばれる。「ユークリッド的」という修飾辞は、これらの空間が非ユークリッド幾何やアインシュタインの相対性理論に出てくるような曲がった空間ではないことを示唆している。 古典的なギリシャ数学では、ユークリッド平面や(三次元)ユークリッド空間は所定の公準によって定義され、そこからほかの性質が定理として演繹されるものであった。現代数学では、デカルト座標と解析幾何学の考え方にしたがってユークリッド空間を定義するほうが普通である。そうすれば、幾何学の問題に代数学や解析学の道具を持ち込んで調べることができるようになるし、三次元以上のユークリッド空間への一般化も容易になるといった利点が生まれる。 現代的な観点では、ユークリッド空間は各次元に本質的に一つだけ存在すると考えられる。たとえば一次元なら実数直線、二次元ならデカルト平面、より高次の場合は実数の組を座標にもつ実座標空間である。つまり、ユークリッド空間の「点」は実数からなる組であり、二点間の距離は二点間の距離の公式に従うものとして定まる。n-次元ユークリッド空間は、(標準的なモデルを与えるものという意味で)しばしば とかかれるが、(余分な構造を想起させない)ユークリッド空間固有の性質を備えたものということを強調する意味で と書かれることもある。ふつう、ユークリッド空間といえば有限次元であるものをいう。.

新しい!!: ホッジ双対とユークリッド空間 · 続きを見る »

ラプラス作用素

数学におけるラプラス作用素(ラプラスさようそ、Laplace operator)あるいはラプラシアン(Laplacian)は、ユークリッド空間上の函数の勾配の発散として与えられる微分作用素である。記号では,, あるいは で表されるのが普通である。函数 の点 におけるラプラシアン は(次元に依存する定数の違いを除いて)点 を中心とする球面を半径が増大するように動かすときの から得られる平均値になっている。直交座標系においては、ラプラシアンは各独立変数に関する函数の二階(非混合)偏導函数の和として与えられ、またほかに円筒座標系や球座標系などの座興系においても有用な表示を持つ。 ラプラス作用素の名称は、天体力学の研究に同作用素を最初に用いたフランス人数学者のピエール=シモン・ド・ラプラス (1749–1827) に因んでいる。同作用素は与えられた重力ポテンシャルに適用すると質量密度の定数倍を与える。現在ではラプラス方程式と呼ばれる方程式 の解は調和函数と呼ばれ、自由空間において可能な重力場を表現するものである。 微分方程式においてラプラス作用素は電気ポテンシャル、重力ポテンシャル、熱や流体の拡散方程式、波の伝搬、量子力学といった、多くの物理現象を記述するのに現れる。ラプラシアンは、函数の勾配フローの流束密度を表す。.

新しい!!: ホッジ双対とラプラス作用素 · 続きを見る »

リーマン多様体

微分幾何学におけるリーマン多様体(リーマンたようたい、Riemannian manifold)とは、可微分多様体 で 上の各点に基本計量テンソル が与えられているものを言う。ベルンハルト・リーマンによって導入された。.

新しい!!: ホッジ双対とリーマン多様体 · 続きを見る »

リースの表現定理

リースの表現定理(リースのひょうげんていり、)とは、数学の関数解析学の分野におけるいくつかの有名な定理に対する呼称である。リース・フリジェシュの業績に敬意を表し、そのように名付けられた。.

新しい!!: ホッジ双対とリースの表現定理 · 続きを見る »

テンソル

テンソル(tensor, Tensor)とは、線形的な量または線形的な幾何概念を一般化したもので、基底を選べば、多次元の配列として表現できるようなものである。しかし、テンソル自身は、特定の座標系によらないで定まる対象である。個々のテンソルについて、対応する量を記述するのに必要な配列の添字の組の数は、そのテンソルの階数とよばれる。 例えば、質量や温度などのスカラー量は階数0のテンソルだと理解される。同様にして力や運動量などのベクトル的な量は階数1のテンソルであり、力や加速度ベクトルの間の異方的な関係などをあらわす線型変換は階数2のテンソルで表される。 物理学や工学においてしばしば「テンソル」と呼ばれているものは、実際には位置や時刻を引数としテンソル量を返す関数である「テンソル場」であることに注意しなければならない。いずれにせよテンソル場の理解のためにはテンソルそのものの概念の理解が不可欠である。.

新しい!!: ホッジ双対とテンソル · 続きを見る »

ド・ラームコホモロジー

ド・ラームコホモロジー(de Rham cohomology)とは可微分多様体のひとつの不変量で、多様体上の微分形式を用いて定まるベクトル空間である。多様体の位相不変量である特異コホモロジーとド・ラームコホモロジーは同型になるというド・ラームの定理がある。.

新しい!!: ホッジ双対とド・ラームコホモロジー · 続きを見る »

ホッジ理論

数学におけるホッジ理論(ホッジりろん、Hodge theory )とは可微分多様体 上の微分形式に関する理論である。特に、 上のリーマン計量に付随する(一般化された)ラプラス作用素に関する偏微分方程式論をもちいて得られる 上の実係数コホモロジー群の性質のことをいう。 1930年代にによってド・ラームコホモロジーの拡張として開発され、3つのレベルで大きな応用を持っている。.

新しい!!: ホッジ双対とホッジ理論 · 続きを見る »

ベクトル空間

数学、特に線型代数学におけるベクトル空間(ベクトルくうかん、vector space)、または、線型空間(せんけいくうかん、linear space)は、ベクトルと呼ばれる元からなる集まりの成す数学的構造である。ベクトルには和が定義され、またスカラーと呼ばれる数による積(「スケール変換」)を行える。スカラーは実数とすることも多いが、複素数や有理数あるいは一般の体の元によるスカラー乗法を持つベクトル空間もある。ベクトルの和とスカラー倍の演算は、「ベクトル空間の公理」と呼ばれる特定の条件(後述)を満足するものでなければならない。ベクトル空間の一つの例は、力のような物理量を表現するのに用いられる幾何ベクトルの全体である(同じ種類の任意の二つの力は、加え合わせて力の合成と呼ばれる第三の力のベクトルを与える。また、力のベクトルを実数倍したものはまた別の力のベクトルを表す)。同じ調子で、ただしより幾何学的な意味において、平面や空間での変位を表すベクトルの全体もやはりベクトル空間を成す。 ベクトル空間は線型代数学における主題であり、ベクトル空間はその次元(大雑把にいえばその空間の独立な方向の数を決めるもの)によって特徴づけられるから、その観点からはよく知られている。ベクトル空間は、さらにノルムや内積などの追加の構造を持つこともあり、そのようなベクトル空間は解析学において主に函数をベクトルとする無限次元の函数空間の形で自然に生じてくる。解析学的な問題では、ベクトルの列が与えられたベクトルに収束するか否かを決定することもできなければならないが、これはベクトル空間に追加の構造を考えることで実現される。そのような空間のほとんどは適当な位相を備えており、それによって近さや連続性といったことを考えることができる。こういた位相線型空間、特にバナッハ空間やヒルベルト空間については、豊かな理論が存在する。 歴史的な視点では、ベクトル空間の概念の萌芽は17世紀の解析幾何学、行列論、連立一次方程式の理論、幾何ベクトルの概念などにまで遡れる。現代的な、より抽象的な取扱いが初めて定式化されるのは、19世紀後半、ペアノによるもので、それはユークリッド空間よりも一般の対象が範疇に含まれるものであったが、理論の大半は(直線や平面あるいはそれらの高次元での対応物といったような)古典的な幾何学的概念を拡張することに割かれていた。 今日では、ベクトル空間は数学のみならず科学や工学においても広く応用される。ベクトル空間は線型方程式系を扱うための適当な線型代数学的概念であり、例えば画像圧縮ルーチンで使われるフーリエ展開のための枠組みを提示したり、あるいは偏微分方程式の解法に用いることのできる環境を提供する。さらには、テンソルのような幾何学的および物理学的な対象を、抽象的に座標に依らない で扱う方法を与えてくれるので、そこからさらに線型化の手法を用いて、多様体の局所的性質を説明することもできるようになる。 ベクトル空間の概念は様々な方法で一般化され、幾何学や抽象代数学のより進んだ概念が導かれる。.

新しい!!: ホッジ双対とベクトル空間 · 続きを見る »

ベクトル解析

ベクトル解析(ベクトルかいせき、英語:vector calculus)は空間上のベクトル場やテンソル場に関する微積分に関する数学の分野である。 多くの物理現象はベクトル場やテンソル場として記述されるため、ベクトル解析は物理学の様々な分野に応用を持つ。 物理学では3次元ユークリッド空間上のベクトル解析を特によく用いられるが、ベクトル解析は一般のn次元多様体上で展開できる。.

新しい!!: ホッジ双対とベクトル解析 · 続きを見る »

ベクトル束

数学において、ベクトル束(べくとるそく、vector bundle; ベクトルバンドル)は、ある空間 (例えば、 は位相空間、多様体、代数多様体等)により径数付けられたベクトル空間の族を作るという方法で与えられる幾何学的構成である。.

新しい!!: ホッジ双対とベクトル束 · 続きを見る »

エディントンのイプシロン

ディントンのイプシロンは、数学で用いられる記号。交代記号、レヴィ.

新しい!!: ホッジ双対とエディントンのイプシロン · 続きを見る »

キップ・ソーン

ップ・ステファン・ソーン(Kip Stephen Thorne、1940年6月1日 - )はアメリカ合衆国の理論物理学者。ジョン・ホイーラーの弟子で重力の理論や、相対論的宇宙論の分野に貢献した。 重力理論、ブラックホール、宇宙論の歴史と理論を解説した一般向けの著書『ブラックホールと時空の歪み アインシュタインのとんでもない遺産』(原題:Black Holes and Time Warps: Einstein's Outrageous Legacy)によって有名になった。2017年ノーベル物理学賞受賞。.

新しい!!: ホッジ双対とキップ・ソーン · 続きを見る »

クロス積

ベクトル積()とは、ベクトル解析において、3次元の向き付けられた内積空間において定義される、2つのベクトルから新たなベクトルを与える二項演算である。2つのベクトル a、b のベクトル積は a×b や で表される。演算の記号からクロス積()と呼ばれることもある。2つのベクトルからスカラーを与える二項演算である内積に対して外積(がいせき)とも呼ばれるが、英語では直積を意味するので注意を要する。ベクトル積を拡張した外積代数があり、ベクトル積はその3次元における特殊な場合である。.

新しい!!: ホッジ双対とクロス積 · 続きを見る »

コンパクト空間

数学において、コンパクト(compact)は位相空間の性質である。詳細は後述するがコンパクト性の定義それ自身は直観性に乏しいものであり、証明を容易にする為のいわば操作的なものである。しかし距離空間であればより直観的な言葉でいいかえる事ができ、特に有限次元のユークリッド空間においては有界閉集合であることとコンパクト集合であることとは同値になる。したがってコンパクトの概念はユークリッド空間における有界閉集合の概念を一般の位相空間に拡張したものとしてとらえる事ができる。 なお無限次元では有界閉集合はコンパクトとは限らず、例えばヒルベルト空間内の(縁を含んだ)単位球体は有界かつ閉集合であるがコンパクトではない(距離位相を入れた場合)。 ブルバキでは、ここでいう定義を満たす位相空間を準コンパクト(quasi-compact)と呼び、さらにハウスドルフの分離公理を満たすものをコンパクトであると呼んでいる。距離空間など多くの空間ではハウスドルフの分離公理が満たされるので両者の概念は一致するが、一般には注意が必要である。.

新しい!!: ホッジ双対とコンパクト空間 · 続きを見る »

ジョン・ホイーラー

ョン・アーチボルト・ホイーラー(John Archibald Wheeler, 1911年7月9日 - 2008年4月13日)は、アメリカ合衆国の物理学者である。.

新しい!!: ホッジ双対とジョン・ホイーラー · 続きを見る »

勾配 (ベクトル解析)

ベクトル解析におけるスカラー場の勾配(こうばい、gradient; グラディエント)は、各点においてそのスカラー場の変化率が最大となる方向への変化率の値を大きさにもつベクトルを対応させるベクトル場である。簡単に言えば、任意の量の空間における変位を、傾きとして表現(例えば図示)することができるが、そこで勾配はこの傾きの向きや傾きのきつさを表している。 ユークリッド空間上の関数の勾配を、別なユークリッド空間に値を持つ写像に対して一般化したものは、ヤコビ行列で与えられる。さらに一般化して、バナッハ空間から別のバナッハ空間への写像の勾配をフレシェ微分を通じて定義することができる。.

新しい!!: ホッジ双対と勾配 (ベクトル解析) · 続きを見る »

回転 (ベクトル解析)

ベクトル解析における回転(かいてん、rotation, curl)(または )は、三次元ベクトル場の無限小回転を記述するベクトル演算子である。ベクトル場の各点において、ベクトル場の回転はベクトルとして表され、このベクトルの寄与(大きさと向き)によってその点での回転が特徴付けられる。 回転ベクトルの向きは回転軸に沿って右手系となる方にとり、回転ベクトルの大きさは回転の大きさとなる。例えば、与えられたベクトル場が、動いている流体の流速を表すものであるとき、その回転とはその流体の循環密度のことになる。回転場が 0 となるベクトル場はであると言う。場の回転はベクトル場に対する導函数に相当し、これに対応して微分積分学の基本定理に相当するのは、ベクトル場の回転場の面積分をそのベクトル場の境界曲線上での線積分と関係づけるストークスの定理(ストークス=ケルビンの定理)であると考えられる。 回転演算に相当する用語は curl, rotation の他に rotor や rotational などがあり、記法 に相当する記法は や などがある。前者の rot 系の用語・記法を用いる流儀はヨーロッパ諸国の系統に多く、ナブラや交叉積を用いる記法はそれ以外の系統で使われる傾向にある。 勾配や発散とは異なり、回転の概念を単純に高次元化することはできない。ただし、三次元に限らないある種の一般化は可能で、それはベクトル場の回転がまたベクトル場となるように幾何学的に定義される。これは三次元交叉積がそうであるのと同様の現象であり、このことは回転を "∇×" で表す記法にも表れている。 回転 "curl" の名を最初に提示したものはジェームズ・クラーク・マクスウェルで1871年のことである。.

新しい!!: ホッジ双対と回転 (ベクトル解析) · 続きを見る »

線型写像

数学の特に線型代数学における線型変換(せんけいへんかん、linear transformation、一次変換)あるいは線型写像(せんけいしゃぞう、linear mapping)は、ベクトルの加法とスカラー乗法を保つ特別の写像である。特に任意の(零写像でない)線型写像は「直線を直線に移す」。 抽象代数学の言葉を用いれば、線型写像とは(体上の加群としての)ベクトル空間の構造を保つ準同型のことであり、また一つの固定された体上のベクトル空間の全体は線型写像を射とする圏を成す。 「線型変換」は線型写像とまったく同義と扱われる場合もあるが、始域と終域を同じくする線型写像(自己準同型)の意味で用いていることも少なくない。また函数解析学の分野では、(特に無限次元空間上の)線型写像のことを「線型作用素」(せんけいさようそ、linear operator)と呼ぶことも多い。スカラー値の線型写像はしばしば「線型汎函数」もしくは「一次形式」(いちじけいしき、linear form, one-form; 線型形式; 1-形式)とも呼ばれる一次の微分形式(一次微分形式もしくは微分一次形式; differential one-form)を単に「一次形式」または「1-形式」(one-form) と呼ぶこともある。これとの対照のため、本項に云う意味での一次形式を「代数一次形式」(albegraic one-form) と呼ぶ場合がある。。 線形等の用字・表記の揺れについては線型性を参照。.

新しい!!: ホッジ双対と線型写像 · 続きを見る »

発散 (ベクトル解析)

ベクトル解析における発散(はっさん、divergence)は、各点においてベクトル場のの大きさを符号付きスカラーの形で測るベクトル作用素である。より技術的に言えば、発散が表すのは与えられた点の無限小近傍領域から出る流束の体積密度である。例えば、空気を熱したり冷ましたりするものとして考えると、各点において空気の移動速度を与えるベクトル場を例にとることができる。領域内で空気を熱すれば空気は全方向へ膨張していくから、速度場は領域の外側をさしていることになり、従って速度場の発散はこの領域で正の値をとり、この領域は流入(あるいは湧き出し、湧出、source)域であることが示される。空気を冷まして収縮させるなら、発散の値は負となり、この領域は流出(あるいは沈み込み、排出、sink)域と呼ばれる。.

新しい!!: ホッジ双対と発散 (ベクトル解析) · 続きを見る »

行列式

数学における行列式(ぎょうれつしき、)とは、正方行列に対して定義される量で、歴史的には行列が表す一次方程式の可解性を判定する指標として導入された。幾何的には線型空間またはより一般の有限生成自由加群上の自己準同型に対して定義され、線型変換によって空間の体積要素が何倍に変わるかという概念を抽象化したものと見なすことができる。行列の可逆性を判定する指標として線型代数学における最も重要な指標の一つと見なされている。.

新しい!!: ホッジ双対と行列式 · 続きを見る »

計量テンソル

計量テンソル(けいりょうテンソル、metric tensor)は、リーマン幾何学において、空間内の距離と角度を定義する、階数()が2のテンソルである。多様体が与えられたとき、多様体の接空間で、滑らかに変化する非負の2次関数を選ぶことができる場合、その多様体をリーマン多様体と呼ぶ。そのため、計量テンソルは、リーマン計量()と呼ばれることもある。 ひとたび、ある座標系 が選ばれると、計量テンソルは行列形式で定義される。通常、 として表記され、各成分は と表される。以下では、添え字の和に関してアインシュタインの縮約記法を用いる。 点 から までの曲線の長さは、 をパラメータとして、 と定義される。2つの接ベクトル()U.

新しい!!: ホッジ双対と計量テンソル · 続きを見る »

計量ベクトル空間

線型代数学における計量ベクトル空間(けいりょうベクトルくうかん、metric vector space)は、内積と呼ばれる付加的な構造を備えたベクトル空間であり、内積空間(ないせきくうかん、inner product space)とも呼ばれる。この付加構造は、空間内の任意の二つのベクトルに対してベクトルの内積と呼ばれるスカラーを対応付ける。内積によって、ベクトルの長さや二つのベクトルの間の角度などの直観的な幾何学的概念に対する厳密な導入が可能になる。また内積が零になることを以ってベクトルの間の直交性に意味を持たせることもできる。内積空間は、内積として点乗積(スカラー積)を備えたユークリッド空間を任意の次元(無限次元でもよい)のベクトル空間に対して一般化するもので、特に無限次元のものは函数解析学において研究される。 内積はそれに付随するノルムを自然に導き、内積空間はノルム空間の構造を持つ。内積に付随するノルムの定める距離に関して完備となる空間はヒルベルト空間と呼ばれ、必ずしも完備でない内積空間は(内積の導くノルムに関する完備化がヒルベルト空間となるから)前ヒルベルト空間 (pre-Hilbert space) と呼ばれる。複素数体上の内積空間はしばしばユニタリ空間 (unitary spaces) とも呼ばれる。.

新しい!!: ホッジ双対と計量ベクトル空間 · 続きを見る »

自己準同型

数学における自己準同型(じこじゅんどうけい、)とは、ある数学的対象からそれ自身への射(あるいは準同型)のことを言う。例えば、あるベクトル空間 V の自己準同型は、線型写像 ƒ: V → V であり、ある群 G の自己準同型は、群準同型 ƒ: G → G である。一般に、任意の圏に対して自己準同型を議論することが可能である。集合の圏において、自己準同型はある集合 S からそれ自身への函数である。 任意の圏において、X の任意の二つの自己準同型写像の合成は再び X の自己準同型である。X のすべての自己準同型の集合はモノイドを構成し、それは End(X) と表記される(あるいは、圏 C を強調するために EndC(X) と表記される)。.

新しい!!: ホッジ双対と自己準同型 · 続きを見る »

退化形式

数学、とくに線型代数学において、ベクトル空間 V 上の退化 (degenerate) 双線型形式 f(x, y) とは、V から V*(V の双対空間)への v \mapsto (x \mapsto f(x,v)) で与えられる写像が同型でないような双線型形式である。V が有限次元のときの同値な定義はそれが非自明な核をもつということである、すなわち V の 0 でない元 x が存在して、 となる。.

新しい!!: ホッジ双対と退化形式 · 続きを見る »

Lp空間

数学の分野における Lp 空間(エルピーくうかん、Lp space)とは、有限次元ベクトル空間に対する p-ノルムの自然な一般化を用いることで定義される関数空間である。アンリ・ルベーグの名にちなんでルベーグ空間としばしば呼ばれる が、 によると初めて導入されたのは とされている。Lp 空間は関数解析学におけるバナッハ空間や、線型位相空間の重要なクラスを形成する。物理学や統計学、金融、工学など様々な分野で応用されている。.

新しい!!: ホッジ双対とLp空間 · 続きを見る »

標準束

数学において,体上の 次元非特異代数多様体 の標準束(ひょうじゅんそく,canonical bundle)とは,直線束, すなわち 上の余接束 の 次外冪である. 複素数体上,それは 上の正則 形式の行列式束である.これは 上のセール双対性に対する dualising object である.それはまた可逆層と考えることもできる. 標準類 (canonical class) とは標準束を生じる 上の のである――それは 上のの同値類であり,それに属する任意の因子を標準因子 (canonical divisor) と呼んでよい.反標準 (anticanonical) 因子は を任意の標準因子として因子 のことである. 反標準束 (anticanonical bundle) は対応する である. の反標準束が豊富であるとき, はファノ多様体と呼ばれる. \omega_D.

新しい!!: ホッジ双対と標準束 · 続きを見る »

擬リーマン多様体

微分幾何学において、擬リーマン多様体 (pseudo-Riemannian manifold)(また、半リーマン多様体 (semi-Riemannian manifold) ともいう)は、リーマン多様体の一般化であり、そこでは計量テンソルが必ずしもでないこともある。代わって、非退化というより弱い条件が、計量テンソルへ導入される。 一般相対論で極めて重要な多様体として、ローレンツ多様体 (Lorentzian manifold) があり、そこでは、一つの次元が他の次元とは反対の符号を持っている。このことは、接ベクトルが時間的、光的、空間的へと分類される。時空は 4次元ローレンツ多様体としてモデル化される。.

新しい!!: ホッジ双対と擬リーマン多様体 · 続きを見る »

擬ベクトル

擬ベクトル(ぎベクトル、pseudo vector)は座標の反転に対し符号が変わらない(向きが反転する)ベクトル。 擬ベクトルのことを軸性ベクトル(axial vector)とも呼ぶ。反対に座標を反転して符号が反転する(向きが変わらない)ベクトルを極性ベクトル(polar vector)と呼ぶ。.

新しい!!: ホッジ双対と擬ベクトル · 続きを見る »

ここにリダイレクトされます:

ホッジスターホッジ作用素

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »