ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

ベリリウム

索引 ベリリウム

ベリリウム(beryllium, beryllium )は原子番号 4 の元素である。元素記号は Be。第2族元素に属し、原子量は 9.01218。ベリリウムは緑柱石などの鉱物から産出される。緑柱石は不純物に由来する色の違いによってアクアマリンやエメラルドなどと呼ばれ、宝石としても用いられる。常温常圧で安定した結晶構造は六方最密充填構造(HCP)である。単体は銀白色の金属で、空気中では表面に酸化被膜が生成され安定に存在できる。モース硬度は6から7を示し、硬く、常温では脆いが、高温になると展延性が増す。酸にもアルカリにも溶解する。ベリリウムの安定同位体は恒星の元素合成においては生成されず、宇宙線による核破砕によって炭素や窒素などのより重い元素から生成される。 ベリリウムは主に合金の硬化剤として利用され、その代表的なものにベリリウム銅合金がある。また、非常に強い曲げ強さ、熱的安定性および熱伝導率の高さ、金属としては比較的低い密度などの物理的性質を利用して、高速航空機やミサイル、宇宙船、通信衛星などの軍事産業や航空宇宙産業において構造部材として用いられる。ベリリウムは低密度かつ原子量が小さいためX線やその他電離放射線に対して透過性を示し、その特性を利用してX線装置や粒子物理学の試験におけるX線透過窓として用いられる。 ベリリウムを含有する塵は人体へと吸入されることによって毒性を示すため、その商業利用には技術的な難点がある。ベリリウムは細胞組織に対して腐食性であり、慢性ベリリウム症と呼ばれる致死性の慢性疾患を引き起こす。.

392 関係: ALICE検出器加水分解ATLAS検出器培風館原子原子半径原子吸光原子爆弾原子炉原子番号原子軌道原子量原子核ばね半減期単体単核種元素反応断面積反磁性同位体合金塩 (化学)塩化ナトリウム塩化ベリリウム塩化アルミニウム塩化物塩素塩酸塗料多形大型ハドロン衝突型加速器天文学者太陽太陽風定量分析定性分析宝石宇宙宇宙線宇宙線による核破砕宇宙船対流圏射撃管制装置展延性不安定核不動態両性 (化学)中性子中性子反射体...中性子ハロー中性子線中性子放出丸善雄松堂主力戦車希土類元素世界保健機関人体二リン酸二元化合物二量体二酸化ケイ素二酸化炭素亜鉛強度侵食保育社信管土壌地球の大気地金化学同人化学結合化学者化石燃料ナノメートルペグマタイトミサイルマルティン・ハインリヒ・クラプロートマンハッタン計画マンガンマイルマイクロ波マグママグネトロンマグネシウムチタンハロゲン化物ハイエンドバーン (単位)ポロニウムメタンモノマーモルガナイトモース硬度ヤマハヤング率ユタ州ヨウ化ベリリウムヨウ素ラテライトラジウムリチウムリチウムの同位体ルネ=ジュスト・アユイルイ=ニコラ・ヴォークランレッドベリルレニウムレオパルト1レオパルト2ロケットエンジンノズルボルト (単位)トリプルアルファ反応トーマス=フェルミ模型ヘリウムヘキサフルオロケイ酸ナトリウムブレーキブレーキロータープラズマプリント基板プルトニウムパーセントパイオニアヒ化インジウムガリウムヒ化ガリウムヒートシンクビッグバン原子核合成ピット (核兵器)ツイーターテバトロンテラー・ウラム型テルル化ベリリウムフリードリヒ・ヴェーラーフレッド・ホイルフッ化ナトリウムフッ化ベリリウムフッ化アンモニウムフッ素フェナカイトフォーミュラ1ドームドープドイツ帝国ニッケルニオブホウ素ベリリウム8ベリリウムの同位体ベリリウム銅ベリリウム肺ベーテ・ヴァイツゼッカーの公式ベータ崩壊制御システム分子線エピタキシー法分子雲周期表ろ過アメリカ合衆国アメリカ合衆国環境保護庁アメリカ地質調査所アメリシウムアルミニウムアルファ粒子アルカリアレキサンドライトアンモニアアントワーヌ・ビュシーアクアマリンアセチルアセトンイオン化エネルギーイオン化傾向イギリスエチレンジアミン四酢酸エネルギー分散型X線分析エネルギー準位エメラルドオングストロームオキソ酸カラマツカリウムカルシウムカンチレバーガラスガンマ崩壊ガンマ線ガスクロマトグラフィーキャッツアイ効果キログラム毎立方メートルギリシア語クライストロンクロムケイ素ケイ酸アルミニウムシンクロトロンシンクロトロン放射光シアン化物ジャイロスコープジルコニウムジェフリー・ウィルキンソンジェイムズ・ウェッブ宇宙望遠鏡スペースデブリストロンチウムスピッツァー宇宙望遠鏡ステンレス鋼スカンジウムセルシウス度サルコイドーシス品川無線凝灰岩八面体形分子構造六方最密充填構造共立出版共有結合元素元素合成元素記号剛性国立医薬品食品衛生研究所国立科学博物館国際がん研究機関石英石油化学火山砕屑岩火成岩硝酸硝酸ベリリウム硫酸硫酸ベリリウム硫酸アンモニウム磁場秀和システム窒化ベリリウム窒素第13族元素第16族元素第2周期元素第2族元素第一次世界大戦第二次世界大戦粒子線粉塵爆発素粒子物理学紫外線緑柱石猫目石爆縮結晶構造絶対零度絶縁体症状別鑑別診断の一覧炎色反応炭化ベリリウム炭素炭素14炭酸塩炭酸ナトリウム炭酸水素ナトリウム生体組織診断無線通信無電解ニッケルめっき熱伝導率熱膨張率燃料棒特性X線相転移発癌性銀河宇宙線融点遮蔽効果選鉱鍛造非金属元素表面実装誘導結合プラズマ高周波高速中性子魔法数質量欠損超新星軍需産業錯体航空宇宙産業航空機閃長岩蒸発還元重合体自己免疫疾患自転車臭化ベリリウム臭素金緑石配位子配位結合酸化酸化ベリリウム酸化アルミニウム酸化ウラン(IV)酸化物酸化還元電位酸素鉱物学鋳造蛍光蛍光灯蛍光X線電力中央研究所電力用半導体素子電子ボルト電子配置電子捕獲電子殻電荷電気分解電気通信通信衛星送信機透磁率透過率 (光学)進行波管陽子III-V族半導体ITERNFPA 704P型半導体PpmPublic AddressSLAC国立加速器研究所X線X線天文学恒星恒星内元素合成核実験核兵器核磁気共鳴画像法核爆発核燃料核融合反応核融合炉格子定数標準状態機雷欧州連合比熱容量水素水素イオン指数水酸化ナトリウム水酸化ベリリウム水酸化アルミニウム水酸化物氷床コア気管支鏡気象衛星沸点沈殿液体燃料ロケット液滴模型減速材溶媒抽出法溶融塩原子炉溶融塩電解振動板有効核電荷成層圏星形成昭和海水放射線放射性同位体慣性航法装置曲げ強さ1 E13 s1 E6 s1797年1828年1930年代1933年1946年1949年1950年代1952年1983年1987年2001年2004年2007年20世紀 インデックスを展開 (342 もっと) »

ALICE検出器

ALICE検出器(大型イオン衝突実験装置)は、CERN・LHC加速器の主要検出器の一つである。ビームレベル、ポイント2に設置されている。.

新しい!!: ベリリウムとALICE検出器 · 続きを見る »

加水分解

加水分解(かすいぶんかい、hydrolysis)とは、反応物に水が反応し、分解生成物が得られる反応のことである。このとき水分子 (H2O) は、生成物の上で H(プロトン成分)と OH(水酸化物成分)とに分割して取り込まれる。反応形式に従った分類により、加水分解にはいろいろな種類の反応が含まれる。 化合物ABが極性を持ち、Aが陽性、Bが陰性であるとき、ABが水と反応するとAはOHと結合し、BはHと結合する形式の反応が一般的である。 加水分解の逆反応は脱水縮合である。.

新しい!!: ベリリウムと加水分解 · 続きを見る »

ATLAS検出器

ATLAS検出器(トロイド型LHC観測装置)はCERN・LHC加速器の実験装置の一つである。スイス・ジュネーブの郊外、地下約100mのビームレベル(加速器本体が通っているトンネル)、ポイント1に設置されている。 ATLAS検出器の断面模式図.

新しい!!: ベリリウムとATLAS検出器 · 続きを見る »

培風館

株式会社培風館(ばいふうかん)は、理学、工学、心理学などの大学向け教科書を中心とした出版社である。 創業者は山本慶治(1881-1963)。山本は兵庫県の豪農の家に生まれ、1908年東京高等師範学校英語科卒、1910年同教育研究科修了、奈良女子高等師範学校講師。岡本米蔵の紐育土地会社に勤務、その出版部門常務となり、1938年培風館として独立。当初は東京高等師範学校の教科書を刊行していた。1962年その長男の山本俊一(1910-2008、東大工学部卒)が社長となり、67年次男の山本健二(1912-93)が継ぐ。健二の死後その子の山本格が社長となる。.

新しい!!: ベリリウムと培風館 · 続きを見る »

原子

原子(げんし、άτομο、atom)という言葉には以下の3つの異なった意味がある。.

新しい!!: ベリリウムと原子 · 続きを見る »

原子半径

原子半径(げんしはんけい、atomic radius)とは、分子、結晶内などに存在するそれぞれの原子を剛体球とみなした場合の半径のこと。 同じ原子でも置かれた、あるいは取り得る状況(分子、結晶内での結合様式など)によって異なった定義があり、複数の値が使い分けられる。定義の違いは結合様式によるもので、ファンデルワールス半径、共有結合半径、金属結合半径、イオン半径などが、主に用いられる原子半径である。構造化学あるいは計算化学で取り扱われる。 同周期内の原子同士では、原子番号が大きくなるほど半径は小さくなる。 けんしはんけい.

新しい!!: ベリリウムと原子半径 · 続きを見る »

原子吸光

原子吸光(げんしきゅうこう)とは、高温に加熱して原子化した物質に光を照射したときに、構成元素に固有の幅の狭い吸収スペクトルを示す現象、あるいはそれを利用して試料に含まれる元素の定性と定量を行う分析方法のことを言う。.

新しい!!: ベリリウムと原子吸光 · 続きを見る »

原子爆弾

長崎に投下された原子爆弾のキノコ雲1945年8月9日 広島型原爆(リトルボーイ)による被害者の一人。(1945年10月。日本赤十字病院において) 原子爆弾(げんしばくだん、原爆、atomic bomb)は、ウランやプルトニウムなどの元素の原子核が起こす核分裂反応を使用した核爆弾で、初めて実用化された核兵器でもある。原子爆弾は、核爆発装置に含まれる。水素爆弾を含めて「原水爆」とも呼ばれる。 核兵器は通常兵器と比較して威力が極めて大きいため、大量破壊兵器として核不拡散条約や部分的核実験禁止条約などで規制されており、核廃絶を求める主張もある。.

新しい!!: ベリリウムと原子爆弾 · 続きを見る »

原子炉

建設中の沸騰水型原子炉(浜岡原子力発電所)国土航空写真 原子力工学における原子炉(げんしろ、nuclear reactor)とは、制御された核分裂連鎖反応を維持することができるよう核燃料などを配置した装置を言う。.

新しい!!: ベリリウムと原子炉 · 続きを見る »

原子番号

原子番号(げんしばんごう)とは、原子において、その原子核の中にある陽子の個数を表した番号である。電荷をもたない原子においては、原子中の電子の数に等しい。量記号はZで表すことがあるが、これはドイツ語のZahlの頭文字で数・番号という意味である。現在、元素の正式名称が決定している最大の原子番号は118である。.

新しい!!: ベリリウムと原子番号 · 続きを見る »

原子軌道

原子軌道(げんしきどう、, AO)は、原子核のまわりに存在する1個の電子の状態を記述する波動関数のことである。電子軌道とも呼ばれる。 その絶対値の二乗は原子核のまわりの空間の各点における、電子の存在確率に比例する。 ここでいう軌道 (orbital) とは、古典力学における軌道 (orbit) とは意味の異なるものである。量子力学において、電子は原子核のまわりをまわっているのではなく、その位置は確率的にしか分らない。.

新しい!!: ベリリウムと原子軌道 · 続きを見る »

原子量

原子量(げんしりょう、英: atomic weight)または相対原子質量(そうたいげんししつりょう、英:relative atomic mass)とは、「一定の基準によって定めた原子の質量」原子量、『理化学事典』、第5版、岩波書店。ISBN 978-4000800907。である。 その基準は歴史的変遷を経ており、現在のIUPACの定義によれば1個の原子の質量の原子質量単位に対する比であり、Eを原子や元素を表す記号として Ar(E) という記号で表される。すなわち12C原子1個の質量に対する比の12倍である。元素に同位体が存在する場合は核種が異なるそれぞれの同位体ごとに原子の質量が異なるが、ほとんどの元素において同位体存在比は一定なので、原子量は存在比で補正された元素ごとの平均値として示される。同位体存在比の精度が変動するため、公示されている原子量の値や精度も変動する。 質量と質量との比なので比重と同様に無次元量だが、その数値は定義上、1個の原子の質量を原子質量単位で表した値に等しい。また物質量が1molの原子の質量をg単位で表した数値、すなわちg·mol−1単位で表した原子のモル質量をモル質量定数 1 g·mol−1 で除して単位を除去した数値にも等しい。 同位体存在比は、精度を高めると試料の由来(たとえば産地、地質学的年代)によって厳密には異なる。測定精度の向上と各試料の全天然存在量予測の変動により、同位体存在比の精度が変動する。そのことによりIUPACの下部組織である (CIAAW) により定期的に「原子量表」の改訂が発表され、これが「標準原子量」と呼ばれている。その改訂は隔年で行われ、奇数年に発表されている。日本化学会原子量小委員会はこの表をもとに原子量表を作成し、日本化学会会誌「化学と工業」4月号で毎年発表している。 原子量表の改定や試料間の原子量の差異があるとは言え、有効数字3桁程度では大部分の元素の原子量は十分に安定している(主な例外: リチウム、水素)。そのため、化学反応等においては、実用上は問題を生じない。一方、精密分析や公示文書の値を計算する場合は、最新の原子量表の値を使うべきである。 1961年まで、物理学では16Oの質量を、化学では天然同位体比の酸素の質量を基準としていた。.

新しい!!: ベリリウムと原子量 · 続きを見る »

原子核

原子核(げんしかく、atomic nucleus)は、単に核(かく、nucleus)ともいい、電子と共に原子を構成している。原子の中心に位置する核子の塊であり、正の電荷を帯びている。核子は、基本的には陽子と中性子から成っているが、通常の水素原子(軽水素)のみ、陽子1個だけである。陽子と中性子の個数、すなわち質量数によって原子核の種類(核種)が決まる。 原子核の質量を半経験的に説明する、ヴァイツゼッカー=ベーテの質量公式(原子核質量公式、他により改良された公式が存在する)がある。.

新しい!!: ベリリウムと原子核 · 続きを見る »

ばね

ばねとは、力が加わると変形し、力を取り除くと元に戻るという、物体の弾性という性質を利用する機械要素である。広義には、弾性の利用を主な目的とするものの総称ともいえる。ばねの形状や材質は様々で、日用品から車両、電気電子機器、構造物に至るまで、非常に多岐にわたって使用される。 ばねの種類の中ではコイルばねがよく知られ、特に圧縮コイルばねが広く用いられてる。他には、板ばね、渦巻ばね、トーションバー、皿ばねなどがある。ばねの材料には金属、特に鉄鋼が広く用いられているが、用途に応じてゴム、プラスチック、セラミックスといった非金属材料も用いられている。空気を復元力を生み出す材料とする空気ばねなどもある。ばねの荷重とたわみの関係も、荷重とたわみが比例する線形のものから、比例しない非線形のものまで存在する。ばねばかりのように荷重を変形量で示させたり、自動車の懸架装置のように振動や衝撃を緩和したり、ぜんまい仕掛けのおもちゃのように弾性エネルギーの貯蔵と放出を行わせたりなど、色々な用途のためにばねが用いられる。 「ばね」は和語の一種だが、平仮名ではわかりにくいときは片仮名でバネとも表記される。現在使用されている漢字表記では発条と書かれる。英語に由来するスプリング(spring)という名称でもよく呼ばれる。語源は諸説あるが、「跳ね」「跳ねる」から転じて「ばね」という語になったとされる。 人類におけるばねの使用の歴史は太古に遡り、原始時代から利用されてきた弓はばねそのものである。カタパルト、クロスボウ、機械式時計、馬車の懸架装置といった様々な機械や器具で利用され、ばねは発展を遂げていった。1678年にはイギリスのロバート・フックが、ばねにおいて非常に重要な物理法則となるフックの法則を発表した。産業革命後には、他の工業と同じくばねも大きな発展を遂げ、理論的な設計手法も確立していった。今日では、ばねの製造は機械化された大量生産が主だが、一方で特殊なばねに対しては手作業による製造も行われる。現在のばねへの要求は多様化し、その実現に高度な技術も求められるようになっている。.

新しい!!: ベリリウムとばね · 続きを見る »

半減期

半減期(はんげんき、half-life)とは、ある放射性同位体が、放射性崩壊によってその内の半分が別の核種に変化するまでにかかる時間を言う。.

新しい!!: ベリリウムと半減期 · 続きを見る »

単体

単体(たんたい、simple substance)とは、単一の元素からできている純物質のことである。 水素 (H2)、酸素 (O2) などの等核二原子分子や、ナトリウム (Na)、金 (Au) などの純金属が含まれる。 これに対して、水 (H2O) など2種類以上の元素からできている純物質は化合物という。 酸素 (O2) とオゾン (O3)、あるいは赤リンと黄リンのように、同じ元素からできた単体であっても、異なる性質を示す場合がある。 このような単体同士の関係を同素体という。 たとえば、ダイヤモンドとグラファイトを混ぜ合わせた物質は、単一の炭素原子からできているが、密度・融点・沸点などの物理的性質が一定にさだまらないので純物質ではなく(したがって単体でもなく)、2種類の単体(炭素の同素体)の混合物である。.

新しい!!: ベリリウムと単体 · 続きを見る »

単核種元素

単核種元素(たんかくしゅげんそ、Mononuclidic element)とは、天然に存在する核種がただ一つである元素のことである。似た概念にモノアイソトピック元素があるが、この二つは明確に異なる(後述)。.

新しい!!: ベリリウムと単核種元素 · 続きを見る »

反応断面積

原子核物理学における反応断面積(はんのうだんめんせき、reaction cross-section)または単に断面積とは、核反応を起こす割合を表す尺度を言う。 吸収に対する吸収断面積、散乱に対する散乱断面積とそれぞれの核反応に対してその断面積が定義される。.

新しい!!: ベリリウムと反応断面積 · 続きを見る »

反磁性

反磁性(はんじせい、diamagnetism)とは、磁場をかけたとき、物質が磁場の逆向きに磁化され(=負の磁化率)、磁場とその勾配の積に比例する力が、磁石に反発する方向に生ずる磁性のことである 。 反磁性体は自発磁化をもたず、磁場をかけた場合にのみ反磁性の性質が表れる。反磁性は、1778年にセバールド・ユスティヌス・ブルグマンス によって発見され、その後、1845年にファラデーがその性質を「反磁性」と名づけた。 原子中の対になった電子(内殻電子を含む)が必ず弱い反磁性を生み出すため、実はあらゆる物質が反磁性を持っている。しかし、反磁性は非常に弱いため、強磁性や常磁性といったスピンによる磁性を持つ物質では隠れて目立たない。つまり、差し引いた結果の磁性として反磁性があらわれている物質のことを反磁性体と呼ぶに過ぎない。 このように、ほとんどの物質において反磁性は非常に弱いが、超伝導体は例外的に強い反磁性を持つ(後述)。なお、標準状態において最も強い反磁性をもつ物質はビスマスである。 なお、反強磁性(antiferromagnetism)は反磁性とは全く違う現象である。.

新しい!!: ベリリウムと反磁性 · 続きを見る »

同位体

同位体(どういたい、isotope;アイソトープ)とは、同一原子番号を持つものの中性子数(質量数 A - 原子番号 Z)が異なる核種の関係をいう。この場合、同位元素とも呼ばれる。歴史的な事情により核種の概念そのものとして用いられる場合も多い。 同位体は、放射能を持つ放射性同位体 (radioisotope) とそうではない安定同位体 (stable isotope) の2種類に分類される。.

新しい!!: ベリリウムと同位体 · 続きを見る »

合金

合金(ごうきん、alloy)とは、単一の金属元素からなる純金属に対して、複数の金属元素あるいは金属元素と非金属元素から成る金属様のものをいう。純金属に他の元素を添加し組成を調節することで、機械的強度、融点、磁性、耐食性、自己潤滑性といった性質を変化させ材料としての性能を向上させた合金が生産されて様々な用途に利用されている。 一言に合金といっても様々な状態があり、完全に溶け込んでいる固溶体、結晶レベルでは成分の金属がそれぞれ独立している共晶、原子のレベルで一定割合で結合した金属間化合物などがある。合金の作製方法には、単純に数種類の金属を溶かして混ぜ合わせる方法や、原料金属の粉末を混合して融点以下で加熱する焼結法、化学的手法による合金めっき、ボールミル装置を使用して機械的に混合するメカニカルアロイングなどがある。ただし、全ての金属が任意の割合で合金となるわけではなく、合金を得られる組成の範囲については、物理的・化学的に制限(あるいは最適点)が存在する。.

新しい!!: ベリリウムと合金 · 続きを見る »

塩 (化学)

化学において塩(えん、Salt)とは、広義には酸由来の陰イオン(アニオン)と塩基由来の陽イオン(カチオン)とがイオン結合した化合物のことであり、狭義にはアレニウス酸とアレニウス塩基との等当量混合物のことである。酸・塩基成分の由来により、無機塩、有機塩とも呼ばれる。塩は必ずしも中和反応によって生じるとは限らない。.

新しい!!: ベリリウムと塩 (化学) · 続きを見る »

塩化ナトリウム

塩化ナトリウム(えんかナトリウム、sodium chloride)は化学式 NaCl で表されるナトリウムの塩化物である。単に塩(しお)、あるいは食塩と呼ばれる場合も多いが、本来「食塩」は食用、医療用に調製された塩化ナトリウム製品を指す用語である。式量58.44である。 人(生体)を含めた哺乳類をはじめとする地球上の大半の生物にとっては、必須ミネラルであるナトリウム源として、生命維持になくてはならない重要な物質である。 天然には岩塩として存在する。また、海水の主成分として世界に広く分布するでもある(約2.8%)。この他、塩湖や温泉(食塩泉)などにも含有されていることで知られる。.

新しい!!: ベリリウムと塩化ナトリウム · 続きを見る »

塩化ベリリウム

塩化ベリリウム(えんかベリリウム、beryllium chloride)は、化学式 BeCl2 で表されるベリリウムの塩化物である。 甘味を有する物質として知られているが、猛毒である。この性質のため、ベリリウムは当初グルシニウム(glucinium, ギリシア語で甘さを意味する glykys から)と呼ばれた。.

新しい!!: ベリリウムと塩化ベリリウム · 続きを見る »

塩化アルミニウム

塩化アルミニウム(えんかあるみにうむ、Aluminium chloride)はアルミニウムの塩化物で、無水物と6水和物が知られている。塩基性塩化アルミニウムの重合体を指して塩化アルミニウムと呼ぶ場合もある。塩化アルミニウム(ポリ塩化アルミニウム・アルミナ10%換算値)2008年度日本国内生産量は582,542t、工業消費量は9,036tである。.

新しい!!: ベリリウムと塩化アルミニウム · 続きを見る »

塩化物

塩化物(えんかぶつ、chloride)とは、塩素がそれより陽性な元素または原子団と形成する化合物である。塩素 (Cl2) は第18族元素以外のほとんどの元素と反応し塩化物を形成する。 塩素の結合がイオン結合性の場合、容易に塩素の陰イオン (Cl&minus) を遊離するのでこのイオンは塩化物イオン(えんかぶつイオン、chloride ion)または塩素イオン(えんそイオン、現在この呼び方は推奨されていない)と称する。また命名法において後置せずに前置する場合は塩化 (— chloride) と称する。いずれも陰性の塩素原子を意味する名称である。.

新しい!!: ベリリウムと塩化物 · 続きを見る »

塩素

Chlore lewis 塩素(えんそ、chlorine)は原子番号17の元素。元素記号は Cl。原子量は 35.45。ハロゲン元素の一つ。 一般に「塩素」という場合は、塩素の単体である塩素分子(Cl2、二塩素、塩素ガス)を示すことが多い。ここでも合わせて述べる。塩素分子は常温常圧では特有の臭いを持つ黄緑色の気体で、腐食性と強い毒を持つ。.

新しい!!: ベリリウムと塩素 · 続きを見る »

塩酸

塩酸(えんさん、hydrochloric acid)は、塩化水素(化学式HCl)の水溶液。代表的な酸のひとつで、強い酸性を示す。.

新しい!!: ベリリウムと塩酸 · 続きを見る »

塵(ちり)は、一般に、ホコリや目に見えない微小な砂などの粒子である。.

新しい!!: ベリリウムと塵 · 続きを見る »

塗料

塗料(とりょう)とは、対象物を保護・美装、または、独自な機能を付与するために、その表面に塗り付ける材料のこと。 日本には古くから漆塗りに代表される塗料の歴史はあったが、洋式塗料の歴史は明治初頭に始まる。日本では家庭用品品質表示法の適用対象とされており雑貨工業品品質表示規程に定めがある。.

新しい!!: ベリリウムと塗料 · 続きを見る »

多形

多形(たけい、英: polymorphism).

新しい!!: ベリリウムと多形 · 続きを見る »

大型ハドロン衝突型加速器

大型ハドロン衝突型加速器 (おおがたハドロンしょうとつがたかそくき、Large Hadron Collider、略称 LHC) とは、高エネルギー物理実験を目的としてCERNが建設した世界最大の衝突型円型加速器の名称。スイス・ジュネーブ郊外にフランスとの国境をまたいで設置されている。2008年9月10日に稼動開始した。また、LHC実験はそこで実施されている実験の総称。 LHCは2013年2月から停止していたが、2015年4月5日に改良工事を終え、以前の8兆電子ボルト(8TeV)から13兆電子ボルト(13TeV)の高速エネルギーへ更新して運転を再開した 。 13TeVの衝突が2015年5月20日に初めて達成された 。.

新しい!!: ベリリウムと大型ハドロン衝突型加速器 · 続きを見る »

天文学者

リレオ・ガリレイはしばしば近代天文学の父と呼ばれる。 天文学者(てんもんがくしゃ)とは、惑星、恒星、銀河等の天体を研究する科学者である。 歴史的に、astronomy では天空で起きる現象の分類や記述に重点を置き、astroplane ではこれらの現象の説明やそれらの間の差異を物理法則を使って説明することを試みてきた。今日では、2つの差はほとんどなくなっている。プロの天文学者は高い教育を受け、通常物理学か天文学の博士号を持っており、研究所や大学に雇用されている。多くの時間を研究に費やすが、教育、施設の建設、天文台の運営の補助等にも携わっている。アメリカ合衆国のプロの天文学者の数は少なく、北米最大の天文学者の組織であるアメリカ天文学会には7,700人が所属している。天文学者の数の中には、物理学、地学、工学等の別の分野出身で天文学に関心を持ち、深く関わっているの者も含まれている。国際天文学連合には、博士課程以上の学生を含めて89カ国から9259人が所属している。 世界中のプロの天文学者の数は小さな町の人口にも満たないが、アマチュア天文学者のコミュニティは数多くある。多くの市に、定期的に会合を開催しているアマチュア天文学者のクラブがある。太平洋天文協会は、70カ国以上からプロやアマチュアの天文学者、教育者が参加する世界最大の組織である。他の趣味と同様に、自身をアマチュア天文学者だと考える多くの人々は、月に数時間を天体観測や最新の研究成果を読むことに費やす。しかし、アマチュアは、いわゆる「アームチェア天文学者」と呼ばれる人々から、自身の天体望遠鏡を所持して野望を持ち、新しい発見をしたりプロの天文学者の研究を助けたりする者まで、幅広く存在する。.

新しい!!: ベリリウムと天文学者 · 続きを見る »

太陽

太陽(たいよう、Sun、Sol)は、銀河系(天の川銀河)の恒星の一つである。人類が住む地球を含む太陽系の物理的中心尾崎、第2章太陽と太陽系、pp. 9–10であり、太陽系の全質量の99.86%を占め、太陽系の全天体に重力の影響を与えるニュートン (別2009)、2章 太陽と地球、そして月、pp. 30–31 太陽とは何か。 太陽は属している銀河系の中ではありふれた主系列星の一つで、スペクトル型はG2V(金色)である。推測年齢は約46億年で、中心部に存在する水素の50%程度を熱核融合で使用し、主系列星として存在できる期間の半分を経過しているものと考えられている尾崎、第2章太陽と太陽系、2.1太陽 2.1.1太陽の概観 pp. 10–11。 また、太陽が太陽系の中心の恒星であることから、任意の惑星系の中心の恒星を比喩的に「太陽」と呼ぶことがある。.

新しい!!: ベリリウムと太陽 · 続きを見る »

太陽風

太陽風(たいようふう、Solar wind)は、太陽から吹き出す極めて高温で電離した粒子(プラズマ)のことである。これと同様の現象はほとんどの恒星に見られ、「恒星風」と呼ばれる。なお、太陽風の荷電粒子が存在する領域は太陽圏と呼ばれ、それと恒星間領域の境界はヘリオポーズと呼ばれる。.

新しい!!: ベリリウムと太陽風 · 続きを見る »

定量分析

定量分析(ていりょうぶんせき、quantitative analysis)とは、試料中にある成分量を決定するために実施する化学分析である。試料中の成分が未知である場合は、定量分析に先立って定性分析を実施する。 古典的には成分の重量を測定する重量分析〈じゅうりょうぶんせき、gravimetric analysis〉、容量を測定する容量分析〈ようりょうぶんせき、volumetric analysis〉、化学変化による色調変化を比較測定する比色分析〈ひしょくぶんせき、colorimetric analysis〉の3つの分析方法に分類される。前二者は物理的な物理量を直接測定し物質量を決定するが、比色分析は予め、含量を精密に決定した基準試料〈きじゅんしりょう、authentic sample〉を複数用意して化学変化の度合を未知試料と比較して間接的に決定する。 重量分析では、測定に先立って成分の分離を行い、その後質量を計測する必要がある。たとえば、試料中の塩化物イオンを硝酸銀を加えて塩化銀としてすべて沈澱させ、生成した塩化銀を濾過で分離捕集して乾燥重量を測定する。あるいは元素分析では炭素、水素、窒素量は重量分析で決定する。 容量分析は分離精製した気体の体積測定も含まれるが、通常は滴定法による滴下した容量を測定することを意味する。すなわち、滴下容量は試料中の成分の当量に比例するので、容量から当量を換算して成分量を決定する。 今日の機器分析では色調以外にも、電気,光学的強度,磁気,熱,放射能など多彩な物理量を測定することで定量分析が可能であるが、それらも比色分析同様に基準試料の応答と比較することで間接的に物質量を決定する。測定する物理変化量と物質量の間に、線形なグラフが成立する場合は検量線により、基準試料の空隙を補完することで精密に定量することが可能である。 今日では成分分離に高速液体クロマトグラフィー法を量測定に各測定器を組み合わせた分析機器が定量分析用機器の主流になっている。.

新しい!!: ベリリウムと定量分析 · 続きを見る »

定性分析

定性分析(ていせいぶんせき、)とは、ある試料にどんな成分が含まれているかを調べることである。成分が何であるかを明らかにすることを同定ともいう。化合物の構造決定を行うことも含まれる。.

新しい!!: ベリリウムと定性分析 · 続きを見る »

宝石

宝石(ほうせき)とは、希少性が高く美しい外観を有する固形物のこと。一般的に外観が美しく、アクセサリーなどに使用される鉱物を言う。 主に天然鉱物としての無機物結晶を指すが、ラピスラズリ、ガーネットのような数種の無機物の固溶体、オパール、黒曜石、モルダバイトのような非晶質、珊瑚や真珠、琥珀のような生物に起源するもの、キュービックジルコニアのような人工合成物質など様々である。.

新しい!!: ベリリウムと宝石 · 続きを見る »

宇宙

宇宙(うちゅう)とは、以下のように定義される。.

新しい!!: ベリリウムと宇宙 · 続きを見る »

宇宙線

宇宙線(うちゅうせん、Cosmic ray)は、宇宙空間を飛び交う高エネルギーの放射線のことである名越 2011 p.3。主な成分は陽子であり、アルファ粒子、リチウム、ベリリウム、ホウ素、鉄などの原子核が含まれている。地球にも常時飛来している。.

新しい!!: ベリリウムと宇宙線 · 続きを見る »

宇宙線による核破砕

宇宙線による核破砕(Cosmic ray spallation)は、天然に起こる核分裂や原子核合成の形式である。宇宙線が対象に衝突することによって元素が形成される。宇宙線とは、地球外から来る高いエネルギーを持った粒子であり、自由電子からアルファ粒子まで様々なものからなる。これらが他の物質と衝突すると、核破砕反応を引き起こし、その結果、陽子や中性子等の核子が原子核から弾き出される。この過程は、大気圏外だけではなく、大気上層部でも生じる。 宇宙線による核破砕によって、リチウムやホウ素のような軽い元素が作られる。この過程は1970年代に偶然発見された。 ビッグバン原子核合成のモデルは、観測される重水素の量が宇宙の膨張速度から計算した値と一致しないほど多いことを示唆し、ビッグバン後に重水素を生成した過程について多くの関心が集まっている。 宇宙線による核破砕は、重水素を生成しうる過程として研究が行われた。結局、宇宙線による核破砕によってはそれほど多くの重水素が生成しないことが分かり、宇宙に存在する余分な重水素は、非バリオンの暗黒物質の存在を仮定することで説明が可能となった。しかし、宇宙線による核破砕の研究によって、この過程によりリチウム、ベリリウム、ホウ素等が生成されることが分かった。これらの元素は、実際に大気よりも宇宙線に多く存在する原子核である。(対して、水素やヘリウムは大気中と宇宙線で存在比は変わらない。) アルミニウムの同位体、炭素の同位体、塩素の同位体、ヨウ素の同位体、ネオンの同位体も宇宙線による核破砕で生じることが知られている。.

新しい!!: ベリリウムと宇宙線による核破砕 · 続きを見る »

宇宙船

ェミニ 6号 スペースシャトルのオービタ(チャレンジャー、1983年) 宇宙船(うちゅうせん、)は、宇宙機のなかで、とくに人の乗ることを想定しているものを言う。有人宇宙機とも。.

新しい!!: ベリリウムと宇宙船 · 続きを見る »

対流圏

対流圏(たいりゅうけん、troposphere)は、地球の大気の層の一つ。大気の鉛直構造において一番下(高度0kmから約11km)、地表と成層圏の間に位置する。成層圏との境界は対流圏界面と呼ばれる。。'tropos' はギリシャ語で「混ざること、混合」といった意味をもつ。対流圏内では空気の上下攪拌が行われている。.

新しい!!: ベリリウムと対流圏 · 続きを見る »

射撃管制装置

射撃管制装置(しゃげきかんせいそうち、fire control system, FCS、射撃統制装置(しゃげきとうせいそうち)、火器管制装置(かきかんせいそうち)、射撃指揮装置(しゃげきしきそうち))は、兵器が目標物を正確に射撃するために火器を制御するための、装置及び装置以外のシステム(英語での表現 fire control system のどこにも、「装置」に相当する equipment といったような語は無い)。.

新しい!!: ベリリウムと射撃管制装置 · 続きを見る »

展延性

アルミニウム合金 (AlMgSi) の引張試験の結果。円錐状に細長く延びて破断しているのは、延性のある金属によく見られる結果である。 延性の低いダクタイル鋳鉄の引張試験の結果 展延性(てんえんせい、英:ductility)とは、固体の物質の力学的特性(塑性)の一種で、素材が破断せずに柔軟に変形する限界を示す。展延性は延性 (ductility) と展性 (malleability) に分けられる。英語の "ductility" は展延性と延性の両方の意味で使われる。 物質科学において、延性は特に物質に引っ張る力を加えた際の変形する能力を指し、針金状に延ばせる能力で表されることが多い。一方展性は圧縮する力を加えた際の変形する能力を指し、鍛造や圧延で薄いシート状に成形できる能力で表されることが多い。そのため展性を可鍛性(かたんせい)とも呼ぶ。 延性と展性は必ずしも正の相関があるとは言えない。例えば金は延性も展性も高いが、鉛は展性のみが高く引っ張る力には弱い。.

新しい!!: ベリリウムと展延性 · 続きを見る »

不安定核

不安定核(ふあんていかく)は、陽子と中性子のどちらかが過剰なせいで、短命な核種。エキゾチック核ともいう。 原子核は陽子と中性子で構成され、軽く安定な原子核でのその比はおおよそ1対1である(質量数の大きい原子核では陽子間のクーロン力のためエネルギーを損して中性子の方が多くなる)。 中性子数が通常より多いものを中性子過剰核、陽子数が通常より多いものを陽子過剰核と呼び、今までの安定核の物理には見られなかった現象、例えば中性子ハローや中性子スキンの存在、魔法数の変化などが確認されている。 これらの原子核は主に核分裂の際の分裂破片中に含まれていることが知られていた。RIビームの手法を用いて重イオン加速器を使ってエキゾチック原子核を系統的に合成することが可能となり、その性質を詳しく調べていくことが可能となってきている。 r過程は不安定核を経由して起きる過程と考えられており、宇宙における元素合成や、星の生成に関するメカニズムなどの研究にも密接な関わりを持っている。 Category:同位体.

新しい!!: ベリリウムと不安定核 · 続きを見る »

不動態

不動態(ふどうたい、不働態とも)とは、金属表面に腐食作用に抵抗する酸化被膜が生じた状態のこと。この被膜は溶液や酸にさらされても溶け去ることが無いため、内部の金属を腐食から保護するために用いられる。なお、本来「不働態」が正字であるが、現在は「不動態」と表記する。 酸化力のある酸にさらされた場合や、陽極酸化処理によって生じる。不動態の典型的な被膜の厚みは、例えばステンレスに生じる不動態の場合、数nmである。 すべての金属が不動態となるわけではない。不動態になりやすいのは、アルミニウム、クロム、チタンなどやその合金である。また、これらの金属は弁金属(バルブメタル)と呼ばれる。.

新しい!!: ベリリウムと不動態 · 続きを見る »

両性 (化学)

化学において両性物質(りょうせいぶっしつ、amphoteric substance)とは、酸とも塩基とも反応する物質のことである。多くの金属(亜鉛、スズ、鉛、アルミニウム、ベリリウムなど)と半金属は両性酸化物を作る。この他、アミノ基とカルボキシル基の両方を持つアミノ酸、自動イオン化(自己イオン化)化合物である水やアンモニアも両性物質に含まれる。.

新しい!!: ベリリウムと両性 (化学) · 続きを見る »

中性子

中性子(ちゅうせいし、neutron)とは、原子核を構成する粒子のうち、無電荷の粒子の事で、バリオンの1種である。原子核反応式などにおいては記号 n で表される。質量数は原子質量単位で約 、平均寿命は約15分でβ崩壊を起こし陽子となる。原子核は、陽子と中性子と言う2種類の粒子によって構成されている為、この2つを総称して核子と呼ぶ陽子1個で出来ている 1H と陽子3個で出来ている 3Li の2つを例外として、2015年現在の時点で発見報告のある原子の内、最も重い 294Og までの全ての"既知の"原子核は陽子と中性子の2種類の核子から構成されている。。.

新しい!!: ベリリウムと中性子 · 続きを見る »

中性子反射体

中性子反射体(ちゅうせいしはんしゃたい、neutron reflector)は中性子を反射する物質。中性子の反射は鏡面反射ではなく弾性散乱に似ている。このような物質にはグラファイト(黒鉛)、ベリリウム、鉛、鉄、炭化タングステンなどの物質があげられる。中性子反射体は核物質から発生した中性子を核物質へと反射することで臨界量に満たない核分裂性物質を臨界状態にすることができ、また臨界量、超臨界量での核分裂反応を増加させることができる。.

新しい!!: ベリリウムと中性子反射体 · 続きを見る »

中性子ハロー

中性子ハロー(ちゅうせいしはろー)とは、中性子が原子核の中ではなく、その周囲を回っている状態の事を言う。.

新しい!!: ベリリウムと中性子ハロー · 続きを見る »

中性子線

原子核物理学における中性子線(ちゅうせいしせん、neutron beam)とは中性子の粒子線を言う。.

新しい!!: ベリリウムと中性子線 · 続きを見る »

中性子放出

中性子放出(Neutron emission)は放射性崩壊の形式であり、原子が含む超過した中性子を原子核が単純に放出する過程である。 中性子を放出する同位体の例にはヘリウム5やベリリウム13が上げられる。ただし、ヘリウム5の崩壊はまた、定義上はアルファ崩壊にも分類される。ヘリウム5の崩壊は以下の様にあらわすことが出来る。 ^5He -> + ^1n カリフォルニウム252の例のように多くの重同位体では、自発核分裂のいろいろな放射性崩壊の過程の生成物の一つとして中性子が放出される。 中性子は核分裂反応の過程で吸収、排出され、連鎖反応は中性子によって伝達される。遅発中性子は中性子に富んだ分裂生成物に放出され、即発中性子だけよりはるかに遅いことによって反応度の変化を作り出し原子炉の制御を助ける。.

新しい!!: ベリリウムと中性子放出 · 続きを見る »

丸善雄松堂

丸善雄松堂株式会社(まるぜんゆうしょうどう、)は、日本の大手書店、出版社、専門商社。文化施設の建築・内装、図書館業務のアウトソーシング等も行い、幅広い業務を手がけている。大日本印刷の子会社である丸善CHIホールディングスの完全子会社である。 なお、かつての丸善石油(後のコスモ石油)、「チーかま」など珍味メーカーの丸善、業務用厨房機器メーカーのマルゼン、エアソフトガンメーカーのマルゼンとは無関係である。 本店は東京都中央区日本橋二丁目に、本社事務所は港区海岸一丁目にある。.

新しい!!: ベリリウムと丸善雄松堂 · 続きを見る »

主力戦車

主力戦車(しゅりょくせんしゃ、英語:、略称:MBT)は、戦車の分類の1つである。現代の戦車はほとんどが主力戦車に分類され、戦力の要となっている。 第二次世界大戦まで戦車は重戦車、中戦車、軽戦車、豆戦車、駆逐戦車など多様であった。戦後、戦車に求められるあらゆる任務をこなせるように走攻守をバランス良く備えた主力戦車が登場し統合が進んでいった。その背景には戦術の確立と技術の発展があった。.

新しい!!: ベリリウムと主力戦車 · 続きを見る »

希土類元素

希土類元素(きどるいげんそ、)又はレアアースは、31鉱種あるレアメタルの中の1鉱種で、スカンジウム Sc、イットリウム Yの2元素と、ランタン La からルテチウム Lu までの15元素(ランタノイド)の計17元素の総称である(元素記号の左下は原子番号)。周期表の位置では、第3族のうちアクチノイドを除く第4周期から第6周期までの元素を包含する。なお、希土類・希土と略しており、かつて稀土類・稀土とも書き、それらは英語名の直訳であり、比較的希な鉱物から得られた酸化物から分離されたことに由来している。.

新しい!!: ベリリウムと希土類元素 · 続きを見る »

世界保健機関

世界保健機関(せかいほけんきかん、World Health Organization, WHO、Organisation mondiale de la santé, OMS)は、人間の健康を基本的人権の一つと捉え、その達成を目的として設立された国際連合の専門機関(国際連合機関)である。略称は英語式(WHO)と仏語式(OMS)で異なる。日本をはじめ多くの国では英語略称のWHO(ダブリュー・エイチ・オー)が多用される。(以下「WHO」と表記する。読みについては後述) 1948年設立。本部はスイス・ジュネーヴ。設立日である4月7日は、世界保健デーになっている。 WHOでは「健康」を「身体的、精神的、社会的に完全な良好な状態であり、たんに病気あるいは虚弱でないことではない」(WHO憲章前文)と定義しており、非常に広範な目標を掲げている。 そのために、病気の撲滅のための研究、適正な医療・医薬品の普及だけでなく、基本的人間要請 (basic human needs, BHN) の達成や健康的なライフスタイルの推進にも力を入れている。また組織の肥大化と共に企業との癒着構造が問題として指摘されている。.

新しい!!: ベリリウムと世界保健機関 · 続きを見る »

人体

ウィトルウィウス的人体図(en:Vitruvian Man) (レオナルド・ダ・ヴィンチ) 人体(成人の男女) 人体(じんたい、human body)とは、人間の体を指す。.

新しい!!: ベリリウムと人体 · 続きを見る »

二リン酸

二リン酸(にリンさん、diphosphoric acid)は、化学式 H4P2O7 で表される無機化合物である。ピロリン酸(ピロリンさん、pyrophosphoric acid)とも呼ばれる。 リン酸を高温で脱水縮合することで生成する(接頭辞の pyro- は「熱・炎・高温」を意味する)。また、日本語において名称の類似するピロリンはアミンおよびイミンの一種であり、直接の関係はない。.

新しい!!: ベリリウムと二リン酸 · 続きを見る »

二元化合物

二元化合物(にげんかごうぶつ、binary compound)とは、全く異なる2種類の元素を含む化合物である。共有結合性二元化合物には、水 (H2O)、一酸化炭素 (CO)、六フッ化硫黄 (SF6) などがある。イオン結合性二元化合物には、塩化カルシウム (CaCl2)、フッ化ナトリウム (NaF)、酸化マグネシウム (MgO) などがある。.

新しい!!: ベリリウムと二元化合物 · 続きを見る »

二量体

二量体(にりょうたい)またはダイマー(dimer)は、2つの同種の分子やサブユニット(単量体)が物理的・化学的な力によってまとまった分子または超分子を言う。二量体を形成することを、おもに化学では二量化、生化学では二量体化という。 さらに、3つ・4つのサブユニットがまとまったものは三量体・四量体と言う。少数のものがまとまったものを総称してオリゴマー、多数の場合は高分子と呼ぶ。.

新しい!!: ベリリウムと二量体 · 続きを見る »

二酸化ケイ素

二酸化ケイ素(にさんかケイそ、silicon dioxide)はケイ素の酸化物で、地殻を形成する物質の一つとして重要である。組成式は。シリカ(silica)、無水ケイ酸とも呼ばれる。圧力、温度の条件により、石英(quartz、水晶)以外にもシリカ鉱物()の多様な結晶相(結晶多形)が存在する。.

新しい!!: ベリリウムと二酸化ケイ素 · 続きを見る »

二酸化炭素

二酸化炭素(にさんかたんそ、carbon dioxide)は、化学式が CO2 と表される無機化合物である。化学式から「シーオーツー」と呼ばれる事もある。 地球上で最も代表的な炭素の酸化物であり、炭素単体や有機化合物の燃焼によって容易に生じる。気体は炭酸ガス、固体はドライアイス、液体は液体二酸化炭素、水溶液は炭酸・炭酸水と呼ばれる。 多方面の産業で幅広く使われる(後述)。日本では高圧ガス保安法容器保安規則第十条により、二酸化炭素(液化炭酸ガス)の容器(ボンベ)の色は緑色と定められている。 温室効果ガスの排出量を示すための換算指標でもあり、メタンや亜酸化窒素、フロンガスなどが変換される。日本では2014年度で13.6億トンが総排出量として算出された。.

新しい!!: ベリリウムと二酸化炭素 · 続きを見る »

亜鉛

亜鉛(あえん、zinc、zincum)は原子番号30の金属元素。元素記号は Zn。亜鉛族元素の一つ。安定な結晶構造は、六方最密充填構造 (HCP) の金属。必須ミネラル(無機質)16種の一つ。.

新しい!!: ベリリウムと亜鉛 · 続きを見る »

強度

材料の強度(きょうど)あるいは強さ(つよさ)とは、その材料が持つ、変形や破壊に対する抵抗力を指す。 古くから経験的に把握されていた材料における強度の概念について最初に定量化を試みたのはレオナルド・ダ・ヴィンチであるが、彼の個人的なノートでの記述に限られていた。一般に公開された書物としては1638年に出版されたガリレオ・ガリレイの『新科学対話』における記述が最初である。18世紀に入ると引張試験や曲げ試験など様々な強度試験の方法が確立し、ステファン・ティモシェンコの確立した材料力学の考え方とともに建築分野や機械設計分野の基礎を支えていると一般のエンジニアには思われている。しかしながら、戦場の最前線のごとく、破損した材料の屍を築く領域や、永久には持たないならその寿命を工学的に管理するなど分野においては、破壊力学(靭性)的考え方を採用することも重要で、一般の人々の感覚に還元すると強度と靭性のバランスポイントがありそこが最も強度が高いという認識になる。 強度を表す指標は様々であり、材料の変形挙動の種類によって以下のように用語を使い分ける。; 降伏強さ; 引張強さ; 延性; 破壊エネルギー(靭性); 曲げ強度(抗折力); 硬度.

新しい!!: ベリリウムと強度 · 続きを見る »

侵食

300px 侵食(しんしょく、侵蝕とも、erosion)とは、水や風などの外的営力により岩石や地層が削られること。浸食(浸蝕)と表記する場合もあるが、水に「浸る」とは限らないため、学術的には侵食(侵蝕)の表記を用いる。 水の場合は雨水およびそれが流れたものから河川の流れ、海や湖の波、氷河などが原因(scoring)。水流そのものによって物理的侵食をする場合を「洗掘」、長時間にわたって堅い岩盤などが摩耗されることを「磨食」と区別することもある。 風の場合は風そのもののほか、風で飛ばされてくる砂粒によって削られる(サンドブラスト状態)ことも多い。これは風食(deflation)と呼ばれることもある。また、貝類やウニなどによって石灰岩などが侵食されることを生物侵食(bioerosion)という。.

新しい!!: ベリリウムと侵食 · 続きを見る »

保育社

株式会社 保育社(ほいくしゃ)は日本の出版社。大阪市淀川区に本社がある。1946年創業。 図鑑の発行を主力出版物としており、生物をはじめとする様々な分野の原色図鑑を発行していた。また文庫判ながらカラー写真入りであらゆる分野の事象を解説した小百科シリーズ「カラーブックス」の発行や生態学の啓蒙書でも知られている。 図鑑の傾向としては、専門家にとっては原著論文を網羅してはいない、自らの狭い専門分野の周辺分野を見渡す用途には堪え、アマチュアにとっては入門段階からセミプロ級の研究家までの使用に適するといった、プロとアマチュアを橋渡しするレベル設定のものが多い。.

新しい!!: ベリリウムと保育社 · 続きを見る »

信管

時限式弾頭信管、イギリスで開発された2.95インチ山砲用にアメリカで設計されたもの 信管(しんかん) とは弾薬を構成する部品の一つであり、弾薬の種類と用途に応じて所望の時期と場所で弾薬を作動させるための装置である。 現在、以下の4つの機能を持っていて、以下の機能が一つに結合された装置を信管と呼んでいる。.

新しい!!: ベリリウムと信管 · 続きを見る »

土壌

土壌(どじょう)とは、地球上の陸地の表面を覆っている生物活動の影響を受けた物質層のことである。一般には土(つち)とも呼ばれる。.

新しい!!: ベリリウムと土壌 · 続きを見る »

地球の大気

上空から見た地球の大気の層と雲 国際宇宙ステーション(ISS)から見た日没時の地球の大気。対流圏は夕焼けのため黄色やオレンジ色に見えるが、高度とともに青色に近くなり、さらに上では黒色に近くなっていく。 MODISで可視化した地球と大気の衛星映像 大気の各層の模式図(縮尺は正しくない) 地球の大気(ちきゅうのたいき、)とは、地球の表面を層状に覆っている気体のことYahoo! Japan辞書(大辞泉) 。地球科学の諸分野で「地表を覆う気体」としての大気を扱う場合は「大気」と呼ぶが、一般的に「身近に存在する大気」や「一定量の大気のまとまり」等としての大気を扱う場合は「空気()」と呼ぶ。 大気が存在する範囲を大気圏(たいきけん)Yahoo! Japan辞書(大辞泉) 、その外側を宇宙空間という。大気圏と宇宙空間との境界は、何を基準に考えるかによって幅があるが、便宜的に地表から概ね500km以下が地球大気圏であるとされる。.

新しい!!: ベリリウムと地球の大気 · 続きを見る »

地金

地金(じがね、じきん)とは、金属を貯蔵しやすいような形で固めたもの。金属塊。インゴット、バーともいう。例外として、水銀は液状であることから、アマルガムを生じない鉄製フラスコやボンベ、または樹脂製ボトルやガラス瓶に注入されて取引される。また、半金属であるアンチモンやビスマスも地金として流通させることが多い。.

新しい!!: ベリリウムと地金 · 続きを見る »

化学同人

株式会社化学同人(かがくどうじん)は化学専門書、自然科学関連書などを出版する日本の出版社。.

新しい!!: ベリリウムと化学同人 · 続きを見る »

化学結合

化学結合(かがくけつごう)は化学物質を構成する複数の原子を結びつけている結合である。化学結合は分子内にある原子同士をつなぎ合わせる分子内結合と分子と別の分子とをつなぎ合わせる分子間結合とに大別でき、分子間結合を作る力を分子間力という。なお、金属結晶は通常の意味での「分子」とは言い難いが、金属結晶を構成する結合(金属結合)を説明するバンド理論では、分子内結合における原子の数を無限大に飛ばした極限を取ることで、金属結合の概念を定式化している。 分子内結合、分子間結合、金属結合のいずれにおいても、化学結合を作る力は原子の中で正の電荷を持つ原子核が、別の原子の中で負の電荷を持つ電子を電磁気力によって引きつける事によって実現されている。物理学では4種類の力が知られているが、電磁気力以外の3つの力は電磁気力よりも遥かに小さい為、化学結合を作る主要因にはなっていない。したがって化学結合の後述する細かな分類、例えば共有結合やイオン結合はどのような状態の原子にどのような形で電磁気力が働くかによる分類である。 化学結合の定式化には、複数の原子がある場合において電子の軌道を決定する必要があり、そのためには量子力学が必須となる。しかし多くの簡単な化合物や多くのイオンにおいて、化学結合に関する定性的な説明や簡単な定量的見積もりを行う分には、量子力学で得られた知見に価電子や酸化数といった分子の構造と構成を使って古典力学的考察を加える事でも可能である。 それに対し複雑な化合物、例えば金属複合体では価電子理論は破綻し、その振る舞いの多くは量子力学を基本とした理解が必要となる。これに関してはライナス・ポーリングの著書、The Nature of the Chemical Bondで詳しく述べられている。.

新しい!!: ベリリウムと化学結合 · 続きを見る »

化学者

化学者(かがくしゃ)は主として化学を研究する研究者である。 化学を意味する"chemistry"は、ギリシア語の「雑多な素材を混ぜ合わせる」という言葉から由来したといわれるが、その本来の語源はアラビア語(كيمياءまたはالكيمياء)である。日本では「舎密学(せいみがく)」と表記したこともある。 語源的には、alchemist(錬金術師、中世の神秘的化学者)と同じ。最初のもっとも著名な化学者は、バーゼル大学医学部の教授だったといわれるパラケルススで、彼はタロット占いのカードの1に描かれている「魔法使い」のモデルとしても知られている。 現在では、意味は化学に携わる研究者のことに限られる。他の学問領域との境界領域に携わっている場合、どう呼ぶかについての明確な定義はない。 時折科学者と取り違えられたり混同される場合があるが、科学と化学は分野の内容や範疇および定義が異なる為に「似て非なる」存在である。 化学者というと「長い白衣を着て、手に試験管を持つ」というステレオタイプがあるが、実際にはそのような化学者は稀である。 長白衣は「袖を引っ掛かけるため、瓶や器具を転倒させて危険」といわれている。ニチェット式の(医師等が着用する)白衣を着用する。元々は指示薬の染みをつけないようにするものであるから、割烹着以上の意味はない。また、試験管で反応させることは稀で、通常はガラス器具を組み立てて実験する。.

新しい!!: ベリリウムと化学者 · 続きを見る »

化石燃料

化石燃料(かせきねんりょう、fossil fuel)は、地質時代にかけて堆積した動植物などの死骸が地中に堆積し、長い年月をかけて地圧・地熱などにより変成されてできた、言わば化石となった有機物のうち、人間の経済活動で燃料として用いられる(または今後用いられることが検討されている)ものの総称である。.

新しい!!: ベリリウムと化石燃料 · 続きを見る »

ナノメートル

ナノメートル(nanometre、記号: nm)は、国際単位系の長さの単位で、10−9メートル (m).

新しい!!: ベリリウムとナノメートル · 続きを見る »

ペグマタイト

ペグマタイト()は、大きな結晶からなる火成岩の一種。花崗岩質のものが多いため巨晶花崗岩(きょしょうかこうがん)あるいは鬼御影(おにみかげ)と呼ばれることもあるが、閃緑岩質や斑れい岩質のものもある。岩脈などの小岩体として産出する。 マグマが固結する際にはマグマ内の晶出しやすい成分から析出が進み、マグマ自体の成分の分離が進んでいく(結晶分化作用)。このとき温度低下の鈍化や融点の上昇などの条件を満たすと、析出成分は大きな結晶に成長することがあり、またその結晶成分の純度が高くなる。こうした結晶群を多く含む鉱床をペグマタイト鉱床()という。目的の成分を高純度で採取できるため、多くが鉱床として利用される。 温度や圧力の低下によって、鉱床内に液体・気体の空洞が生じることがある。成分が分化したこの空洞内にも新たな結晶が生じ、純度が特に高いものは宝石として利用されたり鉱物標本として採取されたりする。空洞を作る鉱物が周囲の岩石の成分と同じものを晶洞(druse)、異なるものを異質晶洞(geode)と呼ぶことがある。水晶やアメジストなどの標本に見られるのはこのようなタイプで、ペグマタイト鉱床では特にこうした結晶を得られやすいものが多い。.

新しい!!: ベリリウムとペグマタイト · 続きを見る »

ミサイル

ュピター 広くミサイル(missile)として知られる、誘導ミサイルあるいは誘導弾(ゆうどうだん、guided missile)は、目標に向かって誘導を受けるか自律誘導によって自ら進路を変えながら、自らの推進装置によって飛翔していく軍事兵器のことである。.

新しい!!: ベリリウムとミサイル · 続きを見る »

マルティン・ハインリヒ・クラプロート

マルティン・ハインリヒ・クラプロート(Martin Heinrich Klaproth、1743年12月1日 – 1817年1月1日)はドイツの化学者である。 ヴェルニゲローデに生まれた。16歳で薬局につとめ、その後クヴェトリンブルク、ハノーファーなどで薬局の助手を務め、1768年ベルリンにでた。1770年有名な化学者ローゼの助手になったが、その直後にローゼが亡くなったので、ローゼの仕事をつぐことになった。1810年にフンボルト大学(ベルリン大学)が創設されると初代の化学の教授になった。 分析化学と鉱物学に業績を残した。ウラン、ジルコニウム、セリウムの発見者とされ、テルルとチタンの発見を確認し、これらの元素の命名者になっている。 1789年、ピッチブレンドから酸化ウランを精製し、新元素であると結論した。.

新しい!!: ベリリウムとマルティン・ハインリヒ・クラプロート · 続きを見る »

マンハッタン計画

マンハッタン計画(マンハッタンけいかく、Manhattan Project)は、第二次世界大戦中、ナチス・ドイツなどの一部枢軸国の原子爆弾開発に焦ったアメリカ、イギリス、カナダが原子爆弾開発・製造のために、科学者、技術者を総動員した計画である。計画は成功し、原子爆弾が製造され、1945年7月16日世界で初めて原爆実験を実施した。さらに、広島に同年8月6日・長崎に8月9日に投下、合計数十万人が犠牲になり、また戦争後の冷戦構造を生み出すきっかけともなった。 科学部門のリーダーはロバート・オッペンハイマーがあたった。大規模な計画を効率的に運営するために管理工学が使用された。 なお、計画の名は、当初の本部がニューヨーク・マンハッタンに置かれていたため、一般に軍が工区名をつける際のやり方に倣って「マンハッタン・プロジェクト」とした。最初は「代用物質開発研究所 (Laboratory for the Development of Substitute Materials)」と命名されたが、これを知った(後にプロジェクトを牽引することになる)レズリー・グローヴスが、その名称は好奇心を掻き立てるだけであるとして新たに提案したのが採用されたものである。.

新しい!!: ベリリウムとマンハッタン計画 · 続きを見る »

マンガン

マンガン(manganese 、manganum)は原子番号25の元素。元素記号は Mn。日本語カタカナ表記での名称のマンガンは Mangan をカタカナに変換したもので、日本における漢字表記の当て字は満俺である。.

新しい!!: ベリリウムとマンガン · 続きを見る »

マイル

マイル(、記号:mile、mi)は、ヤード・ポンド法等における長さ (length) の単位である。 今日では、マイルという単位は通常は、主に陸上の長さの計測に用いられる 1 国際マイル.

新しい!!: ベリリウムとマイル · 続きを見る »

マイクロ波

マイクロ波(マイクロは、Microwave)は、電波の周波数による分類の一つである。「マイクロ」は、電波の中で最も短い波長域であることを意味する。.

新しい!!: ベリリウムとマイクロ波 · 続きを見る »

マグマ

マグマ(magma)とは、地球や惑星を構成する固体が溶融したものである。地球のマントルや地殻は主にケイ酸塩鉱物でできているため、その溶融物であるマグマも一般にケイ酸塩主体の組成を持つが、稀に「炭酸塩」鉱物を主体とするマグマも存在する。岩漿(がんしょう)ともいう坪井誠太郎『岩石學I』(岩波全書)。英語の magma は、ギリシャ語の μάγμα (糊の意)からきている。.

新しい!!: ベリリウムとマグマ · 続きを見る »

マグネトロン

マグネトロン()とは、発振用真空管の一種で、磁電管とも呼ばれる。電波の一種である強力なマイクロ波を発生する。レーダーや電子レンジに使われている。.

新しい!!: ベリリウムとマグネトロン · 続きを見る »

マグネシウム

マグネシウム(magnesium )は原子番号 12、原子量 24.305 の金属元素である。元素記号は Mg。マグネシュームと転訛することがある。中国語は金へんに美と記する。 周期表第2族元素の一種で、ヒトを含む動物や植物の代表的なミネラル(必須元素)であり、とりわけ植物の光合成に必要なクロロフィルで配位結合の中心として不可欠である。また、有機化学においてはグリニャール試薬の構成元素として重要である。 酸化マグネシウムおよびオキソ酸塩の成分としての酸化マグネシウムを、苦い味に由来して苦土(くど、bitter salts)とも呼称する。.

新しい!!: ベリリウムとマグネシウム · 続きを見る »

チタン

二酸化チタン粉末(最も広く使用されているチタン化合物) チタン製指輪 (酸化皮膜技術で色彩を制御) チタン(Titan 、titanium 、titanium)は、原子番号22の元素。元素記号は Ti。第4族元素(チタン族元素)の一つで、金属光沢を持つ遷移元素である。 地球を構成する地殻の成分として9番目に多い元素(金属としてはアルミニウム、鉄、マグネシウムに次ぐ4番目)で、遷移元素としては鉄に次ぐ。普通に見られる造岩鉱物であるルチルやチタン鉄鉱といった鉱物の主成分である。自然界の存在は豊富であるが、さほど高くない集積度や製錬の難しさから、金属として広く用いられる様になったのは比較的最近(1950年代)である。 チタンの性質は化学的・物理的にジルコニウムに近い。酸化物である酸化チタン(IV)は非常に安定な化合物で、白色顔料として利用され、また光触媒としての性質を持つ。この性質が金属チタンの貴金属に匹敵する耐食性や安定性をもたらしている。(水溶液中の実際的安定順位は、ロジウム、ニオブ、タンタル、金、イリジウム、白金に次ぐ7番目。銀、銅より優れる) 貴金属が元素番号第5周期以降に所属する重金属である一方でチタンのみが第4周期に属する軽い金属である(鋼鉄の半分)。.

新しい!!: ベリリウムとチタン · 続きを見る »

ハロゲン化物

ハロゲン化物(ハロゲンかぶつ、halide)とは、ハロゲンとそれより電気陰性度の低い元素との化合物である。フッ化物、塩化物、臭化物、ヨウ化物、アスタチン化物がある。多くの塩はハロゲン化物である。すべてのアルカリ金属は室温で白色固体のハロゲン化物をつくる。 ハロゲン化物イオンは負電荷を帯びたハロゲン原子のイオンであり、フッ化物イオン F-、塩化物イオン Cl-、臭化物イオン Br-、ヨウ化物イオン I-、アスタチン化物イオン At- がある。これらのイオンは、すべてのイオン性ハロゲン化物塩中に存在する。.

新しい!!: ベリリウムとハロゲン化物 · 続きを見る »

ハイエンド

ハイエンド (High end).

新しい!!: ベリリウムとハイエンド · 続きを見る »

バーン (単位)

原子核物理学におけるバーン(barn、記号:b)は、核反応の反応断面積の単位である。 1 b.

新しい!!: ベリリウムとバーン (単位) · 続きを見る »

ポロニウム

ポロニウム(polonium)は原子番号84の元素。元素記号は Po。漢字では。安定同位体は存在しない。第16族元素の一つ。銀白色の金属(半金属)。常温、常圧で安定な結晶構造は、単純立方晶 (α-Po)。36 以上で立方晶から菱面体晶 (β-Po) に構造相転移する。.

新しい!!: ベリリウムとポロニウム · 続きを見る »

メタン

メタン(Methan (メターン)、methaneアメリカ英語発音: (メセイン)、イギリス英語発音: (ミーセイン)。)は最も単純な構造の炭化水素で、1個の炭素原子に4個の水素原子が結合した分子である。分子式は CH4。和名は沼気(しょうき)。CAS登録番号は 。カルバン (carbane) という組織名が提唱されたことがあるが、IUPAC命名法では非推奨である。.

新しい!!: ベリリウムとメタン · 続きを見る »

モノマー

モノマー(monomer)とは、重合を行う際の基質のこと。単量体ともいう。モノマーが多数結合した高分子のことをポリマー(重合体、ポリは「たくさん」の意)と呼ぶのに対して、1を表すギリシャ語の接頭語であるモノからモノマーと呼ぶ。 モノマー同士が二つつながって重合体となったものは、二量体またはダイマー(dimer)と呼ぶ。同様に、三つつながったものは、三量体またはトリマー、トライマー(trimer)と呼び、四つつながったものは四量体またはテトラマー(tetramer)、五つつながったものは五量体またはペンタマー(pentamer)と呼ぶ。これら、数分子(最大20程度)がつながったものを総称してオリゴマー(oligomer)と呼ぶ。.

新しい!!: ベリリウムとモノマー · 続きを見る »

モルガナイト

モルガナイト(morganite)はピンク色ないし淡赤紫色の緑柱石(ベリル)である。呈色はマンガン(Mn)に由来する。.

新しい!!: ベリリウムとモルガナイト · 続きを見る »

モース硬度

モース硬度(モースこうど)、モース硬さ(モースかたさ、)またはモース硬さスケール(モースかたさスケール、)は、主に鉱物に対する硬さの尺度の1つ。硬さの尺度として、1から10までの整数値を考え、それぞれに対応する標準物質を設定する。 ここで言う硬さの基準は「あるものでひっかいたときの傷のつきにくさ」であり、「たたいて壊れるかどうか」の堅牢さではない(そちらは靱性を参照)。モース硬度が最高のダイヤモンドであっても衝撃には弱く、ハンマーなどである一定の方向からたたくことよって容易に砕ける。また、これらの硬度は相対的なものであるため、モース硬度4.5と示されている2つの鉱物があったとしても、それらは同じ硬度とは限らない。これは、蛍石で引っかくと傷がつかず、燐灰石で引っかくと傷つくということを示すのみである。 数値間の硬度の変化は比例せず、硬度1と2の間の差が小さく、9と10の間の硬度の差が大きいことも特徴的である。一見すると不便な見分け方のようでもあるが、分析装置のない野外においては、鉱物を同定するために役立つ簡便で安価な方法である。 モース硬度の「モース」は、この尺度を考案したドイツの鉱物学者フリードリッヒ・モースに由来している。 「滑石方(かっせきほう)にして蛍燐(けいりん)長く、石黄鋼(いしおうこう)にして金色なり」という語呂合わせの覚え方がある。.

新しい!!: ベリリウムとモース硬度 · 続きを見る »

ヤマハ

本社(2006年11月25日撮影) 別角度から ヤマハ株式会社()は、楽器・半導体・音響機器(オーディオ・ビジュアル)・スポーツ用品・自動車部品製造発売を手がける日本のメーカーであり、日経平均株価の構成銘柄の一つ。 1969年にピアノ生産台数で世界一となり、販売額ベースで現在でも世界首位のほか、ハーモニカやリコーダー、ピアニカといった学校教材用楽器からエレクトリックギターやドラム、ヴァイオリン、チェロ、トランペット、サクソフォーンなど100種類以上もの多岐に渡る楽器を生産するなど、世界最大の総合楽器メーカーであると同時に業界の盟主でもある。大手二輪メーカーであるヤマハ発動機は二輪製造部門が独立して設立されたものである。.

新しい!!: ベリリウムとヤマハ · 続きを見る »

ヤング率

ヤング率(ヤングりつ、Young's modulus)は、フックの法則が成立する弾性範囲における、同軸方向のひずみと応力の比例定数である。この名称はトマス・ヤングに由来する。縦弾性係数(たてだんせいけいすう、modulus of longitudinal elasticity)とも呼ばれる。.

新しい!!: ベリリウムとヤング率 · 続きを見る »

ユタ州

ユタ州(State of Utah )は、アメリカ合衆国西部にある州である。合衆国には1896年1月4日に45番目の州として加盟した。州の北はアイダホ州とワイオミング州に接し、東側はコロラド州に、西側はネバダ州に、南側はアリゾナ州に接している。南東の隅はフォー・コーナーズと呼ばれる4つの州がその角を接するポイントであり、ここでニューメキシコ州とも接していることになる。夏時間を実施している。 州都および最大都市はソルトレイクシティであり、州人口2,763,885人(2010年国勢調査)の約80%はソルトレイク市を中心とするワサッチフロントと呼ばれる地域に住んでいる。このために州内の大半の地域にはほとんど人が住んでおらず、ユタ州は国内で6番目に都市集中が進んだ州となっている。 「ユタ」の名は、この地に先住するインディアン部族、ユテ族(「山の民」の意)に因む。.

新しい!!: ベリリウムとユタ州 · 続きを見る »

ヨウ化ベリリウム

ヨウ化ベリリウム(Beryllium iodide)は、化学式がBeI2の化合物である。吸湿性が非常に大きく、水と激しく反応してヨウ化水素酸を生成する。.

新しい!!: ベリリウムとヨウ化ベリリウム · 続きを見る »

ヨウ素

ヨウ素(ヨウそ、沃素、iodine)は、原子番号 53、原子量 126.9 の元素である。元素記号は I。あるいは分子式が I2 と表される二原子分子であるヨウ素の単体の呼称。 ハロゲン元素の一つ。ヨード(沃度)ともいう。分子量は253.8。融点は113.6 ℃で、常温、常圧では固体であるが、昇華性がある。固体の結晶系は紫黒色の斜方晶系で、反応性は塩素、臭素より小さい。水にはあまり溶けないが、ヨウ化カリウム水溶液にはよく溶ける。これは下式のように、ヨウ化物イオンとの反応が起こることによる。 単体のヨウ素は、毒物及び劇物取締法により医薬用外劇物に指定されている。.

新しい!!: ベリリウムとヨウ素 · 続きを見る »

ラテライト

インドの煉瓦工場 ラテライト ラテライト()は、成帯土壌と呼ばれるもののうち、湿潤土壌に分類される土壌のひとつである。ラトソル、ラトゾルまたは紅土とも呼ばれる。語源はラテン語のLater(「煉瓦」の意)。 サバナや熱帯雨林に分布する。地表の風化物として生成された膠結物質(粒子間に鉱物が入り込み、それが接着作用をしたもの)である。雨季に有機質が微生物により分解することに加えて珪酸分や塩基類が溶脱したことにより残った鉄やアルミニウムなど金属元素の水酸化物が表面に集積して形成される。 構成鉱物は主に針鉄鉱、ギブス石、ダイアスポアなどで、インドシナ半島およびインド、キューバなどサバナ気候地方に広く分布している。やせ土なため農業には向いていないが、インドでは煉瓦をつくる原料に利用されている。.

新しい!!: ベリリウムとラテライト · 続きを見る »

ラジウム

ラジウム(radium)は、原子番号88の元素。元素記号は Ra。アルカリ土類金属の一つ。安定同位体は存在しない。天然には4種類の同位体が存在する。白色の金属で、比重はおよそ5-6、融点は700 、沸点は1140 。常温、常圧での安定な結晶構造は体心立方構造 (BCC)。反応性は強く、水と激しく反応し、酸に易溶。空気中で簡単に酸化され暗所で青白く光る。原子価は2価。化学的性質などはバリウムに似る。炎色反応は洋紅色。 ラジウムがアルファ崩壊してラドンになる。ラジウムの持つ放射能を元にキュリー(記号 Ci)という単位が定義され、かつては放射能の単位として用いられていた。現在、放射能の単位はベクレル(記号 Bq)を使用することになっており、1 Ciは3.7 × 1010 Bqに相当する。なお、ラジウム224、226、228は WHO の下部機関 IARC より発癌性があると (Type1) 勧告されている。 ラジウムそのものの崩壊ではアルファ線しか放出されないが、その後の娘核種の崩壊でベータ線やガンマ線なども放出される。.

新しい!!: ベリリウムとラジウム · 続きを見る »

リチウム

リチウム(lithium、lithium )は原子番号 3、原子量 6.941 の元素である。元素記号は Li。アルカリ金属元素の一つで白銀色の軟らかい元素であり、全ての金属元素の中で最も軽く、比熱容量は全固体元素中で最も高い。 リチウムの化学的性質は、他のアルカリ金属元素よりもむしろアルカリ土類金属元素に類似している。酸化還元電位は全元素中で最も低い。リチウムには2つの安定同位体および8つの放射性同位体があり、天然に存在するリチウムは安定同位体である6Liおよび7Liからなっている。これらのリチウムの安定同位体は、中性子の衝突などによる核分裂反応を起こしやすいため恒星中で消費されやすく、原子番号の近い他の元素と比較して存在量は著しく小さい。 1817年にヨアン・オーガスト・アルフェドソンがペタル石の分析によって発見した。アルフェドソンの所属していた研究室の主催者であったイェンス・ベルセリウスによって、ギリシャ語で「石」を意味する lithos に由来してリチウムと名付けられた。アルフェドソンは金属リチウムの単離には成功せず、1821年にウィリアム・トマス・ブランドが電気分解によって初めて金属リチウムの単離に成功した。1923年にドイツのメタルゲゼルシャフト社が溶融塩電解による金属リチウムの工業的生産法を発見し、その後の金属リチウム生産へと繋がっていった。第二次世界大戦の戦中戦後には航空機用の耐熱グリースとしての小さな需要しかなかったが、冷戦下には水素爆弾製造のための需要が急激に増加した。その後冷戦の終了により核兵器用のリチウムの需要が大幅に冷え込んだものの、2000年代までにはリチウムイオン二次電池用のリチウム需要が増加している。 リチウムは地球上に広く分布しているが、非常に高い反応性のために単体としては存在していない。地殻中で25番目に多く存在する元素であり、火成岩や塩湖かん水中に多く含まれる。リチウムの埋蔵量の多くはアンデス山脈沿いに偏在しており、最大の産出国はチリである。海水中にはおよそ2300億トンのリチウムが含まれており、海水からリチウムを回収する技術の研究開発が進められている。世界のリチウム市場は少数の供給企業による寡占状態であるため、資源の偏在性と併せて需給ギャップが懸念されている。 リチウムは陶器やガラスの添加剤、光学ガラス、電池(一次電池および二次電池)、耐熱グリースや連続鋳造のフラックスとして利用される。2011年時点で最大の用途は陶器やガラス用途であるが、二次電池用途での需要が将来的に増加していくものと予測されている。リチウムの同位体は水素爆弾や核融合炉などにおいて核融合燃料であるトリチウムを生成するために利用されている。 リチウムは腐食性を有しており、高濃度のリチウム化合物に曝露されると肺水腫が引き起こされることがある。また、妊娠中の女性がリチウムを摂取することでの発生リスクが増加するといわれる。リチウムは覚醒剤を合成するためのバーチ還元における還元剤として利用されるため、一部の地域ではリチウム電池の販売が規制の対象となっている。リチウム電池はまた、短絡によって急速に放電して過熱することで爆発が起こる危険性がある。.

新しい!!: ベリリウムとリチウム · 続きを見る »

リチウムの同位体

リチウム(Li) (標準原子量: 6.941(2) u)には天然に6Liと7Liの2つの同位体がある。7Liの存在比は92.5%である。また、7つの放射性同位体が同定されていて、最も安定な8Liの半減期は838ミリ秒であり、9Liの半減期は178.3ミリ秒である。その他の放射性同位体は8.6ミリ秒以下の半減期を持つ。最も不安定なものは4Liで、陽子放出によって、7.58043×10-23秒の半減期で崩壊する。 7Liは、ビッグバン原子核合成により生じた最初のうちの元素の1つである(6Liも恒星の中にわずかにできた)。リチウムの同位体分別は天然においても、鉱物の生成、代謝、イオン交換等、様々なプロセスにおいて行われる。例えば、リチウムイオンは、粘土中の鉱物の中で、マグネシウムや鉄と置換するが、ここでは6Liがより多く選択される。.

新しい!!: ベリリウムとリチウムの同位体 · 続きを見る »

ルネ=ジュスト・アユイ

ルネ=ジュスト・アユイ(René Just Haüy、1743年2月28日 - 1822年6月3日)はフランスの鉱物学者である。「結晶は小さなユニットの繰り返しでできている」という理論を提唱し、「結晶学の父」と呼ばれる。 イル=ド=フランス(後のオワーズ県)に生まれた。パリで学び、1770年司祭に任じられた。パリ植物園で働き、1783年科学アカデミーの会員になった。高等師範学校の教授などを務めた。 1784年に床に落として砕けた方解石(カルサイト)が、元の結晶と同じ形の小さな結晶の破片になったのを見て、結晶面の寸法に整数比が成り立つという「有理指数の法則」を発見し、原子または分子が並んで作る結晶は小さなユニットの繰り返しでできているという説を提唱した。 1791年のフランス革命後は憲法への忠誠を拒否したことから投獄されたが、弟子のエティエンヌ・ジョフロワ・サンティレールの尽力で解放された。 1797年、知人のルイ=ニコラ・ヴォークランがシベリア産の紅鉛鉱から発見した新元素に、酸化状態によってさまざまな色を呈することからギリシャ語の χρωμα(chrōma、色)にちなんでクロムの名を与えた。1821年にはスウェーデン王立科学アカデミーの外国人メンバーに選出されている。 兄弟に1784年に盲学校をパリに設立した(1745年 - 1822年)がいる。 準長石の一種である haüyne(アウイン、和名:藍方石、(Na,Ca)4-8Al6Si6O24(SO4,S)1-2)は、アユイから名付けられた。.

新しい!!: ベリリウムとルネ=ジュスト・アユイ · 続きを見る »

ルイ=ニコラ・ヴォークラン

ルイ.

新しい!!: ベリリウムとルイ=ニコラ・ヴォークラン · 続きを見る »

レッドベリル

アメリカ合衆国ユタ州ビーバー郡ワーワー山脈産のレッドベリル(結晶の大きさは1.7cm)。 レッドベリル とは、赤色を呈する稀産の緑柱石(ベリル)である。別名、ビクスバイト 。エメラルドと同じ緑柱石であることから、「赤いエメラルド」と呼ばれることもある。.

新しい!!: ベリリウムとレッドベリル · 続きを見る »

レニウム

レニウム(rhenium )は原子番号75の元素。元素記号は Re。マンガン族元素の一つで、銀白色の金属(遷移金属)。.

新しい!!: ベリリウムとレニウム · 続きを見る »

レオパルト1

レオパルト1(Leopard 1/Leopard Eins)は、西ドイツが開発した第2世代主力戦車。.

新しい!!: ベリリウムとレオパルト1 · 続きを見る »

レオパルト2

レオパルト2(Leopard 2/Leopard Zwei)は、西ドイツが開発した第3世代主力戦車である。製造にはクラウス=マッファイ社を中心に複数の企業が携わっている。.

新しい!!: ベリリウムとレオパルト2 · 続きを見る »

ロケットエンジンノズル

ットエンジンノズル(rocket engine nozzle)とはプロペリング・ノズルの一種で、ロケットエンジンにおいては推進剤の燃焼による燃焼ガスを膨張・加速しノズルから超音速で噴出するために通常ラバール・ノズルが使用される。.

新しい!!: ベリリウムとロケットエンジンノズル · 続きを見る »

ボルト (単位)

ボルト(volt、記号:V)は、電圧・電位差・起電力の単位である。名称は、ボルタ電池を発明した物理学者アレッサンドロ・ボルタに由来する。 1ボルトは、以下のように定義することができる。表現の仕方が違うだけで、いずれも値は同じである。.

新しい!!: ベリリウムとボルト (単位) · 続きを見る »

トリプルアルファ反応

トリプルアルファ反応(トリプルアルファはんのう、triple-alpha process)とは、3個のヘリウム4の原子核(アルファ粒子)が結合して炭素12の原子核に変換される核融合反応の1つである。.

新しい!!: ベリリウムとトリプルアルファ反応 · 続きを見る »

トーマス=フェルミ模型

トーマス=フェルミ模型(トーマス=フェルミもけい、Thomas–Fermi (TF) model)とは、シュレーディンガー方程式が導入されて間もなく、それを半古典的に扱った多体系の電子構造についての量子力学的な理論のことである。ルウェリン・トーマスとエンリコ・フェルミに因んで名づけられた。波動関数から離れて電子密度を用いて定式化したもので、密度汎関数理論の原型ともなった。トーマス=フェルミ模型は、核電荷が無限大の極限においてのみ正確な結果を与える。現実的な系を考えるために近似を用いると、定量性に乏しい予言しかできず、原子の殻構造や固体のフリーデル振動のような密度についてのいくつかの一般的性質を再現することもできなくなる。しかし定性的な傾向を解析的に抽出でき、またモデルを解くことが簡単であることから、多くの分野で応用されている。トーマス=フェルミ理論により表現された運動エネルギーは、オービタルフリー密度汎関数理論のようなより洗練された密度近似運動エネルギーの一つとしても使われている。 1927年にトーマスとフェルミは独立に、この統計的モデルを用いて原子中の電子分布を近似した。実際の電子は原子中で不均一に分布しているが、近似的に電子は微小体積要素 に(局所的に)それぞれ均一に分布しており、電子密度 は各 で異なっているとする。.

新しい!!: ベリリウムとトーマス=フェルミ模型 · 続きを見る »

ヘリウム

ヘリウム (新ラテン語: helium, helium )は、原子番号 2、原子量 4.00260、元素記号 He の元素である。 無色、無臭、無味、無毒(酸欠を除く)で最も軽い希ガス元素である。すべての元素の中で最も沸点が低く、加圧下でしか固体にならない。ヘリウムは不活性の単原子ガスとして存在する。また、存在量は水素に次いで宇宙で2番目に多い。ヘリウムは地球の大気の 0.0005 % を占め、鉱物やミネラルウォーターの中にも溶け込んでいる。天然ガスと共に豊富に産出し、気球や小型飛行船のとして用いられたり、液体ヘリウムを超伝導用の低温素材としたり、大深度へ潜る際の呼吸ガスとして用いられている。.

新しい!!: ベリリウムとヘリウム · 続きを見る »

ヘキサフルオロケイ酸ナトリウム

ヘキサフルオロケイ酸ナトリウム(ヘキサフルオロケイさんナトリウム、sodium fluorosilicate)は、組成式がNa2SiF6の無機化合物である。.

新しい!!: ベリリウムとヘキサフルオロケイ酸ナトリウム · 続きを見る »

ブレーキ

ブレーキ (Brake) は、運動、移動する物体の減速、あるいは停止を行う装置である。これらの動作を制動と呼ぶため、制動装置(せいどうそうち)ともいわれる。 自転車、自動車、オートバイ、鉄道車両、航空機、エレベーター、競技用のソリ(ボブスレーなど)といった乗り物にはおおむね搭載されている。また、高速な稼動部を有したり、精密な停止制御が必要な機械類などでも、ブレーキを持つものがある。原義から転じて、変化を抑制する意味の単語としても用いられる(「景気にブレーキがかかる」など)。 自動車用ブレーキの一例(ランボルギーニ・ムルシエラゴのブレンボ製ディスクブレーキ).

新しい!!: ベリリウムとブレーキ · 続きを見る »

ブレーキローター

ブレーキローターとは、自動車やオートバイ、その他輸送機器に用いられるディスクブレーキを構成する部品。鉄・ステンレス・アルミニウム・炭素繊維強化炭素複合材料などの材料からなる円盤状の部品である。.

新しい!!: ベリリウムとブレーキローター · 続きを見る »

プラズマ

プラズマ(英: plasma)は固体・液体・気体に続く物質の第4の状態R.

新しい!!: ベリリウムとプラズマ · 続きを見る »

プリント基板

プリント基板(プリントきばん、短縮形PWB, PCB)とは、基板の一種で、以下のふたつをまとめて指す総称。.

新しい!!: ベリリウムとプリント基板 · 続きを見る »

プルトニウム

プルトニウム(英Plutonium)は、原子番号94の元素である。元素記号は Pu。アクチノイド元素の一つ。.

新しい!!: ベリリウムとプルトニウム · 続きを見る »

パーセント

パーセント(percent、%)は、割合を示す単位で、全体を百として示すものである。百分率ともいう。""が語源であり、は「毎に」、は「百」を意味する。また、パーセント記号そのものは""を縮めて書いたものがもとになっている。ドイツ語ではProzentといい、このため古い文献ではプロセントと表記されている。 割合を示す単位には、他に全体を三百六十とする方法(円グラフ、角度、時間など)や、全体を千とするパーミル(千分率、‰)や、万とするパーミリアド(ベーシスポイント、万分率)などがある。.

新しい!!: ベリリウムとパーセント · 続きを見る »

パイオニア

パイオニア株式会社(Pioneer Corporation)は、東京都文京区に本社を置く、日本の電機メーカーである。.

新しい!!: ベリリウムとパイオニア · 続きを見る »

ヒ化インジウムガリウム

ヒ化インジウムガリウムはガリウムのヒ化物であり、組成式はInGaAsである。化合物半導体であるため、その性質を利用して半導体素子の材料として多用されている。半導体分野ではインジウム・ガリウム・ヒ素という呼称で呼ばれることも多い。.

新しい!!: ベリリウムとヒ化インジウムガリウム · 続きを見る »

ヒ化ガリウム

ヒ化ガリウム(ヒかガリウム、gallium arsenide)はガリウムのヒ化物であり、組成式はGaAsである。化合物半導体であるため、その性質を利用して半導体素子の材料として多用されている。半導体分野ではガリウムヒ素(ガリウム砒素)という、さらにはそれを短縮したガリヒ素という呼称で呼ばれることも多い。.

新しい!!: ベリリウムとヒ化ガリウム · 続きを見る »

ヒートシンク

ヒートシンク(heat sink)とは、放熱・吸熱を目的として機械の構造の一部をなす部品である。.

新しい!!: ベリリウムとヒートシンク · 続きを見る »

ビッグバン原子核合成

ビッグバン原子核合成(ビッグバンげんしかくごうせい、Big Bang nucleosynthesis)とは、現代宇宙論において、水素1以外の元素の原子核が宇宙の発展の各段階で形成されたことを表すものである。宇宙の元素合成の基本原理は、ビッグバンの数分後から始まり、重水素、ヘリウム3およびヘリウム4、リチウム6およびリチウム7の形成に関与したと考えられている。さらに、これらの安定原子核の他に、三重水素、ベリリウム7、ベリリウム8等の不安定原子核、放射性原子核も形成された。不安定原子核は、崩壊するか、他の原子核と融合して安定な原子核を作るのに用いられた。.

新しい!!: ベリリウムとビッグバン原子核合成 · 続きを見る »

ピット (核兵器)

ード作戦エイブル実験で用いられた。1945年と1946年に臨界事故を起こし、2名の科学者の命を奪った。プルトニウム球の周りは中性子を反射する炭化タングステンのブロックで囲まれている。 プルトニウム製ピット生産用の精密鋳型(1959年) ピットは爆縮型核兵器において核分裂性物質およびそれに取り付けられた中性子反射体またはタンパーからなるコアのことで、桃やアンズの固い種にちなんで名付けられた。1950年代に実験に供された核兵器のピットはウラン235のみ、あるいはウラン235とプルトニウムの複合材で作られていたが、プルトニウムのみとする方が小型化できるため1960年代初めにはプルトニウムのみで作られるようになった。.

新しい!!: ベリリウムとピット (核兵器) · 続きを見る »

ツイーター

ツイーター(Tweeter)は高音用スピーカーのことである。ツイータ、トゥイータとも。.

新しい!!: ベリリウムとツイーター · 続きを見る »

テバトロン

テバトロン(英語:Tevatron)は、アメリカ合衆国イリノイ州バタビアにあるフェルミ国立加速器研究所が有する衝突型粒子加速器である。2008年にCERNのLHCが稼動開始するまでは世界最大の衝突型加速器であった。1TeVのエネルギーをもつ陽子と反陽子を、円周6.3kmのシンクロトロンを用いて加速することが可能である。これは「テバトロン」の名称の由来ともなっている。テバトロンは1億2000万ドルの工費をかけて、1983年に完成した。稼働開始後も定期的に性能向上が図られ、1994年には2億9000万ドルをかけてメイン・インジェクター(前段加速器)が新設された。トップクォークの発見に初めて成功するなどの功績をあげたものの、LHCの稼働開始によりテバトロンは2010年頃に運用を終了する見込みとなった。2010年には、一度2014年まで運用を延期する計画が持ち上がったものの資金不足により頓挫し、2011年1月10日にアメリカ合衆国エネルギー省よりテバトロンを閉鎖するという発表がされ2011年9月30日午後2時(アメリカ夏時間)に運転終了した。.

新しい!!: ベリリウムとテバトロン · 続きを見る »

テラー・ウラム型

テラー・ウラム型(Teller–Ulam design: H-bombまたは、MOS型 - MOS-typeとも)は、多段階式メガトン級熱核兵器に使われる構造であり、より一般的には水爆の構造のことを表す。この名称は1951年に構造を考案した2人、ハンガリー生まれの物理学者エドワード・テラーと、ポーランド生まれの数学者スタニスワフ・ウラムから付けられた。このアイディアは、核融合燃料のそばに起爆剤として原子爆弾を置くことで考え出され、核分裂反応を用いて、核融合燃料を圧縮・加熱する方法として知られている。ここで述べる内容は、異なった情報源からの追加情報と差分により推定されたものである。 本理論に基づく最初の核実験は、1952年にアメリカ合衆国により"アイビー作戦"として実施された。本理論は、ソビエト連邦ではサハロフの第3のアイディアとして知られている。また同様の兵器は、イギリス、中華人民共和国、及びフランスでも開発されている。この中でも一番強力な熱核爆弾は、ソビエトが行った核出力50メガトンの核実験で使われたツァーリ・ボンバである。.

新しい!!: ベリリウムとテラー・ウラム型 · 続きを見る »

テルル化ベリリウム

テルル化ベリリウム(Beryllium telluride、BeTe)は、ベリリウムとテルルからなる化合物である。結晶性の固体で、格子定数は、0.5615nmである。約3eVという大きなエネルギーギャップを持つ半導体である。毒性は未知であるが、ベリリウムもテルルも毒性がある。水に晒されると、毒性のテルル化水素が発生する。.

新しい!!: ベリリウムとテルル化ベリリウム · 続きを見る »

フリードリヒ・ヴェーラー

フリードリヒ・ヴェーラー(Friedrich Wöhler, 1800年7月31日 - 1882年9月23日)はドイツの化学者。 シアン酸アンモニウムを加熱中に尿素が結晶化しているのを1828年に発見し、無機化合物から初めて有機化合物の尿素を合成(ヴェーラー合成)したことにより「有機化学の父」と呼ばれる。また、ユストゥス・フォン・リービッヒと独立に行なわれた異性体の発見、ベリリウムの発見などの業績がある。 弟子に酢酸をはじめて合成したヘルマン・コルベ、コカイン及びマスタードガスの発見者などがいる。.

新しい!!: ベリリウムとフリードリヒ・ヴェーラー · 続きを見る »

フレッド・ホイル

フレッド・ホイル(Sir Fred Hoyle, 1915年6月24日 - 2001年8月20日)は、イギリスウェスト・ヨークシャー州ブラッドフォード出身の天文学者、SF小説作家。 元素合成の理論の発展に大きな貢献をした。現在の天文学の主流に反する数々の理論を提唱したことでも知られる。SF作家としても有名で、息子であるジェフリー・ホイルとの共著も多い。研究生活の大半をケンブリッジ大学天文学研究所で過ごし、同研究所所長を長年に渡って務めた。.

新しい!!: ベリリウムとフレッド・ホイル · 続きを見る »

フッ化ナトリウム

フッ化ナトリウム(フッかナトリウム、sodium fluoride)は組成式 NaF で表されるナトリウムのフッ化物である。無色の固体で、フッ化物イオンの発生源としてさまざまな用途に用いられる。フッ化カリウムと比べて安価であり、吸湿性も低いが、利用される頻度はカリウム塩のほうが高い。.

新しい!!: ベリリウムとフッ化ナトリウム · 続きを見る »

フッ化ベリリウム

フッ化ベリリウム(beryllium fluoride)は、組成式がBeF2の無機化合物である。白色の固体で、主に金属ベリリウムの製造に用いられる。.

新しい!!: ベリリウムとフッ化ベリリウム · 続きを見る »

フッ化アンモニウム

フッ化アンモニウム(フッかアンモニウム、Ammonium Fluoride)とは、フッ化水素とアンモニアとの塩である。正塩と水素塩とが存在し、後者はフッ化水素アンモニウム(フッかすいそアンモニウム、Ammonium Hydrogenfluoride)とも呼ぶ。.

新しい!!: ベリリウムとフッ化アンモニウム · 続きを見る »

フッ素

フッ素(フッそ、弗素、fluorine)は原子番号 9 の元素。元素記号はラテン語のFluorumの頭文字よりFが使われる。原子量は 18.9984 で、最も軽いハロゲン元素。また、同元素の単体であるフッ素分子(F2、二弗素)をも示す。 電気陰性度は 4.0 で全元素中で最も大きく、化合物中では常に -1 の酸化数を取る。反応性が高いため、天然には蛍石や氷晶石などとして存在し、基本的に単体では存在しない。.

新しい!!: ベリリウムとフッ素 · 続きを見る »

フェナカイト

フェナカイト、フェナサイト、フェナス石、phenakite/phenaciteとは、クォーツやトパーズなどに間違うほどの、無色透明のケイ酸塩鉱物。.

新しい!!: ベリリウムとフェナカイト · 続きを見る »

フォーミュラ1

フォーミュラ1(Formula One、 フォーァミュラ・ワン)は、モータースポーツのカテゴリの1つであり、その世界選手権を指す場合もある。略称はF1(エフ・ワン)。 F1世界選手権 (FIA Formula One World Championship) は、国際自動車連盟 (FIA) が主催する自動車レースの最高峰であり、現在は4輪の1人乗りフォーミュラカーで行われている。.

新しい!!: ベリリウムとフォーミュラ1 · 続きを見る »

ドーム

ドーム ドーム(dome)あるいは丸屋根(まるやね)は、建築における屋根の形式のひとつで、半球形をした屋根のことである。.

新しい!!: ベリリウムとドーム · 続きを見る »

ドープ

ドープ (dope) またはドーピング (doping) とは、結晶の物性を変化させるために少量の不純物を添加すること。 特に半導体で重要な操作で、不純物の添加により電子や正孔(キャリア)の濃度を調整する他、禁制帯幅などのバンド構造や物理的特性などを様々に制御するのに用いる。 添加する不純物をドーパントと呼ぶ。半導体の場合、キャリアとして電子を供給するドーパントをドナー、正孔を供給するドーパントをアクセプタと呼ぶ。.

新しい!!: ベリリウムとドープ · 続きを見る »

ドイツ帝国

ドイツ帝国(ドイツていこく、)は、1871年1月18日から1918年11月9日まで存続した、プロイセン国王をドイツ皇帝に戴く連邦国家を指す歴史的名称である。帝政ドイツ(ていせいドイツ)とも呼ばれる。普仏戦争において、パリ郊外のヴェルサイユ宮殿でプロイセン王ヴィルヘルム1世の皇帝戴冠式が行われて成立した。しかし第一次世界大戦の敗北とドイツ革命の勃発により、皇帝ヴィルヘルム2世がオランダに亡命して崩壊した。オランダ資本は、帝国の勢力範囲拡大政策(#世界政策)とルール地方における工業開発(#経済)の両面に貢献している。.

新しい!!: ベリリウムとドイツ帝国 · 続きを見る »

ニッケル

ニッケル (nikkel, nickel, niccolum) は、原子番号28の金属元素である。元素記号は Ni。 地殻中の存在比は約105 ppmと推定されそれほど多いわけではないが、鉄隕石中には数%含まれる。特に 62Ni の1核子当たりの結合エネルギーが全原子中で最大であるなどの点から、鉄と共に最も安定な元素である。岩石惑星を構成する元素として比較的多量に存在し、地球中心部の核にも数%含まれると推定されている。.

新しい!!: ベリリウムとニッケル · 続きを見る »

ニオブ

ニオブ(niobium Niob )は原子番号41の元素。元素記号は Nb。バナジウム族元素の1つ。.

新しい!!: ベリリウムとニオブ · 続きを見る »

ホウ素

ホウ素(ホウそ、硼素、boron、borium)は、原子番号 5、原子量 10.81、元素記号 B で表される元素である。高融点かつ高沸点な硬くて脆い固体であり、金属元素と非金属元素の中間の性質を示す(半金属)。1808年にゲイ.

新しい!!: ベリリウムとホウ素 · 続きを見る »

ベリリウム8

ベリリウム8 (Beryllium-8・8Be) とは、ベリリウムの同位体の1つ。.

新しい!!: ベリリウムとベリリウム8 · 続きを見る »

ベリリウムの同位体

ベリリウムの同位体(ベリリウムのどういたい)は、幾つかの核種が確認されている。本稿では、それらについて解説する。.

新しい!!: ベリリウムとベリリウムの同位体 · 続きを見る »

ベリリウム銅

ベリリウム銅(ベリリウムどう)、BeCuは、銅に0.5 - 3%のベリリウムを加えた合金であり、さらに別の金属が加えられることもある。ベリリウム銅は高い強度を持ち、また非磁性であり火花が出ない特性を持っている。さらに、金属加工、成形、機械加工に向いた特性も持っており、危険な環境下での工具、楽器、精密測定機器、弾丸、宇宙開発用の材料など、各種の応用に用いられる。ベリリウムを含む材料には毒性があり、加工中に吸入すると危険性がある。かつてはベリリウム青銅(ベリリウムせいどう)と呼ばれたことがあったが、現在では「ベリリウム銅」の方が一般的である。.

新しい!!: ベリリウムとベリリウム銅 · 続きを見る »

ベリリウム肺

ベリリウム肺(症) (Berylliosis) または慢性ベリリウム症 (chronic beryllium disease, CBD) はベリリウムおよびベリリウム化合物への曝露によって肺に生ずる慢性アレルギー性疾患であり、の一症状である。航空宇宙産業やベリリウム鉱山、蛍光灯工場(かつて蛍光体にベリリウム化合物が用いられていたため)の作業者に職業病として多発した。 治療法はなく、対症療法が中心となる。.

新しい!!: ベリリウムとベリリウム肺 · 続きを見る »

ベーテ・ヴァイツゼッカーの公式

ベーテ・ヴァイツゼッカーの公式 とは、液滴模型に従って核の結合エネルギーを説明する公式である。結合エネルギーは、負の位置エネルギーと考えることもできる。液滴モデルでは、核子があつまって荷電非圧縮液体となっていると考える。 この半経験的公式は、1935年にカール・フリードリヒ・フォン・ヴァイツゼッカーが最初に確立した。1936年、ハンス・ベーテによる改良版が公開されたことで広く普及した。ヴァイツゼッカーの公式、または半経験的質量公式と呼ばれることも多い。.

新しい!!: ベリリウムとベーテ・ヴァイツゼッカーの公式 · 続きを見る »

ベータ崩壊

ベータ崩壊(ベータほうかい、beta decay)とは、放射線としてベータ線(電子)を放出する放射性崩壊の一種である。 後にベータ線のみを放出するとするとベータ線のエネルギーレベルの連続性を説明できないことから、電子(ベータ線)と同時にニュートリノと呼ばれる粒子も放出する弱い相互作用の理論として整理された。.

新しい!!: ベリリウムとベータ崩壊 · 続きを見る »

制御システム

制御システム(せいぎょしすてむ、control system)または制御系(せいぎょけい)は、他の機器やシステムを管理し制御するための機器、あるいは機器群である。制御システムは大まかに、論理制御(逐次制御)とフィードバック制御(線型制御)に分類され、これらの組合せや派生によってさらに分類される。また、論理制御の設計の単純さと線型制御の扱いやすさを組み合わせたファジィ論理制御もある。ある種の機器やシステムは、本質的に制御不能である。 制御系という用語は、本質的に手動の制御にも適用される。例えば、操作者がプレス機を開閉するとき、論理では監視人が適切な場所にいない限り、開閉できないとされる。自動逐次制御システムは、一連の機械式アクチュエータが正しい順序で機能することでタスクを実行する。線型フィードバックシステムには、センサと制御アルゴリズムとアクチュエータから成る「制御ループ」があり、何らかの変数が標準値になるよう制御する。PID制御はフィードバックシステムの一種であり、炉の温度を一定に保つなどの用途に使われる。オープンループ制御では、フィードバックを直接使うことはなく、事前に設定された方法で動作する。.

新しい!!: ベリリウムと制御システム · 続きを見る »

分子線エピタキシー法

分子線エピタキシー法(ぶんしせんエピタキシーほう、 MBE; Molecular Beam Epitaxy)は現在、半導体の結晶成長に使われている手法の一つである。真空蒸着法に分類され、物理吸着を利用する。 高真空のために、原料供給機構より放たれた分子が他の気体分子にぶつかることなく直進し、ビーム状の分子線となるのが名称の由来である。.

新しい!!: ベリリウムと分子線エピタキシー法 · 続きを見る »

分子雲

イータカリーナ星雲の分子雲 分子雲(Molecular cloud)は星雲の一種であり、その大部分は水素分子である。星形成が行われている場合は、育星場、星のゆりかごとも言う。典型的な分子雲の大きさは、直径が100万光年、質量は太陽の10万倍、温度は25K(-248℃)程度、密度は水素分子が10~100万個/cm。 低温の水素分子は放射を出さず検出が難しいため、しばしば一酸化炭素輝線を用いて水素分子ガスの総質量を決定する。ここで一酸化炭素輝線の光度と水素分子ガスの質量の比は一定と仮定されているものの、この比の値は場所によってばらつきがある 。.

新しい!!: ベリリウムと分子雲 · 続きを見る »

周期表

周期表(しゅうきひょう、)は、物質を構成する基本単位である元素を、それぞれが持つ物理的または化学的性質が似たもの同士が並ぶように決められた規則(周期律)に従って配列した表である。日本では1980年頃までは「周期律表」と表記されている場合も有った。.

新しい!!: ベリリウムと周期表 · 続きを見る »

ろ過

ろ過(ろか、濾過、沪過、)とは、液体または気体に固体が混ざっている混合物を、細かい穴がたくさんあいた多孔質(ろ材)に通して、穴よりも大きな固体の粒子を液体または気体から分離する操作である。濾(さんずいに遠慮の「慮」。字義は「こし取る」。)が常用漢字でないため、一般には「ろ過」と表記されることもあるが、交ぜ書きを避けるために、「沪過」という略字を用いて表記する専門家もいる。 ろ過は科学実験や化学工業などで用いられる操作であるが、家庭でろ紙を用いてコーヒーを入れたり、真空掃除機で吸った空気からゴミを分離するのもろ過の一種である。 液体混合物を通すための多孔質として、古典的には紙(セルロース)でできたろ紙(フィルター、filter paper)を使うことが多い。セルロースは最も一般的なろ紙の素材であるが、用途に合わせて種々のろ紙が開発・実用化されてきた。ろ過で使われる多孔質はより一般的にろ材(濾材、ろざい)と呼ばれる。 一般に、ろ過をした後にろ紙上に残る固体を残渣(ざんさ、residue)、もしくはろ物(濾物、ろぶつ)、ろ紙を通過した液体をろ液(濾液、ろえき、filtrate)と呼ぶ。空気をろ過して清浄にするためのろ材はエアフィルタと呼ばれる。また、ろ過とろ別(濾別、ろべつ)と混同されがちであるが、目的物がろ液中に溶存している場合はろ過、残渣中に残っている場合はろ別、という風に使い分ける。.

新しい!!: ベリリウムとろ過 · 続きを見る »

アメリカ合衆国

アメリカ合衆国(アメリカがっしゅうこく、)、通称アメリカ、米国(べいこく)は、50の州および連邦区から成る連邦共和国である。アメリカ本土の48州およびワシントンD.C.は、カナダとメキシコの間の北アメリカ中央に位置する。アラスカ州は北アメリカ北西部の角に位置し、東ではカナダと、西ではベーリング海峡をはさんでロシアと国境を接している。ハワイ州は中部太平洋における島嶼群である。同国は、太平洋およびカリブに5つの有人の海外領土および9つの無人の海外領土を有する。985万平方キロメートル (km2) の総面積は世界第3位または第4位、3億1千7百万人の人口は世界第3位である。同国は世界で最も民族的に多様かつ多文化な国の1つであり、これは多くの国からの大規模な移住の産物とされているAdams, J.Q.;Strother-Adams, Pearlie (2001).

新しい!!: ベリリウムとアメリカ合衆国 · 続きを見る »

アメリカ合衆国環境保護庁

アメリカ合衆国環境保護庁(アメリカがっしゅうこくかんきょうほごちょう、United States Environmental Protection Agency, EPA)は、市民の健康保護と自然環境の保護を目的とする、アメリカ合衆国連邦政府の行政機関である。大気汚染、水質汚染、土壌汚染などが管理の対象に含まれる。 リチャード・ニクソン大統領により設立され、1970年に活動を開始した。長官はアメリカ合衆国大統領により任命される。正規の職員数は約1万8000人であり、本部は首都ワシントンD.C.にある。.

新しい!!: ベリリウムとアメリカ合衆国環境保護庁 · 続きを見る »

アメリカ地質調査所

アメリカ地質調査所(アメリカちしつちょうさしょ、United States Geological Survey、略称: USGS)は、アメリカ合衆国政府の科学的研究機関の一つ。USGSの科学者らは、水文学、生物学、地質学、地理学の4つの主要な科学分野について、アメリカ合衆国のランドスケープ(景観)、天然資源、および同国を脅かし得るナチュラル・ハザード(危機的な自然現象)を対象とする調査・研究を行う。また、同国の地形図および地質図の作成業務も担っている。USGSは規制上の監督責任を伴わない事実調査研究機関である。 USGSはアメリカ合衆国内務省が所管する、同省で唯一の科学的研究機関である。本部は首都ワシントンD.C.郊外のバージニア州レストンに所在し、約9,000人の職員が雇用されている。また、コロラド州レイクウッドとカリフォルニア州メンローパークにも主要拠点がある。 USGSの現在の標語は、1997年8月より使用されているもので、 "science for a changing world" である。以前のスローガンは、創立100周年の際に採用されたもので、 "Earth Science in the Public Service" であった。.

新しい!!: ベリリウムとアメリカ地質調査所 · 続きを見る »

アメリシウム

アメリシウム (americium) は原子番号95の元素。元素記号は Am。アクチノイド元素の一つ。第3の超ウラン元素でもある。安定同位体は存在しない。銀白色の金属で、常温、常圧で安定な結晶構造は六方最密充填構造 (HCP)。比重は13.67で、融点は995 (850-1200)、沸点は2600 。展性、延性があり、希酸に溶ける。原子価は、+2〜+6価(+3価が安定)。化学的性質はユウロピウムに類似する。発見された同位体の中で最も半減期が長いのは、アメリシウム243の7370年である。.

新しい!!: ベリリウムとアメリシウム · 続きを見る »

アルミニウム

アルミニウム(aluminium、aluminium, aluminum )は、原子番号 13、原子量 26.98 の元素である。元素記号は Al。日本語では、かつては軽銀(けいぎん、銀に似た外見をもち軽いことから)や礬素(ばんそ、ミョウバン(明礬)から)とも呼ばれた。アルミニウムをアルミと略すことも多い。 「アルミ箔」、「アルミサッシ」、一円硬貨などアルミニウムを使用した日用品は数多く、非常に生活に身近な金属である。天然には化合物のかたちで広く分布し、ケイ素や酸素とともに地殻を形成する主な元素の一つである。自然アルミニウム (Aluminium, Native Aluminium) というかたちで単体での産出も知られているが、稀である。単体での産出が稀少であったため、自然界に広く分布する元素であるにもかかわらず発見が19世紀初頭と非常に遅く、精錬に大量の電力を必要とするため工業原料として広く使用されるようになるのは20世紀に入ってからと、金属としての使用の歴史はほかの重要金属に比べて非常に浅い。 単体は銀白色の金属で、常温常圧で良い熱伝導性・電気伝導性を持ち、加工性が良く、実用金属としては軽量であるため、広く用いられている。熱力学的に酸化されやすい金属ではあるが、空気中では表面にできた酸化皮膜により内部が保護されるため高い耐食性を持つ。.

新しい!!: ベリリウムとアルミニウム · 続きを見る »

アルファ粒子

フレミング左手の法則 ベータ線の実態である電子やガンマ線と異なり、ヘリウム4の原子核であるアルファ粒子は一枚の紙すら通過できない。 原子核がアルファ崩壊してアルファ粒子を放出している アルファ粒子(アルファりゅうし、α粒子、alpha particle)は、高い運動エネルギーを持つヘリウム4の原子核である。陽子2個と中性子2個からなる。放射線の一種のアルファ線(α線、alpha ray)は、アルファ粒子の流れである。 固有の粒子記号は持たず、ヘリウム4の2価陽イオンとして (より厳密には )と表される。.

新しい!!: ベリリウムとアルファ粒子 · 続きを見る »

アルカリ

アルカリ(alkali)とは一般に、水に溶解して塩基性(水素イオン指数 (pH) が7より大きい)を示し、酸と中和する物質の総称。 典型的なものにはアルカリ金属またはアルカリ土類金属の水酸化物(塩)があり、これらに限定してアルカリと呼ぶことが多い。これらは水に溶解すると水酸化物イオンを生じ、アレニウスの定義による酸と塩基の「塩基」に相当する。一方でアルカリをより広い「塩基」の意味で用いることもある。.

新しい!!: ベリリウムとアルカリ · 続きを見る »

アレキサンドライト

アレキサンドライト。当たる光の種類で色が変わって見えるが、同じ石である アレキサンドライト(alexandrite、アレクサンドライトとも)は、1830年、ロシア帝国ウラル山脈東側のトコワヤ(Токовой、Рефт)ので発見された。金緑石(クリソベリル、BeAl2O4)の変種クリソベリルという鉱物名はギリシャ語に由来し、「chryso」は金、「beryl」は緑柱石を意味する。。 発見当初はエメラルドと思われていたが、すぐに昼の太陽光下では青緑、夜の人工照明下では赤へと色変化をおこす他の宝石には見られない性質が発見され、珍しいとして当時のロシア皇帝ニコライ1世に献上された。巷説では、このロシア帝国皇帝に献上された日である4月29日が、皇太子アレクサンドル2世の12歳の誕生日だったため、 この非常に珍しい宝石にアレキサンドライトという名前がつけられたとされている。また当時のロシアの軍服の色が赤と緑でカラーリングされていたため、ロシア国内で大いにもてはやされた。 6月の誕生石のひとつである。石言葉は「秘めた思い」。.

新しい!!: ベリリウムとアレキサンドライト · 続きを見る »

アンモニア

アンモニア (ammonia) は分子式が NH_3 で表される無機化合物。常温常圧では無色の気体で、特有の強い刺激臭を持つ。 水に良く溶けるため、水溶液(アンモニア水)として使用されることも多く、化学工業では基礎的な窒素源として重要である。また生体において有毒であるため、重要視される物質である。塩基の程度は水酸化ナトリウムより弱い。 窒素原子上の孤立電子対のはたらきにより、金属錯体の配位子となり、その場合はアンミンと呼ばれる。 名称の由来は、古代エジプトのアモン神殿の近くからアンモニウム塩が産出した事による。ラテン語の sol ammoniacum(アモンの塩)を語源とする。「アモンの塩」が意味する化合物は食塩と尿から合成されていた塩化アンモニウムである。アンモニアを初めて合成したのはジョゼフ・プリーストリー(1774年)である。 共役酸 (NH4+) はアンモニウムイオン、共役塩基 (NH2-) はアミドイオンである。.

新しい!!: ベリリウムとアンモニア · 続きを見る »

アントワーヌ・ビュシー

アントワーヌ・ビュシー アントワーヌ・ビュシー(Antoine Alexandre Brutus Bussy、1794年5月29日- 1882年2月1日)はフランスの化学者である。1828年ベリリウムの単離に成功した。 1823年にパリのl'École de Pharmacie で化学の学位をとり、1832年には薬学の学位をとった。1824年から1874まで母校で教授をし、1856年にl'Académie de Médecine と Société de Pharmacieの会長になった。 1828年、フリードリヒ・ヴェーラーと、同時期にベリリウムの単離に成功した。1830年マグネシウムの単離に成功した(1809年にハンフリー・デービーがごく少量の単離に成功している。)有機化学の研究も始め、1833年にアセトンの命名をした。 Category:19世紀の化学者 category:フランスの化学者 Category:化学元素発見者 Category:フランス科学アカデミー会員 Category:1794年生 Category:1882年没.

新しい!!: ベリリウムとアントワーヌ・ビュシー · 続きを見る »

アクアマリン

3Al2Si6O18 | 硬度.

新しい!!: ベリリウムとアクアマリン · 続きを見る »

アセチルアセトン

アセチルアセトン (acetylacetone) は化学式 C5H8O2 で表される有機化合物である。ジケトンの一種で、IUPAC名は 2,4-ペンタンジオンである。その共役塩基、アセチルアセトナート(略号 acac)は二座配位子として重要で、さまざまな金属錯体が知られる。消防法に定める第4類危険物 第2石油類に該当する。.

新しい!!: ベリリウムとアセチルアセトン · 続きを見る »

イオン化エネルギー

イオン化エネルギー(イオンかエネルギー、英語:ionization energy、電離エネルギー、イオン化ポテンシャルとも言う)とは、原子、イオンなどから電子を取り去ってイオン化するために要するエネルギー。ある原子がその電子をどれだけ強く結び付けているのかの目安である。 気体状態の単原子(または分子の基底状態)の中性原子から取り去る電子が1個目の場合を第1イオン化エネルギー(IE1)、2個目の電子を取り去る場合を第2イオン化エネルギー(IE2)、3個目の電子を取り去る場合を第3イオン化エネルギー(IE3)・・・(以下続く)と言うShriver & Atkins (2001), p.39。。単にイオン化エネルギーといった場合、第1イオン化エネルギーのことを指すことがある。 イオン化エネルギーの一般的な傾向は、s軌道とp軌道の相対的エネルギーとともに、電子の結合に対する有効核電荷核電荷の効果を考えることによって説明できる。 原子核の正電荷が増すにつれ、与えられた軌道にある負に荷電した電子はより強いクーロン引力を受け、より強く保持される。ヘリウムの1s電子を除去するには水素の1s電子を除去するよりも多くのエネルギーを必要とする。 周期表の同じ周期の中で最高のイオン化エネルギーは希ガスのものであり、希ガスは安定な閉殻電子配置をもつといわれる。 主量子数nの値が小さい内殻電子のイオン化エネルギーは価電子に比べ格段に大きいShriver & Atkins (2001), p.43。。たとえば電子3個のリチウムではIE1は5.32eV であるが、1sからのIE2は75.6eVである。2s軌道の電子は1s軌道の電子ほど強く保持されていない。 最低のイオン化エネルギーは周期表の左端にある第1族元素のものである。これらの原子のひとつから電子1個を除くと希ガス原子と同じ閉殻電子配置を持つイオンになる。 どの原子からも最も容易に失われる電子は最高エネルギー軌道にある電子からである。.

新しい!!: ベリリウムとイオン化エネルギー · 続きを見る »

イオン化傾向

イオン化傾向(イオンかけいこう、)とは、溶液中(おもに水溶液中)における元素(主に金属)のイオンへのなりやすさを表す。電気化学列あるいはイオン化列とも呼ばれる。.

新しい!!: ベリリウムとイオン化傾向 · 続きを見る »

イギリス

レートブリテン及び北アイルランド連合王国(グレートブリテンおよびきたアイルランドれんごうおうこく、United Kingdom of Great Britain and Northern Ireland)、通称の一例としてイギリス、あるいは英国(えいこく)は、ヨーロッパ大陸の北西岸に位置するグレートブリテン島・アイルランド島北東部・その他多くの島々から成る同君連合型の主権国家である。イングランド、ウェールズ、スコットランド、北アイルランドの4つの国で構成されている。 また、イギリスの擬人化にジョン・ブル、ブリタニアがある。.

新しい!!: ベリリウムとイギリス · 続きを見る »

エチレンジアミン四酢酸

チレンジアミン四酢酸(エチレンジアミンしさくさん、ethylenediaminetetraacetic acid)は、金属キレーション剤の1種であり、EDTA あるいはエデト酸と呼ばれることがある。示性式は (HOOCCH2)2NCH2CH2N(CH2COOH)2。通常、とくに断らない場合の EDTA はジナトリウム塩であり、日本薬局方ではエデト酸ナトリウムである。ジナトリウム塩であることを正確に記述したい場合や強調したい場合などは、エチレンジアミン四酢酸二ナトリウム、エチレンジアミン四酢酸二水素二ナトリウム、EDTA・2Na、などと記述される。.

新しい!!: ベリリウムとエチレンジアミン四酢酸 · 続きを見る »

エネルギー分散型X線分析

ネルギー分散型X線分析 (Energy dispersive X-ray spectrometry、EDX、EDS) は、広義の意味として、電子線やX線などの一次線を物体に照射した際に発生する特性X線(蛍光X線)を半導体検出器に導入し、発生した電子-正孔対のエネルギーと個数から、物体を構成する元素と濃度を調べる元素分析手法である。 一般的に、電子線を一次線として用いた場合を指すことが多く、X線を一次線として用いる場合をエネルギー分散型蛍光X線分析 (ED-XRF) として呼ぶ。ちなみに、一次線が荷電粒子の場合は、粒子線励起X線分析法 (PIXE: Particle Induced X-ray Emission) と呼ぶ。.

新しい!!: ベリリウムとエネルギー分散型X線分析 · 続きを見る »

エネルギー準位

ネルギー準位(エネルギーじゅんい、)とは、系のエネルギーの測定値としてあり得る値、つまりその系のハミルトニアンの固有値E_1,E_2,\cdotsを並べたものである。 それぞれのエネルギー準位は、量子数や項記号などで区別される.

新しい!!: ベリリウムとエネルギー準位 · 続きを見る »

エメラルド

メラルドの原石 エメラルド(emerald)は、ベリル(緑柱石)の一種で、強い緑を帯びた宝石である。和名は、翠玉(すいぎょく)、緑玉(りょくぎょく)である。.

新しい!!: ベリリウムとエメラルド · 続きを見る »

オングストローム

ングストローム()は、長さの単位である。原子や分子の大きさ、可視光の波長など、非常に小さな長さを表すのに用いられる。 1Åは10−10m.

新しい!!: ベリリウムとオングストローム · 続きを見る »

オキソ酸

最も簡単なオキソ酸の1つ。炭酸。 オキソ酸(オキソさん、Oxoacid)とは、ある原子にヒドロキシ基 (-OH) とオキソ基 (.

新しい!!: ベリリウムとオキソ酸 · 続きを見る »

カラマツ

ラマツ(落葉松、唐松、学名:)は、マツ科カラマツ属の落葉針葉樹。日本の固有種で、東北地方南部・関東地方・中部地方の亜高山帯から高山帯に分布しFarjon, A. (1990).

新しい!!: ベリリウムとカラマツ · 続きを見る »

カリウム

リウム(Kalium 、)は原子番号 19 の元素で、元素記号は K である。原子量は 39.10。アルカリ金属に属す典型元素である。医学・薬学や栄養学などの分野では英語のポタシウム (Potassium) が使われることもある。和名では、かつて加里(カリ)または剥荅叟母(ぽたしうむ)という当て字が用いられた。 カリウムの単体金属は激しい反応性を持つ。電子を1個失って陽イオン K になりやすく、自然界ではその形でのみ存在する。地殻中では2.6%を占める7番目に存在量の多い元素であり、花崗岩やカーナライトなどの鉱石に含まれる。塩化カリウムの形で採取され、そのままあるいは各種の加工を経て別の化合物として、肥料、食品添加物、火薬などさまざまな用途に使われる。 生物にとっての必須元素であり、神経伝達で重要な役割を果たす。人体では8番目もしくは9番目に多く含まれる。植物の生育にも欠かせないため、肥料3要素の一つに数えられる。.

新しい!!: ベリリウムとカリウム · 続きを見る »

カルシウム

ルシウム(calcium、calcium )は原子番号 20、原子量 40.08 の金属元素である。元素記号は Ca。第2族元素に属し、アルカリ土類金属の一種で、ヒトを含む動物や植物の代表的なミネラル(必須元素)である。.

新しい!!: ベリリウムとカルシウム · 続きを見る »

カンチレバー

ンチレバー カンチレバー(cantilever)は、一端が固定端、他端が自由端とされた構造体(特に梁)である。.

新しい!!: ベリリウムとカンチレバー · 続きを見る »

ガラス

ガラス工芸 en) 建築物の外壁に用いられているガラス ガラス(、glass)または硝子(しょうし)という語は、物質のある状態を指す場合と特定の物質の種類を指す場合がある。.

新しい!!: ベリリウムとガラス · 続きを見る »

ガンマ崩壊

ンマ崩壊(ガンマほうかい、)、γ崩壊は、励起された原子核がガンマ線を放出して崩壊する放射性崩壊。ガンマ崩壊は、アルファ崩壊やベータ崩壊と違い、核種が変わらない、つまり、原子番号や質量数が変わらない崩壊である。 具体的には、エネルギーをもらうなどして励起された原子核、アルファ崩壊やベータ崩壊などで崩壊した娘核種がすでに励起した状態であった場合は、高いエネルギー準位から低いエネルギー準位に遷移する際に、その準位間のエネルギー差に等しいエネルギーを持つガンマ線を放出して安定な原子核へと移行する。励起状態の核がγ線を放出するまでの時間は極めて短く、おおむね10-10秒以下である。 ガンマ崩壊はその崩壊において、角運動量とパリティの違いから.

新しい!!: ベリリウムとガンマ崩壊 · 続きを見る »

ガンマ線

ンマ線(ガンマせん、γ線、gamma ray)は、放射線の一種。その実体は、波長がおよそ 10 pm よりも短い電磁波である。 ガンマ線.

新しい!!: ベリリウムとガンマ線 · 続きを見る »

ガスクロマトグラフィー

マトグラフィー (Gas Chromatography, GC) はクロマトグラフィーの一種であり、気化しやすい化合物の同定・定量に用いられる機器分析の手法である。サンプルと移動相が気体であることが特徴である。ガスクロマトグラフィーに用いる装置のことをガスクロマトグラフという。また、ガスクロとも呼称される。 測定感度は高感度な検出器を用いれば市販品でも数十fg/s(フェムトグラム毎秒)オーダーレベルにまで及ぶ。各種の科学分野で微量分析技術として汎用されている。.

新しい!!: ベリリウムとガスクロマトグラフィー · 続きを見る »

キャッツアイ効果

タイガーズアイ キャッツアイ効果(キャッツアイこうか)は、宝石などに見られる光の効果のひとつ。針状に並んだインクルージョンをもつ宝石の底面を、そのインクルージョンに平行になるようにカボション・カットすると宝石の表面に猫の目のような明るい光の筋が現れる。 「シャトヤンシー (chatoyancy)」や「変彩効果」ともいう。シャトヤンシーはフランス語のシャトワヤンス (chatoyance) から来ており、フランス語では宝石に限らずきらびやかな輝きを表す言葉である。 キャッツアイ効果を持つ鉱物に、クリソベリル、トルマリン、アパタイト、オパール、ウレキサイト、などがあり、ほとんどの場合、「クリソベリル・キャッツアイ」など、宝石名のあとに「キャッツアイ」をつけて呼ぶ。宝石の名称として単に「キャッツアイ」と呼ばれている場合は「クリソベリル・キャッツアイ」のことを指すことが多い。他に石綿の繊維組織が平行に層状をなして混入しているために、光の反射効果に差が生じて現れるものに、クオーツ・キャッツアイ、タイガーズアイ、ホークスアイ、などがある。この効果を人工的に再現した「キャッツアイガラス」というものもある。 スター効果(アステリズム効果、星彩効果)は、これと同じ原理である。.

新しい!!: ベリリウムとキャッツアイ効果 · 続きを見る »

キログラム毎立方メートル

ラム毎立方メートル(キログラムまいりっぽうメートル、記号:kg/m³, kg m-3)は、国際単位系(SI)及び計量法における密度の単位である。1キログラム毎立方メートルは、1立方メートルにつき1キログラムの密度と定義される。 水の最大密度は、3.984 ℃において 999.974 95 kg/m³である。 他の密度の単位との換算は以下のようになる。.

新しい!!: ベリリウムとキログラム毎立方メートル · 続きを見る »

ギリシア語

リシア語(ギリシアご、現代ギリシア語: Ελληνικά, または Ελληνική γλώσσα )はインド・ヨーロッパ語族ヘレニック語派(ギリシア語派)に属する言語。単独でヘレニック語派(ギリシア語派)を形成する。ギリシア共和国やキプロス共和国、イスタンブールのギリシア人居住区などで使用されており、話者は約1200万人。また、ラテン語とともに学名や専門用語にも使用されている。省略形は希語。.

新しい!!: ベリリウムとギリシア語 · 続きを見る »

クライストロン

ライストロン(klystron)とは、マイクロ波用真空管の一種で、速度変調管とも呼ばれる。.

新しい!!: ベリリウムとクライストロン · 続きを見る »

クロム

ム(chromium 、Chrom 、chromium、鉻)は原子番号24の元素。元素記号は Cr。クロム族元素の1つ。.

新しい!!: ベリリウムとクロム · 続きを見る »

ケイ素

イ素(ケイそ、珪素、硅素、silicon、silicium)は、原子番号 14 の元素である。元素記号は Si。原子量は 28.1。「珪素」「硅素」「シリコン」とも表記・呼称される。地球の主要な構成元素のひとつ。半導体部品は非常に重要な用途である。 地殻中に大量に存在するため鉱物の構成要素として重要であり、ケイ酸塩鉱物として大きなグループを形成している。これには Si-O-Si 結合の多様性を反映したさまざまな鉱物が含まれている。しかしながら生物とのかかわりは薄く、知られているのは、放散虫・珪藻・シダ植物・イネ科植物などにおいて二酸化ケイ素のかたちでの骨格への利用に留まる。栄養素としての必要性はあまりわかっていない。炭素とケイ素との化学的な類似から、SF などではケイ素を主要な構成物質とするケイ素生物が想定されることがある。 バンドギャップが常温付近で利用するために適当な大きさであること、ホウ素やリンなどの不純物を微量添加させることにより、p型半導体、n型半導体のいずれにもなることなどから、電子工学上重要な元素である。半導体部品として利用するためには高純度である必要があり、このため精製技術が盛んに研究されてきた。現在、ケイ素は99.9999999999999 % (15N) まで純度を高められる。また、Si(111) 基板はAFMやSTMの標準試料としてよく用いられる。.

新しい!!: ベリリウムとケイ素 · 続きを見る »

ケイ酸アルミニウム

アルミニウムシリケート(またはケイ酸アルミニウム)は、ケイ酸塩類の一種であり、酸化アルミニウム、二酸化ケイ素、水などが様々な割合で結合した組成物の総称である。自然の鉱物の形でも、合成したものも「 xAl2O3.

新しい!!: ベリリウムとケイ酸アルミニウム · 続きを見る »

シンクロトロン

ンクロトロンとは、円形加速器の一種。粒子の加速にあわせて、磁場と加速電場の周波数をコントロールする事によって、加速粒子の軌道半径を一定に保ちながら加速をおこなう。.

新しい!!: ベリリウムとシンクロトロン · 続きを見る »

シンクロトロン放射光

ンクロトロン放射光(シンクロトロンほうしゃこう、Synchrotron Radiation)とは、荷電粒子が磁場の中で加速されるとき放射される光(放射光)の一種であり、 特にシンクロトロンを用いて加速した場合に射出する光を指す。 シンクロトロン放射光の特徴は.

新しい!!: ベリリウムとシンクロトロン放射光 · 続きを見る »

シアン化物

アン化物イオンの(上から)構造式、空間充填モデル、電子ポテンシャル、HOMOの図 シアン化物(シアンかぶつ、cyanide)とは、シアン化物イオン (CN-) をアニオンとして持つ塩を指す呼称。代表例としてはシアン化ナトリウム (NaCN)、シアン化カリウム (KCN) など。 広義には、配位子としてシアン (CN-) を持つ錯体(例: フェリシアン化カリウム、K3)、シアノ基が共有結合で結びついた無機化合物(例: シアノ水素化ホウ素ナトリウム、NaBH3CN)もシアン化物に含まれる。 それぞれの化合物の化学的性質は、シアン化物イオンやシアノ基が他の部分とどのように結びついているかにより大きく異なる。 有機化合物のうちニトリル類(例: アセトニトリル、別名: シアン化メチル、CH3CN)は「シアン化~」と呼ばれることがあるが、性質は大きく異なる。 シアン化合物は、一般に人体に有毒であり、ごく少量で死に至る。このことから、しばしば、シアン化合物による中毒死を目的として、毒殺や自殺に利用されてきた経緯がある。.

新しい!!: ベリリウムとシアン化物 · 続きを見る »

ジャイロスコープ

ャイロスコープ(gyroscope)とは、物体の角度(姿勢)や角速度あるいは角加速度を検出する計測器ないし装置。ジャイロと略されることもある(ジャイロセンサと呼ばれることもある)。.

新しい!!: ベリリウムとジャイロスコープ · 続きを見る »

ジルコニウム

ルコニウム(zirconium)は原子番号40の元素。元素記号は Zr。チタン族元素の1つ、遷移金属でもある。常温で安定な結晶構造は、六方最密充填構造 (HCP) のα型。862 ℃以上で体心立方構造 (BCC) のβ型へ転移する。比重は6.5、融点は1852 ℃。銀白色の金属で、常温で酸、アルカリに対して安定。耐食性があり、空気中では酸化被膜ができ内部が侵されにくくなる。高温では、酸素、窒素、水素、ハロゲンなどと反応して、多様な化合物を形成する。.

新しい!!: ベリリウムとジルコニウム · 続きを見る »

ジェフリー・ウィルキンソン

ェフリー・ウィルキンソン(Geoffrey Wilkinson, 1921年7月14日 – 1996年9月26日)は、イギリスの化学者。1973年、有機金属錯体に関する研究の功績で、エルンスト・オットー・フィッシャーと共にノーベル化学賞を受賞した。.

新しい!!: ベリリウムとジェフリー・ウィルキンソン · 続きを見る »

ジェイムズ・ウェッブ宇宙望遠鏡

ェイムズ・ウェッブ宇宙望遠鏡(ジェイムズ・ウェッブうちゅうぼうえんきょう、James Webb Space Telescope、JWST)は、アメリカ航空宇宙局(NASA)が中心となって開発を行っている赤外線観測用宇宙望遠鏡である。ハッブル宇宙望遠鏡の後継機であるが、計画は度々延期され、打ち上げ予定日は2021年3月30日に再設定された。 JWSTの名称は、NASAの二代目長官ジェイムズ・E・ウェッブ にちなんで命名された。彼は1961年から1968年にかけてNASAの長官を務め、のちのアポロ計画の基礎を築くなど、アメリカの宇宙開発を主導した。かつては「次世代宇宙望遠鏡」(NGST / Next Generation Space Telescope)と呼ばれていたが、2002年に改名された。.

新しい!!: ベリリウムとジェイムズ・ウェッブ宇宙望遠鏡 · 続きを見る »

スペースデブリ

ペースデブリ(space debris、orbital debrisとも)または宇宙ゴミ(うちゅうゴミ)米語:space junk とは、なんらかの意味がある活動を行うことなく地球の衛星軌道上〔低・中・高軌道〕を周回している人工物体のことである。宇宙開発に伴ってその数は年々増え続け、対策が必要となってきている。.

新しい!!: ベリリウムとスペースデブリ · 続きを見る »

ストロンチウム

トロンチウム(strontium)は原子番号38の元素で、元素記号は Sr である。軟らかく銀白色のアルカリ土類金属で、化学反応性が高い。空気にさらされると、表面が黄味を帯びてくる。天然には天青石やストロンチアン石などの鉱物中に存在する。放射性同位体のストロンチウム90 (90Sr) は放射性降下物に含まれ、その半減期は28.90年である。ストロンチウムやストロンティーアン石といった名は、最初に発見された場所である(Strontian、Sron an t-Sìthein)というスコットランドの村にちなむ。.

新しい!!: ベリリウムとストロンチウム · 続きを見る »

スピッツァー宇宙望遠鏡

ピッツァー宇宙望遠鏡(スピッツァーうちゅうぼうえんきょう、Spitzer Space Telescope、SST)は、アメリカ航空宇宙局 (NASA) が2003年8月にデルタロケットにより打ち上げた赤外線宇宙望遠鏡である。2013年8月に運用10周年を達成し、観測を継続している。打ち上げ前は、Space Infrared Telescope Facility (SIRTF)と呼ばれていた。 この宇宙望遠鏡は他の多くの人工衛星とは異なり、地球を追いかける形で太陽を回る軌道を取っている。またこの望遠鏡は、ハッブル宇宙望遠鏡、コンプトンガンマ線観測衛星、X線観測衛星チャンドラとならび、グレートオブザバトリー計画(Great Observatories program)のうちの1機である。 望遠鏡の名前の由来となっているのは、1940年代にはじめて宇宙望遠鏡の提案を行ったライマン・スピッツァー Jr.博士である。.

新しい!!: ベリリウムとスピッツァー宇宙望遠鏡 · 続きを見る »

ステンレス鋼

テンレス鋼(ステンレスこう、stainless steel)とは、クロム、またはクロムとニッケルを含む、さびにくい合金鋼である。ISO規格では、炭素含有量 1.2 %(質量パーセント濃度)以下、クロム含有量 10.5 % 以上の鋼と定義される。名称は、省略してステンレスという名称でもよく呼ばれる。かつては不銹鋼(ふしゅうこう)と呼ばれていた。.

新しい!!: ベリリウムとステンレス鋼 · 続きを見る »

スカンジウム

ンジウム(scandium )は原子番号 21 の元素。元素記号は Sc。遷移元素で、イットリウムと共に希土類元素に分類される。第3族元素の一つで、スカンジウム族元素の一つでもある。.

新しい!!: ベリリウムとスカンジウム · 続きを見る »

セルシウス度

ルシウス度(セルシウスど、、記号: )は、温度の単位である。その単位の大きさはケルビンと同一である。国際単位系 (SI) では、次のように定義されている『国際単位系(SI)』2.1.1.5 熱力学温度の単位(ケルビン)、pp.24-25。 すなわち、「セルシウス度」()は単位の名称であり、ケルビンの大きさに等しい温度間隔を表す。一方、「セルシウス温度」()は量の名称であり、(ケルビンで計った値と273.15だけ異なる)温度の高さを表す。しかし、一般にはこの違いが意識されず、混同されることが多い。.

新しい!!: ベリリウムとセルシウス度 · 続きを見る »

サルコイドーシス

ルコイドーシス (Sarcoidosis) とは、非乾酪性の類上皮細胞肉芽腫が臓器に認められる疾患。厚生労働省が認定する特定疾患の一つである。.

新しい!!: ベリリウムとサルコイドーシス · 続きを見る »

品川無線

品川無線株式会社()は、オーディオ製品の開発製造企業である。グレース (Grace)というブランド名で、レコードプレーヤー関連のトーンアーム、カートリッジ等の製品を開発製造している。 創業者によるところ、創業当初に米国グレイ社(Gray)の製品を手本に製品開発をはじめたことからグレース(Grace)というブランド名にしたという。.

新しい!!: ベリリウムと品川無線 · 続きを見る »

凝灰岩

二上山屯鶴峯産出) 凝灰岩(ぎょうかいがん、、タフ)は、火山から噴出された火山灰が地上や水中に堆積してできた岩石。成分が火山由来であるが、生成条件から堆積岩(火山砕屑岩)に分類される。 典型的な凝灰岩は数mm以下の細かい火山灰が固まったもので、白色・灰色から暗緑色・暗青色・赤色までさまざまな色がある。塊状で割れ方に方向性はない。凝灰岩は層状構造(層理)を持たないことも多いが、大規模な噴煙から降下した場合や水中でゆっくり堆積した場合は層状をなすこともある。.

新しい!!: ベリリウムと凝灰岩 · 続きを見る »

八面体形分子構造

化学において八面体形分子構造(はちめんたいがたぶんしこうぞう、Octahedral molecular geometry)とは、6個の配位子が中心原子の周りに対称的に配置し、それが正八面体の角頂点を形成する分子構造のことである。八面体形分子は通常その配位子間の結合はない。完全な正八面体は点群 Oh に属し、八面体形分子には六フッ化硫黄やモリブデンヘキサカルボニルなどがある。 八面体配位構造の概念は、配位化合物の化学量論と化学異性を説明するためにアルフレート・ヴェルナーによって開拓された。彼の考察によって配位化合物の異性体数が合理的に許容されることとなった。アミンや簡単なアニオンを含む八面体遷移金属錯体はしばしばヴェルナー錯体と関連づけられる。.

新しい!!: ベリリウムと八面体形分子構造 · 続きを見る »

六方最密充填構造

六方最密充填構造(ろっぽうさいみつじゅうてんこうぞう、hexagonal close-packed, hcp)とは、結晶構造の一種である。学術用語では、稠密六方格子構造(ちゅうみつろっぽうこうしこうぞう)、または単に六方格子構造などと呼ばれる。 六方最密充填構造は一般に正六角柱で表し、この正六角柱の上面および底面の各角および中心と、六角柱の内部で高さ 1/2 のところに 3 つの原子が存在する。底面の中心に位置する原子は、底面の角の 6 原子および上下の各 3 原子(計 12 原子)と接しており、最密充填構造となっている。また、原子の最稠密面をABAB…(A, Bは原子の位置の種類を示す)の順に重ねた構造と表現することもできる。充填率は立方最密充填構造(面心立方格子構造)と等しいが、別の構造である。.

新しい!!: ベリリウムと六方最密充填構造 · 続きを見る »

共立出版

共立出版株式会社(きょうりつしゅっぱん)は、理工系の専門書を中心に刊行している出版社。自然科学書協会、日本理学書総目録刊行会に加盟している。大学の教科書としてもよく使用され、大学生協との取引も多い。.

新しい!!: ベリリウムと共立出版 · 続きを見る »

共有結合

H2(右)を形成している共有結合。2つの水素原子が2つの電子を共有している。 共有結合(きょうゆうけつごう、covalent bond)は、原子間での電子対の共有をともなう化学結合である。結合は非常に強い。ほとんどの分子は共有結合によって形成される。また、共有結合によって形成される結晶が共有結合結晶である。配位結合も共有結合の一種である。 この結合は非金属元素間で生じる場合が多いが、金属錯体中の配位結合の場合など例外もある。 共有結合はσ結合性、π結合性、金属-金属結合性、アゴスティック相互作用、曲がった結合、三中心二電子結合を含む多くの種類の相互作用を含む。英語のcovalent bondという用語は1939年に遡る。接頭辞のco- は「共同」「共通」などを意味する。ゆえに、「co-valent bond」は本質的に、原子価結合法において議論されているような「原子価」(valence)を原子が共有していることを意味する。 分子中で、水素原子は共有結合を介して2つの電子を共有している。共有結合性は似た電気陰性度の原子間で最大となる。ゆえに、共有結合は必ずしも同種元素の原子の間だけに生じるわけではなく、電気陰性度が同程度であればよい。3つ以上の原子にわたる電子の共有を伴う共有結合は非局在化している、と言われる。.

新しい!!: ベリリウムと共有結合 · 続きを見る »

元素

元素(げんそ、elementum、element)は、古代から中世においては、万物(物質)の根源をなす不可欠な究極的要素広辞苑 第五版 岩波書店を指しており、現代では、「原子」が《物質を構成する具体的要素》を指すのに対し「元素」は《性質を包括する抽象的概念》を示す用語となった。化学の分野では、化学物質を構成する基礎的な成分(要素)を指す概念を指し、これは特に「化学元素」と呼ばれる。 化学物質を構成する基礎的な要素と「万物の根源をなす究極的要素」としての元素とは異なるが、自然科学における元素に言及している文献では、混同や説明不足も見られる。.

新しい!!: ベリリウムと元素 · 続きを見る »

元素合成

元素合成(げんそごうせい、Nucleosynthesis)とは、核子(陽子と中性子)から新たに原子核を合成する事象である。原子核合成、核種合成とも。 例えば、水素と重水素を非常に強い力によってぶつけると、その二つの元素が合成されてヘリウムが作られる。 ビッグバン理論によれば、核子はビッグバン後宇宙の温度が約200MeV(約2兆K)まで冷えたところで、クォークグルーオンプラズマから生成された。数分後、陽子と中性子からはじまり、リチウム7とベリリウム7までの原子核が生成されるが、リチウム7やベリリウム7は崩壊し、宇宙に多く貯蔵されるには至らない。ヘリウムより重い元素の合成は概ね恒星での核融合や核分裂により生じる。また、鉄より重い元素はほとんどが超新星爆発の圧力によってのみ生成される。 今日、地球上の自然界を構成する多くの元素はこれらの元素合成を通して作られたものである。.

新しい!!: ベリリウムと元素合成 · 続きを見る »

元素記号

在の元素記号(硫黄) ドルトンの元素記号(硫黄) 元素記号(げんそきごう)とは、元素、あるいは原子を表記するために用いられる記号のことであり、原子記号(げんしきごう)とも呼ばれる。現在は、1、2、ないし3文字のアルファベットが用いられる。 なお、現在正式な元素記号が決定している最大の元素は原子番号118のOg(オガネソン)である。 分子の組成をあらわす化学式や、分子の変化を記述する化学反応式などで利用される。 現在使用されている元素記号は1814年にベルセリウスが考案したものに基づいており、ラテン語などから1文字または2文字をとってつくられている。 全ての元素記号がラテン語名と一致しているが、ギリシア語、英語、ドイツ語(その他スペイン語やスウェーデンの地名からの採用もある)などからの採用も多く、ラテン語名との一致は偶然または語源を通した間接的なものである。元素名が確定されていない超ウラン元素については、3文字の系統名が用いられる。 物質の構成要素を記号であらわすことはかつての錬金術においてもおこなわれていた。 化学者ジョン・ドルトンも独自の記号を開発して化学反応を記述していたが、現在はアルファベットでの表記が国際的に使われている。 原子番号16番で質量数35の放射性硫黄原子1つと酸素原子4つからなる2価の陰イオンの硫酸イオンのイオン式。 原子番号や質量数を付記する場合、原子番号は左下に (13Al)、質量数は左上に (27Al)、イオン価は右肩に (Al3+)、原子数は右下に (N2) 付記する。.

新しい!!: ベリリウムと元素記号 · 続きを見る »

剛性

剛性(ごうせい、stiffness)とは、曲げやねじりの力に対する、寸法変化(変形)のしづらさの度合いのこと。力に対して変形が小さい時は剛性が高い(大きい)、変形が大きい時は剛性が低い(小さい)という。工学的には単位変形を起こすのに必要な力(荷重/変形量)で表され、フックの法則におけるばね定数も剛性の一種である。剛性とは逆の変形のしやすさの度合い(変形量/荷重)は柔性(じゅうせい)と呼ばれる。.

新しい!!: ベリリウムと剛性 · 続きを見る »

国立医薬品食品衛生研究所

国立医薬品食品衛生研究所(こくりついやくひんしょくひんえいせいけんきゅうしょ、National Institute of Health Sciences: NIHS)は日本の厚生労働省の施設等機関の一つ。.

新しい!!: ベリリウムと国立医薬品食品衛生研究所 · 続きを見る »

国立科学博物館

国立科学博物館(こくりつかがくはくぶつかん、英称:National Museum of Nature and Science、略称:かはく、科博)は、独立行政法人国立科学博物館が運営する博物館施設。.

新しい!!: ベリリウムと国立科学博物館 · 続きを見る »

国際がん研究機関

国際がん研究機関(こくさいがんけんきゅうきかん、IARC:International Agency for Research on Cancer)は、世界保健機関(WHO)の外部組織。.

新しい!!: ベリリウムと国際がん研究機関 · 続きを見る »

石英

水晶砂 石英(せきえい、、、クォーツ、クオーツ)は、二酸化ケイ素 (SiO₂) が結晶してできた鉱物。六角柱状のきれいな自形結晶をなすことが多い。中でも特に無色透明なものを水晶(すいしょう、、、ロッククリスタル)と呼び、古くは玻璃(はり)と呼ばれて珍重された。 石英を成分とする砂は珪砂(けいしゃ・けいさ、、)と呼ばれ、石英を主体とした珪化物からなる鉱石は珪石と呼ぶ。.

新しい!!: ベリリウムと石英 · 続きを見る »

石油化学

石油化学(せきゆかがく、英語:petrochemistry)または石油化学工業とは、石油、または天然ガスなどを原料として、合成繊維や合成樹脂などを作る化学工業の一分野である。生成物が燃料や潤滑用油など、より上流に位置する石油精製業に属している場合はここには含まない。.

新しい!!: ベリリウムと石油化学 · 続きを見る »

火山砕屑岩

火山砕屑岩(かざんさいせつがん、)は、火山から噴出された火山砕屑物(火砕物)が堆積してできた岩石。火砕岩(かさいがん)ともいう。現在では堆積岩として扱われることが多いが、マグマを起源とすることから火成岩の一種である火山岩とする場合もある。.

新しい!!: ベリリウムと火山砕屑岩 · 続きを見る »

火成岩

化学組成による火山岩の分類 火成岩(かせいがん、igneous rock)は、マグマが冷えて固まった岩石(若干の異物を取り込んだものを含む)。 火成岩は大きく分けて、火山岩(マグマが急激に冷えて固まったもの)と深成岩(マグマがゆっくり冷えて固まったもの)の2つに分類される。以前はその中間として半深成岩という分類もあったが、現在では使われない。火山岩と深成岩の分類において重要なのは、冷え固まったスピードであり、どの場所で固まったかは分類に関係しない。 また、SiO2の含有量(重量%)によって、超塩基性岩・塩基性岩・中性岩・酸性岩と分けられる。苦鉄質鉱物(マフィック鉱物)と珪長質鉱物(フェルシック鉱物)の量比により、超苦鉄質岩・苦鉄質岩・中間質岩・珪長質岩と分けられ、色指数により、超優黒質岩・優黒質岩・中色質岩・優白質岩と分けることもある。いずれの境界も、定義により値は異なる。.

新しい!!: ベリリウムと火成岩 · 続きを見る »

硝酸

硝酸(しょうさん、nitric acid)は窒素のオキソ酸で、化学式 HNO3 で表される。代表的な強酸の1つで、様々な金属と反応して塩を形成する。有機化合物のニトロ化に用いられる。硝酸は消防法第2条第7項及び別表第一第6類3号により危険物第6類に指定され、硝酸を 10 % 以上含有する溶液は医薬用外劇物にも指定されている。 濃硝酸に二酸化窒素、四酸化二窒素を溶かしたものは発煙硝酸、赤煙硝酸と呼ばれ、さらに強力な酸化力を持つ。その強力な酸化力を利用してロケットの酸化剤や推進剤として用いられる。.

新しい!!: ベリリウムと硝酸 · 続きを見る »

硝酸ベリリウム

硝酸ベリリウム(しょうさんベリリウム、beryllium nitrate)は、化学式 Be(NO3)2 で表されるベリリウムの硝酸塩である。.

新しい!!: ベリリウムと硝酸ベリリウム · 続きを見る »

硫酸

硫酸(りゅうさん、sulfuric acid)は、化学式 H2SO4 で示される無色、酸性の液体で硫黄のオキソ酸の一種である。古くは緑礬油(りょくばんゆ)とも呼ばれた。化学薬品として最も大量に生産されている。.

新しい!!: ベリリウムと硫酸 · 続きを見る »

硫酸ベリリウム

硫酸ベリリウム(りゅうさんベリリウム、beryllium sulfate)は、化学式 BeSO4 で表されるベリリウムの硫酸塩である。.

新しい!!: ベリリウムと硫酸ベリリウム · 続きを見る »

硫酸アンモニウム

硫酸アンモニウム(りゅうさんアンモニウム、ammonium sulfate)は硫酸のアンモニウム塩で、化学式 (NH4)2SO4 で表される化合物。硫安とも呼ばれる。 無色の結晶で、水に易溶。空気中で熱すると 120 で分解を始め 357 でアンモニアを放って融解する。.

新しい!!: ベリリウムと硫酸アンモニウム · 続きを見る »

磁場

磁場(じば、Magnetic field)は、電気的現象・磁気的現象を記述するための物理的概念である。工学分野では、磁界(じかい)ということもある。 単に磁場と言った場合は磁束密度Bもしくは、「磁場の強さ」Hのどちらかを指すものとして用いられるが、どちらを指しているのかは文脈により、また、どちらの解釈としても問題ない場合も多い。後述のとおりBとHは一定の関係にあるが、BとHの単位は国際単位系(SI)でそれぞれWb/m², A/m であり、次元も異なる独立した二つの物理量である。Hの単位はN/Wbで表すこともある。なお、CGS単位系における、磁場(の強さ)Hの単位は、Oeである。 この項では一般的な磁場の性質、及びHを扱うこととする。 磁場は、空間の各点で向きと大きさを持つ物理量(ベクトル場)であり、電場の時間的変化または電流によって形成される。磁場の大きさは、+1のN極が受ける力の大きさで表される。磁場を図示する場合、N極からS極向きに磁力線の矢印を描く。 小学校などの理科の授業では、砂鉄が磁石の周りを囲むように引きつけられる現象をもって、磁場の存在を教える。このことから、磁場の影響を受けるのは鉄だけであると思われがちだが、強力な磁場の中では、様々な物質が影響を受ける。最近では、磁場や電場(電磁場、電磁波)が生物に与える影響について関心が寄せられている。.

新しい!!: ベリリウムと磁場 · 続きを見る »

秀和システム

和システム(しゅうわシステム)は日本の出版社。コンピュータ関連書、ビジネス書などを出版している。また、ソフトウェア・コンピュータ用周辺機器の開発・販売も行っている。.

新しい!!: ベリリウムと秀和システム · 続きを見る »

窒化ベリリウム

化ベリリウム(ちっかベリリウム、Beryllium nitride)は、化学式がBe3N2のベリリウムの窒化物。密度は2.71 g/cm3、融点は2200 ℃である。主に耐熱性セラミックとして用いられる。.

新しい!!: ベリリウムと窒化ベリリウム · 続きを見る »

窒素

素(ちっそ、nitrogen、nitrogenium)は原子番号 7 の元素。元素記号は N。原子量は 14.007。空気の約78.08 %を占めるほか、アミノ酸をはじめとする多くの生体物質中に含まれており、地球のほぼすべての生物にとって必須の元素である。 一般に「窒素」という場合は、窒素の単体である窒素分子(窒素ガス、N2)を指すことが多い。窒素分子は常温では無味無臭の気体として安定した形で存在する。また、液化した窒素分子(液体窒素)は冷却剤としてよく使用されるが、液体窒素温度 (-195.8 ℃, 77 K) から液化する。.

新しい!!: ベリリウムと窒素 · 続きを見る »

第13族元素

13族元素(だいじゅうさんぞくげんそ)とは周期表において第13族に属する元素の総称。ホウ素・アルミニウム・ガリウム・インジウム・タリウム・ニホニウムがこれに分類される。ホウ素族元素とも呼ばれ、またホウ素をのぞいたアルミニウム・ガリウム・インジウム・タリウムを土類金属と呼ぶこともある。元素状ホウ素やガリウムの金属間化合物が正二十面体構造を取ることから、エイコサゲン (icosagens、正二十面体を意味するicosahedralより)と呼ぶことが提案されている。.

新しい!!: ベリリウムと第13族元素 · 続きを見る »

第16族元素

16族元素(だいじゅうろくぞくげんそ)は周期表において第16族に属する元素の総称。酸素・硫黄・セレン・テルル・ポロニウム・リバモリウムがこれに分類される。酸素族元素、カルコゲン(chalcogen)とも呼ばれる。 硫黄 、セレン、テルルは性質が似ているのに対し、酸素はいささか性質が異なり、ポロニウムは放射性元素で天然における存在量が少ない。この硫黄 、セレン、テルルは金属元素と化合物を形成し種々の鉱石の主成分となっている。それ故、この三種の元素からなる元素族をギリシャ語で「石を作るもの」という意味のカルコゲンと命名された。また、3種の元素を硫黄族元素と呼ぶ場合もある。その後、周期表が充実されると、第16族をカルコゲンと呼び表す場面が見られるようになった。それ故、性質の異なる酸素はカルコゲンに含めない場合もある。.

新しい!!: ベリリウムと第16族元素 · 続きを見る »

第2周期元素

2周期元素 (だいにしゅうきげんそ) は元素の周期表のうち、第2周期にある元素を指す。 以下にその元素を示す: |- ! #名称 | style.

新しい!!: ベリリウムと第2周期元素 · 続きを見る »

第2族元素

2族元素(だいにぞくげんそ)は、周期表の第2族に属する典型元素でsブロック元素でもある。ベリリウム・マグネシウム・カルシウム・ストロンチウム・バリウム・ラジウムが分類される。アルカリ土類金属(アルカリどるいきんぞく、alkaline earth metal)と呼ぶ(ベリリウム・マグネシウムを除く場合もある)。厳密には、共有結合性を強く反映する(すなわち非金属性・半金属性の寄与がある)ベリリウムとマグネシウムはアルカリ土類金属に含めないが、広義には第2族元素とアルカリ土類金属とは言いかえて使用される。.

新しい!!: ベリリウムと第2族元素 · 続きを見る »

第一次世界大戦

一次世界大戦(だいいちじせかいたいせん、World War I、略称WWI)は、1914年7月28日から1918年11月11日にかけて戦われた世界大戦である。.

新しい!!: ベリリウムと第一次世界大戦 · 続きを見る »

第二次世界大戦

二次世界大戦(だいにじせかいたいせん、Zweiter Weltkrieg、World War II)は、1939年から1945年までの6年間、ドイツ、日本、イタリアの日独伊三国同盟を中心とする枢軸国陣営と、イギリス、ソビエト連邦、アメリカ 、などの連合国陣営との間で戦われた全世界的規模の巨大戦争。1939年9月のドイツ軍によるポーランド侵攻と続くソ連軍による侵攻、そして英仏からドイツへの宣戦布告はいずれもヨーロッパを戦場とした。その後1941年12月の日本とイギリス、アメリカ、オランダとの開戦によって、戦火は文字通り全世界に拡大し、人類史上最大の大戦争となった。.

新しい!!: ベリリウムと第二次世界大戦 · 続きを見る »

粒子線

粒子線(りゅうしせん、particle beam)とは、主にレプトン、ハドロン、(イオン化された)原子や分子などの粒子によるビームである。つまり、粒子が束状になって進んでいく状態である。 粒子線の代表的なものとして、電子線、陽子線、重粒子線、中性子線などがある。 ただし、単に「〜線」と言った場合、ビームとは限らない単なる放射線 (ray) の意味にも取れ曖昧なこともある。たとえば、「アルファ線」「ベータ線」「X線」「光線」等の「線」は放射線の意味である。粒子線のうち放射線であるものは特に粒子放射線と呼ぶ。.

新しい!!: ベリリウムと粒子線 · 続きを見る »

粉塵爆発

ワッシュバーン製粉所の粉塵爆発を記したステレオグラフ(1878年) 粉塵爆発(ふんじんばくはつ、Dust explosion、Staubexplosion)とは、ある一定の濃度の可燃性の粉塵が大気などの気体中に浮遊した状態で、火花などにより引火して爆発を起こす現象である。.

新しい!!: ベリリウムと粉塵爆発 · 続きを見る »

素粒子物理学

素粒子物理学(そりゅうしぶつりがく、particle physics)は、物質の最も基本的な構成要素(素粒子)とその運動法則を研究対象とする物理学の一分野である。 大別して素粒子論(素粒子理論)と素粒子実験からなる。また実証主義、還元主義に則って実験的に素粒子を研究する体系を高エネルギー物理学と呼ぶ。 粒子加速器を用い、高エネルギー粒子の衝突反応を観測することで、主に研究が進められることから、そう命名された。しかしながら、現在、実験で必要とされる衝突エネルギーはテラ電子ボルトの領域となり、加速器の規模が非常に大きくなってきている。将来的に建設が検討されている国際リニアコライダーも建設費用は一兆円程度になることが予想されている。また、近年においても、伝統的に非加速器による素粒子物理学の実験的研究が模索されている。 何をもって素粒子とするのかは時代とともに変化してきており、立場によっても違い得るが標準理論の枠組みにおいては、物質粒子として6種類のクォークと6種類のレプトン、力を媒介する粒子としてグルーオン、光子、ウィークボソン、重力子(グラビトン)、さらにヒッグス粒子等が素粒子だと考えられている。超弦理論においては素粒子はすべて弦(ひもともいう)の振動として扱われる。.

新しい!!: ベリリウムと素粒子物理学 · 続きを見る »

紫外線

紫外線(しがいせん、ultraviolet)とは、波長が10 - 400 nm、即ち可視光線より短く軟X線より長い不可視光線の電磁波である。.

新しい!!: ベリリウムと紫外線 · 続きを見る »

緑柱石

緑柱石(りょくちゅうせき、、ベリル)は、ベリリウムを含む六角柱状の鉱物。金属元素のベリリウムの名前は、この中から発見されたことに由来する。透明で美しいものはカットされて宝石になる。.

新しい!!: ベリリウムと緑柱石 · 続きを見る »

猫目石

猫目石(ねこめいし、猫眼石)は、宝石の一種。金緑石(クリソベリル Chrysoberyl)の変種で、猫睛石(びょうせいせき)ともいう。 英語から「キャッツアイ(Cat's Eye)」ともいうが、厳密には「キャッツアイ」というのは、宝石に光の効果で猫の目のような模様がでる「キャッツアイ効果」のことであって、「猫目石」を「キャッツアイ」と称するのは正しくない。本来の宝石種である「クリソベリル」という名前をつけて、「クリソベリル・キャッツアイ」と呼ぶほうが正確である。.

新しい!!: ベリリウムと猫目石 · 続きを見る »

爆縮

縮(ばくしゅく、implosion)は、全周囲からの圧力で押しつぶされる破壊現象のこと。 なお英語におけるimplosionはexplosion(爆発)という単語のex-(外へ)という接頭辞をin-(内へ)に置き換えた造語である。.

新しい!!: ベリリウムと爆縮 · 続きを見る »

結晶構造

結晶構造(けっしょうこうぞう) とは、結晶中の原子の配置構造のことをいう。.

新しい!!: ベリリウムと結晶構造 · 続きを見る »

絶対零度

絶対零度(ぜったいれいど、Absolute zero)とは、絶対温度の下限で、理想気体のエントロピーとエンタルピーが最低値になった状態、つまり 0 度を表す。理想気体の状態方程式から導き出された値によるとケルビンやランキン度の0 度は、セルシウス度で −273.15 ℃、ファーレンハイト度で −459.67 である。 絶対零度は最低温度とされるが、エンタルピーは0にはならない。統計力学では0 K未満の負温度が存在する。.

新しい!!: ベリリウムと絶対零度 · 続きを見る »

絶縁体

絶縁体(ぜつえんたい、insulator)は、電気あるいは熱を通しにくい性質を持つ物質の総称である。.

新しい!!: ベリリウムと絶縁体 · 続きを見る »

症状別鑑別診断の一覧

症状別鑑別診断の一覧(しょうじょうべつかんべつしんだんのいちらん); この項を利用する上での注意点.

新しい!!: ベリリウムと症状別鑑別診断の一覧 · 続きを見る »

炎色反応

色反応(えんしょくはんのう)(焔色反応とも)とは、アルカリ金属やアルカリ土類金属、銅などの金属や塩を炎の中に入れると各金属元素特有の色を示す反応のこと。金属の定性分析や、花火の着色に利用されている。.

新しい!!: ベリリウムと炎色反応 · 続きを見る »

炭化ベリリウム

炭化ベリリウム(たんかベリリウム、Beryllium carbide、Be2C)は、金属炭化物の一種である。ダイヤモンドに似た構造を持ち、非常に固い。.

新しい!!: ベリリウムと炭化ベリリウム · 続きを見る »

炭素

炭素(たんそ、、carbon)は、原子番号 6、原子量 12.01 の元素で、元素記号は C である。 非金属元素であり、周期表では第14族元素(炭素族元素)および第2周期元素に属する。単体・化合物両方において極めて多様な形状をとることができる。 炭素-炭素結合で有機物の基本骨格をつくり、全ての生物の構成材料となる。人体の乾燥重量の2/3は炭素である​​。これは蛋白質、脂質、炭水化物に含まれる原子の過半数が炭素であることによる。光合成や呼吸など生命活動全般で重要な役割を担う。また、石油・石炭・天然ガスなどのエネルギー・原料として、あるいは二酸化炭素やメタンによる地球温暖化問題など、人間の活動と密接に関わる元素である。 英語の carbon は、1787年にフランスの化学者ギトン・ド・モルボーが「木炭」を指すラテン語 carbo から名づけたフランス語の carbone が転じた。ドイツ語の Kohlenstoff も「炭の物質」を意味する。日本語の「炭素」という語は宇田川榕菴が著作『舎密開宗』にて用いたのがはじめとされる。.

新しい!!: ベリリウムと炭素 · 続きを見る »

炭素14

炭素14(たんそ14、Carbon-14、14C)は、炭素の放射性同位体。.

新しい!!: ベリリウムと炭素14 · 続きを見る »

炭酸塩

炭酸イオンの球棒モデル 炭酸塩(たんさんえん、)は、炭酸イオン(、CO32−)を含む化合物の総称である。英語の carbonate は炭酸塩と炭酸イオンの他、炭酸エステル、炭酸塩化、炭化、飲料などに炭酸を加える操作のことも指す。無機炭素化合物の一種で、炭酸塩の中には、生物にとって重要な物質である炭酸カルシウムや、産業にとって重要な炭酸ナトリウムなどがある。炭酸塩はアルカリ金属以外は水に溶けないものが多い。一般に加熱により二酸化炭素を発生して金属酸化物を生じる。 \rm CaCO_3 \quad \overset \quad CaO + CO_2.

新しい!!: ベリリウムと炭酸塩 · 続きを見る »

炭酸ナトリウム

炭酸ナトリウム(たんさんナトリウム、sodium carbonate、別名:炭酸ソーダ)は組成式 、式量106のアルカリ金属炭酸塩である。水酸化ナトリウムとその半分の物質量の二酸化炭素を反応させるか、炭酸水素ナトリウムを熱すると得られる。 工業的にはソルベー法で製造されるか、天然に産出するトロナを原料に製造される。世界的には、全生産量のうちおよそ28 %が天然由来となっている。 十水和物 (・10H2O) は風解して一水和物 (・H2O) になる。輸送時、体積および質量を減じるために300℃以上で焼いて無水塩とする。 ソーダ灰というのはこの無水塩のことである。.

新しい!!: ベリリウムと炭酸ナトリウム · 続きを見る »

炭酸水素ナトリウム

炭酸水素ナトリウム(たんさんすいそナトリウム、sodium hydrogen carbonate)、別名重炭酸ナトリウム(じゅうたんさんナトリウム、sodium bicarbonate、重炭酸ソーダ、略して重曹とも)は、化学式 NaHCO3で表わされる、ナトリウムの炭酸水素塩である。常温で白色の粉末状である。水溶液のpHはアルカリ性を示すものの、フェノールフタレインを加えても変色しない程度の弱い塩基性である。水には少し溶解し、メタノールにも僅かに溶解するものの、エタノールには不溶。具体的には、水 (0 ℃) 100 g につき 6.9 g、水 (20 ℃) 100 g につき 9.6 g、メタノール (25 ℃) 100 g につき 0.8 g 溶解する。.

新しい!!: ベリリウムと炭酸水素ナトリウム · 続きを見る »

生体組織診断

生体組織診断(せいたいそしきしんだん)は、病変部位の組織を採取し顕微鏡で病変部位を観察することによって、病気の診断または病変の拡大の程度を調べるために有用な臨床検査の一つである。生検(せいけん)・バイオプシーとも呼ばれる。.

新しい!!: ベリリウムと生体組織診断 · 続きを見る »

無線通信

無線通信(むせんつうしん)は、伝送路として線を使わない電気通信のことである。しばしば短縮して「無線」と呼ばれる。線を使わない無線通信に対して、線を使う通信の方は有線通信と呼ぶ。無線通信は軍事行動においてこそ長所際立つものの、気候変動や気温・水温などの変化によって受信が不安定なものとなる。.

新しい!!: ベリリウムと無線通信 · 続きを見る »

無電解ニッケルめっき

無電解ニッケルめっき(むでんかいニッケルめっき、英語:electroless nickel plating)とは、電気めっきとは異なり、通電による電子ではなく、めっき液に含まれる還元剤の酸化によって放出される電子により、液に含浸することで被めっき物に金属ニッケル皮膜を析出させる無電解めっきの一種である。電気めっきのように通電を必要としないため、素材の形状や種類にかかわらず均一な厚みの皮膜が得られ、プラスチックやセラミックスのような不導体にもめっき可能である。次亜リン酸を用いたものが主流で、不導体へのめっきには低温アンモニアタイプのめっき液が、硬質クロムめっきの代替として用いられる場合は高温酸性タイプのめっきが用いられる。この後者が俗にカニゼンめっきとも呼ばれる。 皮膜の特性は浴種や条件により異なるが主なものを以下に示す。.

新しい!!: ベリリウムと無電解ニッケルめっき · 続きを見る »

熱伝導率

熱伝導率(ねつでんどうりつ、thermal conductivity)とは、温度の勾配により生じる伝熱のうち、熱伝導による熱の移動のしやすさを規定する物理量である。熱伝導度や熱伝導係数とも呼ばれる。記号は などで表される。 国際単位系(SI)における単位はワット毎メートル毎ケルビン(W/m K)であり、SI接頭辞を用いたワット毎センチメートル毎ケルビン(W/cm K)も使われる。.

新しい!!: ベリリウムと熱伝導率 · 続きを見る »

熱膨張率

熱膨張率(ねつぼうちょうりつ、、略: )は、温度の上昇によって物体の長さ・体積が膨張(熱膨張)する割合を、温度当たりで示したものである。熱膨張係数(ねつぼうちょうけいすう)とも呼ばれる。温度の逆数の次元を持ち、単位は毎ケルビン(記号: )である。.

新しい!!: ベリリウムと熱膨張率 · 続きを見る »

燃料棒

燃料棒(ねんりょうぼう、英語:fuel rod)は、原子炉の炉心の部品のひとつ。棒状の燃料棒は炉心内での核燃料の標準的な形状であり、複数本の燃料棒が束ねられ、「燃料集合体」と呼ばれるユニットが組まれる。制御棒と共に複数個の燃料集合体によって炉心が構成される。核燃料の交換作業は燃料集合体の単位で行われる。.

新しい!!: ベリリウムと燃料棒 · 続きを見る »

特性X線

ネルギーで内殻電子が励起される(左)と、その緩和過程で準位間に相当するエネルギーを持った特性X線が発生する(右)。 特性X線(とくせいえっくすせん)とは、ある原子の電子軌道や原子核において、高い電子準位から低い電子準位に遷移する過程で放射されるX線である。単一エネルギー、線スペクトルが特徴。 機器分析で使用される単一波長のX線はふつう特性X線を利用しており、発生源となる元素(ターゲット)と電子殻によって表記する。X線光電子分光ではMgKα線 (1253.6eV) やAlKα線 (1486.6eV)、X線回折ではCuKα線 (8.048keV) やMoKα線 (17.5keV) などを用いる。 内殻電子の励起源としてX線を用いたときに発生する特性X線は、蛍光X線(XRF)と呼ばれる。その他にも励起源に電子を用いて元素分析をする電子線マイクロアナライザ(EPMA)や、陽子やイオンを用いて元素分析をする粒子線励起X線分析(PIXE)がある。.

新しい!!: ベリリウムと特性X線 · 続きを見る »

相転移

転移(そうてんい、英語:phase transition)とは、ある系の相(phase)が別の相へ変わることを指す。しばしば相変態(そうへんたい、英語:phase transformation)とも呼ばれる。熱力学または統計力学において、相はある特徴を持った系の安定な状態の集合として定義される。一般には物質の三態(固体・固相、液体・液相、気体・気相)の相互変化として理解されるが、同相の物質中の物性変化(結晶構造や密度、磁性など)や基底状態の変化に対しても用いられる。相転移に現れる現象も単に「相転移」と呼ぶことがある。.

新しい!!: ベリリウムと相転移 · 続きを見る »

発癌性

性(発がん性、はつがんせい)は、正常な細胞を癌(悪性腫瘍)に変化させる性質。発癌性物質(発がん性物質、はつがんせいぶっしつ)とは、発癌性を示す化学物質のことである。いずれについても本稿で扱う。 癌は、癌抑制遺伝子の変異の蓄積や、環境因子などの複合的な要因によって発生すると考えられている。したがって、たとえば「水疱瘡はVZウイルス (Varicella-zoster virus) の感染で起こる」といった原因と結果を単純に結び付けることは、癌の場合においては困難である。ある物質の発癌性の評価については、種々の因子を比較して癌になる危険率(リスク)の違いを示せるだけである。.

新しい!!: ベリリウムと発癌性 · 続きを見る »

銅(どう)は原子番号29の元素。元素記号は Cu。 周期表では金、銀と同じく11族に属する遷移金属である。英語でcopper、ラテン語でcuprumと言う。.

新しい!!: ベリリウムと銅 · 続きを見る »

銀河宇宙線

銀河宇宙線(英語:Galactic cosmic rays; GCR)とは、太陽系外を起源とする高エネルギー荷電粒子のことである。これは一次宇宙線であり、ほとんどが陽子によって構成されている。地球大気中においては、宇宙線による核破砕によって二次宇宙線を発生させる。.

新しい!!: ベリリウムと銀河宇宙線 · 続きを見る »

融点

融点(ゆうてん、Schmelzpunkt、point de fusion、melting point)とは、固体が融解し液体になる時の温度のことをいう。ヒステリシスが無い場合には凝固点(液体が固体になる時の温度)と一致する。また、三重点すなわち平衡蒸気圧下の融点は物質固有の値を取り、不純物が含まれている場合は凝固点降下により融点が低下することから物質を同定したり、純度を確認したりする手段として用いられる。 熱的に不安定な物質は溶融と共に分解反応が生じる場合もある。その場合の温度は分解点と呼ばれる場合があり、融点に(分解)と併記されることがある。.

新しい!!: ベリリウムと融点 · 続きを見る »

遮蔽効果

遮蔽効果(しゃへいこうか)は、1つ以上の電子殻をもつ原子において、電子と原子核の間の引力が見かけ上では減少しているように見える効果である。.

新しい!!: ベリリウムと遮蔽効果 · 続きを見る »

選鉱

選鉱(せんこう)は、採掘した鉱石を有用鉱物と不用鉱物(脈石)とに分離する作業。または、異なる複数種類の有用鉱物を互いに分離する作業。 選鉱は、製錬に持ち込む前の工程である。ただし、選鉱のみで目標の鉱物を高純度で得られる場合(ある種の非金属鉱物や自然金など)は、選鉱を最終工程とすることがある。選鉱を行わず、鉱石の乾燥処理のみで留めるグアノのようなケースもある。物理的な選別が困難なボーキサイトについては、選鉱工程の代わりにアルミナ精製などの化学処理工程を置く。 選鉱は、鉱物の物理的性質の違いを利用して行われる。鉱石や鉱物の種類に応じて様々な選鉱法があるが、最も広く行われているのは浮遊選鉱である。ただし、錫やタングステンなどの比重の大きい鉱物については、比重選鉱を適用することが多い。また、石綿の場合、空気(真空)選鉱と呼ばれる特殊な方法を用いる。金や水銀に関しては、産出状況によっては手選鉱(手選)のみで製錬に持ち込むこともある。手選鉱は、浮選選鉱や比重選鉱などの準備工程として行なわれることも多い。 選鉱はあくまでも鉱物の仕分けの過程であり、その前後で鉱物の化学組成は変化しない。.

新しい!!: ベリリウムと選鉱 · 続きを見る »

鍛造

鍛造(たんぞう、forging)とは、金属加工の塑性加工法の一種。金属をハンマー等で叩いて圧力を加える事で、金属内部の空隙をつぶし、結晶を微細化し、結晶の方向を整えて強度を高めると共に目的の形状に成形する。古くから刃物や武具、金物などの製造技法として用いられてきた。 金属の素材を金型などで圧力を加えて塑性流動させて成形する。鍛流線 (fiber flow) が連続するために組織が緻密になり、鋳造に比べて鋳巣(空洞)ができにくいので、強度に優れた粗形材をつくることができる。.

新しい!!: ベリリウムと鍛造 · 続きを見る »

非金属元素

非金属元素(ひきんぞくげんそ、nonmetal)とは、金属元素以外の元素のこと。 元素のうち特定の性質(単体が光沢、導電性、延性・展性に富む、いわゆる金属結晶をつくる)を持つものを「金属(元素)」と呼んでおり、非金属元素とはそれ以外の元素である。 金属以外という定義上、非金属そのものを特徴づける性質は一概には言えないが、非金属元素は金属元素に比べて電子親和力が高い。このため、自由電子を放出して金属結晶を形作ることができない。.

新しい!!: ベリリウムと非金属元素 · 続きを見る »

表面実装

表面実装(ひょうめんじっそう)とは電子部品をプリント基板に実装する方法の一つ。SMT (Surface mount technology) とも呼ばれる。 また、表面実装用の部品をSMD (Surface Mount Device) と呼ぶ。 電子部品のリードをプリント基板の穴に固定する方法(スルーホール実装)に比べて、スペースを取らない。1960年代に開発され、現在では、電子回路を持つほとんどの製品で採用されている。電子部品の実装にはチップマウンター(表面実装機)と呼ばれる専用装置を使うか、極小ロット品や人件費の安い国では、人が直接ピンセットを使っておこなうこともある。 基本的には、クリームはんだ印刷機による基板上へのはんだ印刷(またはディスペンサによる部品搭載位置への接着剤塗布)を行った後にチップマウンターで部品の実装を行い、その後リフロー炉で熱を加えてはんだを溶かし、部品を基板に固定するという流れである。.

新しい!!: ベリリウムと表面実装 · 続きを見る »

誘導結合プラズマ

誘導結合プラズマ(ゆうどうけつごうプラズマ、Inductively Coupled Plasma、略称:ICP)は、気体に高電圧をかけることによってプラズマ化させ、さらに高周波数の変動磁場によってそのプラズマ内部に渦電流によるジュール熱を発生させることによって得られる高温のプラズマである。誘導結合プラズマの温度は10000K程度、電子密度は約1017個/m3である。.

新しい!!: ベリリウムと誘導結合プラズマ · 続きを見る »

高周波

周波(こうしゅうは)とは、電波、音波など、波形を構成するスペクトラムのうち比較的周波数の高いものを指す。音波の場合は、超音波と呼ばれることが多い。 「高周波」あるいは「低周波」は周波数に関する事項ではあるが、慣習上、「周波」と言い換えている。.

新しい!!: ベリリウムと高周波 · 続きを見る »

高速中性子

速中性子(こうそくちゅうせいし、Fast Neutron)とは、エネルギー値の高い中性子を指す。厳密な定義は無いがエネルギー値が0.1 - 1.0MeV(メガ電子ボルト)よりも大きいものを指すことが一般的である。 中性子の速度は、そのエネルギー値から求める事が出来る。.

新しい!!: ベリリウムと高速中性子 · 続きを見る »

魔法数

法数(まほうすう)とは、原子核が特に安定となる陽子と中性子の個数のことをいう。陽子数または中性子数が魔法数である核種を魔法核と呼ぶ。 核構造のシェルモデルでは、殻(シェル)が「閉じている」状態(閉殻)は安定性が高く、崩壊や核分裂が起きにくくなる。計算上特定の値が該当し、魔法数となる。陽子と中性子はよく似ているので同じ値となる。 現在、広く承認されている魔法数は 2, 8, 20, 28, 50, 82, 126 の7つで、原子番号がこれらにあたる元素は、周辺の元素に比べて多くの安定同位体を持っている。中性子数がこれに該当する同中性子体についても同様で、例えば核種の一覧を見ると、縦の20と横の20には安定同位体が並んでいるのがわかる。 一部の中性子過剰核では、8, 20, 28は消えて、別の魔法数である 6, 16, 32, 34 が現れる事が研究によって示されている。この領域のことを反転の島(Island of inversion)と呼ぶ。(50、82は維持される)。また、最近の研究から、中性子過剰な炭素同位体の陽子数6が魔法数である事が明らかになった。 魔法数は1949年にマリア・ゲッパート=メイヤーとヨハネス・ハンス・イェンゼンによって理論的な説明が成され、ノーベル賞授与対象となった。.

新しい!!: ベリリウムと魔法数 · 続きを見る »

質量欠損

質量欠損(しつりょうけっそん、)とは、原子核の質量とそれを構成する核子が自由な状態にあったときに観測される質量の和との差である。原子核の結合エネルギーの大きさを質量の単位で表したものである。原子核反応に伴うエネルギー放出の大きさを計算したり、原子核の安定性を議論したりする際などに用いられる。単位は MeV/c² などで示される。 結合エネルギーによって質量が増減するのは、原子核だけに限らず化学反応等でも生じる。さらには結合エネルギーに限った話ではなく、あらゆるエネルギーの生成や消費に伴い質量は増減する。しかしながら原子核の場合には全体の質量に対する増減の割合が大きいために特に重要とされる。.

新しい!!: ベリリウムと質量欠損 · 続きを見る »

超新星

プラーの超新星 (SN 1604) の超新星残骸。スピッツァー宇宙望遠鏡、ハッブル宇宙望遠鏡およびチャンドラX線天文台による画像の合成画像。 超新星(ちょうしんせい、)は、大質量の恒星が、その一生を終えるときに起こす大規模な爆発現象である。.

新しい!!: ベリリウムと超新星 · 続きを見る »

軍(ぐん、army)は、軍隊の部隊編制単位の一つ。戦略単位としての性格を持ち、主に陸軍部隊の編成をする際に用いられる。おおむね軍団・師団の上、軍集団・方面軍の下に位置するが、その規模や位置づけは国と時代によって多少の差異がある。.

新しい!!: ベリリウムと軍 · 続きを見る »

軍需産業

軍需産業(ぐんじゅさんぎょう)とは、軍隊で使われるものを製造したり販売したりする産業のことである。.

新しい!!: ベリリウムと軍需産業 · 続きを見る »

錯体

錯体(さくたい、英語:complex)もしくは錯塩(さくえん、英語:complex salt)とは、広義には、配位結合や水素結合によって形成された分子の総称である。狭義には、金属と非金属の原子が結合した構造を持つ化合物(金属錯体)を指す。この非金属原子は配位子である。ヘモグロビンやクロロフィルなど生理的に重要な金属キレート化合物も錯体である。また、中心金属の酸化数と配位子の電荷が打ち消しあっていないイオン性の錯体は錯イオンと呼ばれよ 金属錯体は、有機化合物・無機化合物のどちらとも異なる多くの特徴的性質を示すため、現在でも非常に盛んな研究が行われている物質群である。.

新しい!!: ベリリウムと錯体 · 続きを見る »

錆びたボルト 錆(さび、銹、鏽、rust)とは、金属の表面の不安定な金属原子が環境中の酸素や水分などと酸化還元反応(腐食)をおこし生成される腐食物(酸化物や水酸化物や炭酸塩など)の事である。 鉄の赤錆・黒錆、銅の緑青、スズやアルミニウムの白錆など。.

新しい!!: ベリリウムと錆 · 続きを見る »

航空宇宙産業

航空宇宙産業 (Aerospace Industry) とは、航空機や航空機の部品、ミサイル、ロケット、宇宙船を製造する産業である。この産業には、設計、製造、テスト、販売、整備などの工程がある。その規模が大きければ部分的に関わる企業、組織が存在する。.

新しい!!: ベリリウムと航空宇宙産業 · 続きを見る »

航空機

航空機(こうくうき、aircraftブリタニカ百科事典「航空機」)は、大気中を飛行する機械の総称である広辞苑 第五版 p.889「航空機」。.

新しい!!: ベリリウムと航空機 · 続きを見る »

閃長岩

閃長岩 深成岩のQAPF図; Q:石英、A:アルカリ長石、P:斜長石、F:準長石 閃長岩(せんちょうがん、syenite、サイアナイト)は、優白質であるが石英をほとんど含まず、アルカリ長石を主成分とする深成岩。火山岩の粗面岩に対応する。石英を少量含むものは石英閃長岩(せきえいせんちょうがん、quartz syenite)とよぶ。 閃長岩より斜長石が多くなるとモンゾニ岩になる。石英の代わりに準長石を含むようになると、準長石閃長岩という別の分類の岩石(火山岩の響岩に対応)になる。 鉱石の「長石」として採掘されることがある。.

新しい!!: ベリリウムと閃長岩 · 続きを見る »

蒸発

蒸発(じょうはつ、英語:evaporation)とは、液体の表面から気化が起こる現象のことである。常温でも蒸発するガソリンなどの液体については、揮発(きはつ)と呼ばれることもある。.

新しい!!: ベリリウムと蒸発 · 続きを見る »

還元

還元(かんげん、英:reduction)とは、対象とする物質が電子を受け取る化学反応のこと。または、原子の形式酸化数が小さくなる化学反応のこと。具体的には、物質から酸素が奪われる反応、あるいは、物質が水素と化合する反応等が相当する。 目的化学物質を還元する為に使用する試薬、原料を還元剤と呼ぶ。一般的に還元剤と呼ばれる物質はあるが、反応における還元と酸化との役割は物質間で相対的である為、実際に還元剤として働くかどうかは、反応させる相手の物質による。 還元反応が工業的に用いられる例としては、製鉄(原料の酸化鉄を還元して鉄にする)などを始めとする金属の製錬が挙げられる。また、有機合成においても、多くの種類の還元反応が工業規模で実施されている。.

新しい!!: ベリリウムと還元 · 続きを見る »

重合体

重合体(じゅうごうたい)またはポリマー(polymer)とは、複数のモノマー(単量体)が重合する(結合して鎖状や網状になる)ことによってできた化合物のこと。このため、一般的には高分子の有機化合物である。現在では、高分子と同義で用いられることが多くなっている。ポリマー(polymer)の poly- は接頭語で「たくさん」を意味する。 2種類以上の単量体からなる重合体のことを特に共重合体と言う。 身近なものとしては、繊維に用いられるナイロン、ポリ袋のポリエチレンなどの合成樹脂がある。また、生体内のタンパク質は、アミノ酸の重合体である。.

新しい!!: ベリリウムと重合体 · 続きを見る »

自己免疫疾患

自己免疫疾患(じこめんえきしっかん、英:Autoimmune disease)とは、異物を認識し排除するための役割を持つ免疫系が、自分自身の正常な細胞や組織に対してまで過剰に反応し攻撃を加えてしまうことで症状を起こす、免疫寛容の破綻による疾患の総称。 自己免疫疾患は、全身にわたり影響が及ぶ全身性自己免疫疾患と、特定の臓器だけが影響を受ける臓器特異的疾患の2種類に分けることができる。関節リウマチや全身性エリテマトーデス(SLE)に代表される膠原病は、全身性自己免疫疾患である。.

新しい!!: ベリリウムと自己免疫疾患 · 続きを見る »

自転車

ードバイク マウンテンバイク 日本のシティサイクル かつて日本で主流であった実用車 自転車(じてんしゃ)とは、主に乗り手の人力により車輪を駆動させて推進力を得て、乗り手の操作で進路を決めて地上を走行する乗り物である。 自動車などと比較して、移動距離当たりのエネルギーが少なく、路上の専有面積が少なく、有害な排出ガスが発生しない。人間自らの脚による徒歩や走行と比較すると、少ないエネルギーや疲労でより遠くに早く効率的に移動できる。このため日本や欧州諸国のような先進国では、健康増進効果への期待や、環境(地球環境・局所的な環境の両方)への負荷の少ない移動手段として広く利用されている。自動車に比べて安価に購入でき、燃料が不要なことから、道路整備が遅れているうえに国民の所得水準が低く発展途上国でも重要な移動手段である。 英語の bicycle, bike は二輪を意味し、日本においてもバイクと呼ぶことがあるが、日本語の「自転車」は三輪(時に一輪や四輪)をも含む。人力による操作がほとんど必要ない電動自転車や原動機付自転車にも使われ、定義は曖昧である。.

新しい!!: ベリリウムと自転車 · 続きを見る »

臭化ベリリウム

臭化ベリリウム (beryllium bromide) はBeBr2で表されるベリリウムの臭化物である。非常に吸湿性が良く、水に良く溶ける。.

新しい!!: ベリリウムと臭化ベリリウム · 続きを見る »

臭素

臭素(しゅうそ、bromine)は、原子番号 35、原子量 79.9 の元素である。元素記号は Br。ハロゲン元素の一つ。 単体(Br2、二臭素)は常温、常圧で液体(赤褐色)である。分子量は 159.8。融点 -7.3 ℃、沸点 58.8 ℃。反応性は塩素より弱い。刺激臭を持ち、猛毒である。海水中にも微量存在する。.

新しい!!: ベリリウムと臭素 · 続きを見る »

金緑石

金緑石(きんりょくせき、chrysoberyl、クリソベリル)は鉱物の一種。組成は BeAl2O4 で、色は黄色、帯黄緑色、緑色、褐色(稀に無色透明なものもある)など様々であるが、黄色~帯黄緑色が最も多い。斜方晶系、モース硬度8.5。 ペグマタイトや変成岩中に産出する。.

新しい!!: ベリリウムと金緑石 · 続きを見る »

配位子

配位子(はいいし、リガンド、ligand)とは、金属に配位する化合物をいう。.

新しい!!: ベリリウムと配位子 · 続きを見る »

配位結合

配位結合(はいいけつごう、Coordinate bond)とは、結合を形成する二つの原子の一方からのみ結合電子が分子軌道に提供される化学結合である。 見方を変えると、電子対供与体となる原子から電子対受容体となる原子へと、電子対が供給されてできる化学結合であるから、ルイス酸とルイス塩基との結合でもある。したがって、プロトン化で生成するオキソニウムイオン(より正確にはオニウムイオン)は配位結合により形成される。 またオクテット則を満たさない第13族元素の共有結合化合物は、強いルイス酸であり配位結合により錯体を形成する。 あるいは遷移金属元素の多くは共有結合に利用される価電子の他に空のd軌道などを持つ為、多くの種類の金属錯体が配位結合により形成される。.

新しい!!: ベリリウムと配位結合 · 続きを見る »

酸(さん、acid)は化学において、塩基と対になってはたらく物質のこと。酸の一般的な使用例としては、酢酸(酢に3〜5%程度含有)、硫酸(自動車のバッテリーの電解液に使用)、酒石酸(ベーキングに使用する)などがある。これら三つの例が示すように、酸は溶液、液体、固体であることができる。さらに塩化水素などのように、気体の状態でも酸であることができる。 一般に、プロトン (H+) を与える、または電子対を受け取る化学種。化学の歴史の中で、概念の拡大をともないながら定義が考え直されてきたことで、何種類かの酸の定義が存在する。 酸としてはたらく性質を酸性(さんせい)という。一般に酸の強さは酸性度定数 Ka またはその負の常用対数 によって定量的に表される。 酸や塩基の定義は相対的な概念であるため、ある系で酸である物質が、別の系では塩基としてはたらくことも珍しくはない。例えば水は、アンモニアに対しては、プロトンを与えるブレンステッド酸として作用するが、塩化水素に対しては、プロトンを受け取るブレンステッド塩基として振る舞う。 酸解離定数の大きい酸を強酸、小さい酸を弱酸と呼ぶ。さらに、100%硫酸より酸性の強い酸性媒体のことを、特に超酸(超強酸)と呼ぶことがある。 「—酸」と呼ばれる化合物には、酸味を呈し、その水溶液のpHは7より小さいものが多い。.

新しい!!: ベリリウムと酸 · 続きを見る »

酸化

酸化(さんか、英:oxidation)とは、対象の物質が酸素と化合すること。 例えば、鉄がさびて酸化鉄になる場合、鉄の電子は酸素(O2)に移動しており、鉄は酸化されていることが分かる。 目的化学物質を酸化する為に使用する試薬、原料を酸化剤と呼ぶ。ただし、反応における酸化と還元との役割は物質間で相対的である為、一般的に酸化剤と呼ぶ物質であっても、実際に酸化剤として働くかどうかは、反応させる相手の物質による。.

新しい!!: ベリリウムと酸化 · 続きを見る »

酸化ベリリウム

酸化ベリリウム(さんかベリリウム、beryllium oxide)は、化学式 BeO で表されるベリリウムの酸化物である。ベリリア (beryllia) とも呼ばれる。.

新しい!!: ベリリウムと酸化ベリリウム · 続きを見る »

酸化アルミニウム

酸化アルミニウム(さんかアルミニウム、)は、化学式がAlOで表されるアルミニウムの両性酸化物である。通称はアルミナ(α-アルミナ)、礬土(ばんど)。天然にはコランダム、ルビー、サファイアとして産出する。おもに金属アルミニウムの原料として使われるほか、硬度を生かして研磨剤、高融点を生かして耐火物としての用途もある。立方晶系のγ-アルミナは高比表面積を持つことから触媒として重要である。.

新しい!!: ベリリウムと酸化アルミニウム · 続きを見る »

酸化ウラン(IV)

酸化ウラン(IV)(さんかウラン よん、uranium(IV) oxide)、または二酸化ウラン(にさんかウラン、uranium dioxide)は、化学式が UO2 と表されるウランの酸化物である。通常は褐色の無定形粉末で、融点約2,800 、比重10.97、室温での定圧モル比熱は14 cal/molK、室温でのヤング率は200 GPa、硝酸に容易に溶けて硝酸ウラニルとなる。面心立方格子の蛍石型の結晶構造であり、単位格子中にウラン原子が4個、酸素原子が8個存在する。酸化プルトニウム(IV)とは任意の比率で固溶体を形成する。700 で過定比酸化ウラン(IV) UO2+x が生じ、1200 で亜定比酸化ウラン(IV) UO2-x が生じる。熱伝導度は室温では10 W/mK程度、1000 では4 W/mKであるが、O/U 比(酸素原子の個数とウラン原子の個数の比)が2からずれる、不純物の存在等により熱伝導率が低下する。.

新しい!!: ベリリウムと酸化ウラン(IV) · 続きを見る »

酸化物

酸化物(さんかぶつ、oxide)は、酸素とそれより電気陰性度が小さい元素からなる化合物である。酸化物中の酸素原子の酸化数は−2である。酸素は、ほとんどすべての元素と酸化物を生成する。希ガスについては、ヘリウム (He)、ネオン (Ne) そしてアルゴン (Ar) の酸化物はいまだ知られていないが、キセノン (Xe) の酸化物(三酸化キセノン)は知られている。一部の金属の酸化物やケイ素の酸化物(ケイ酸塩)などはセラミックスとも呼ばれる。.

新しい!!: ベリリウムと酸化物 · 続きを見る »

酸化還元電位

酸化還元電位(さんかかんげんでんい、Redox potentialもしくはOxidation-reduction Potential; ORP)とは、ある酸化還元反応系における電子のやり取りの際に発生する電位(正しくは電極電位)のことである。物質の電子の放出しやすさ、あるいは受け取りやすさを定量的に評価する尺度でもある。単位はボルト(V)を用い、電極電位の基準には以下の半反応式で表される酸化還元反応を用いる。 つまり水素ガス分圧が1気圧、水素イオンの活量が1のとき(これを標準水素電極と呼ぶ)の電極電位を0 Vと定義する。この半反応を基準とし、任意の酸化還元反応の電極電位が決定される。すなわち、標準水素電極(SHE; standard hydrogen electrodeもしくはNHE; normal hydrogen electrode)を陰極反応、電極電位を求めたい酸化還元反応を陽極反応にそれぞれ使い、電池を組み立てたときの電池の起電力が、求めたい電極電位となる。このとき、電極電位を求めたい酸化還元反応に関与する物質の活量(あるいは分圧)がすべて1の場合の電極電位を特に、標準酸化還元電位(ひょうじゅん-)あるいは標準電極電位と呼んでいる。 なお基準として用いた標準水素電極(SHE)は水素イオンの活量が1すなわち水素イオン指数がゼロ(pH 0)の環境であり生化学ではこうした極限状態の値では参考にならないためにpH 7での電位を求める中間酸化還元電位(ちゅうかん-、中点とも表記することがある)を基準に用いることがあるが、特に断ることなしにこれを単に酸化還元電位と書くことが多い。いずれにせよ、実際の研究では標準水素電極の代わりに、銀−塩化銀電極やカロメル電極など実用的な基準電極を基準にして酸化還元電位を測定することが頻繁に行なわれる。したがって、酸化還元電位を表記する際(特に標準水素電極以外の基準電極を用いた場合)には、その旨を必ず明記せねばならない。.

新しい!!: ベリリウムと酸化還元電位 · 続きを見る »

酸素

酸素(さんそ、oxygen)は原子番号8、原子量16.00の非金属元素である。元素記号は O。周期表では第16族元素(カルコゲン)および第2周期元素に属し、電気陰性度が大きいため反応性に富み、他のほとんどの元素と化合物(特に酸化物)を作る。標準状態では2個の酸素原子が二重結合した無味無臭無色透明の二原子分子である酸素分子 O として存在する。宇宙では水素、ヘリウムに次いで3番目に多くの質量を占めEmsley (2001).

新しい!!: ベリリウムと酸素 · 続きを見る »

鉱物学

鉱物学(こうぶつがく、)は、地球科学の一分野。鉱物の化学、結晶構造、物理的・光学的性質を追求する。また、鉱物の形成と崩壊のプロセスについても研究する。固体物理学・無機化学・結晶学・地球化学・固体惑星科学・岩石学・鉱床学・博物学・材料科学の学際領域に存在する学問分野であり、地味ながら多彩な分野にまたがる学問である。.

新しい!!: ベリリウムと鉱物学 · 続きを見る »

鉄(てつ、旧字体/繁体字表記:鐵、iron、ferrum)は、原子番号26の元素である。元素記号は Fe。金属元素の1つで、遷移元素である。太陽や他の天体にも豊富に存在し、地球の地殻の約5%を占め、大部分は外核・内核にある。.

新しい!!: ベリリウムと鉄 · 続きを見る »

鋳造

鋳造(ちゅうぞう、casting)は、材料(主に鉄・アルミ合金・銅・真鍮などの金属)を融点よりも高い温度で熱して液体にしたあと、型に流し込み、冷やして目的の形状に固める加工方法である。 鋳造に使用する型のことを鋳型(いがた)といい、鋳造でできた製品のことを鋳物(いもの)という。英語で casting といえば、鋳造と鋳物の双方を指す。.

新しい!!: ベリリウムと鋳造 · 続きを見る »

蛍光

蛍光(けいこう、fluorescence)とは、発光現象の分類。.

新しい!!: ベリリウムと蛍光 · 続きを見る »

蛍光灯

蛍光灯(けいこうとう)または蛍光ランプ(fluorescent lamp)、蛍光管(けいこうかん)は、放電で発生する紫外線を蛍光体に当てて可視光線に変換する光源である。方式は 熱陰極管 (HCFL; hot cathode fluorescent lamp) 方式と 冷陰極管 (CCFL; cold cathode fluorescent lamp) 方式とに大別され、通常「蛍光灯」と呼ぶ場合は、熱陰極管方式の蛍光管を用いた光源や照明器具を指すことが多い。 最も広く使われているのは、電極をガラス管内に置き(内部電極型)、低圧水銀蒸気中のアーク放電による253.7nm線を使うものである。水銀自体は環境負荷物質としてEU域内ではRoHS指令による規制の対象であるが、蛍光灯を代替できる他の技術が確立されていなかったことや、蛍光灯が広く普及していたこと、発光原理上水銀を使用せざるを得ないことを理由として蛍光灯への使用は許容されている。 水銀の使用と輸出入を2020年以降規制する水銀に関する水俣条約が2017年5月に発効要件である50か国の批准に至り、同年8月16日に発効、これを受け日本国内でも廃棄物処理法に新たに水銀含有廃棄物の区分が設けられ、廃棄蛍光ランプも有害廃棄物として管理を求められるなど、処分費用の負担が増加することから、これまで廃棄蛍光ランプを無料回収していた量販店も有料回収に切り替えている。 蛍光灯を代替する技術としてLED照明も既に実用化されていることから、日本国内においては新築のオフィスビルなどでは全館LED照明を採用する事例も増えている。家庭向けにも蛍光灯照明器具の製造・販売を終息するメーカーが相次いでおり,蛍光灯の使用は淘汰される方向へと情勢が大きく変化している。.

新しい!!: ベリリウムと蛍光灯 · 続きを見る »

蛍光X線

蛍光X線(けいこうXせん、X-ray Fluorescence、XRF)とは、元素に特有の一定以上のエネルギーをもつX線を照射することによって、その物質を構成する原子の内殻の電子が励起されて生じた空孔に、外殻の電子が遷移する際に放出される特性X線のこと。その波長は内殻と外殻のエネルギー差に対応する。.

新しい!!: ベリリウムと蛍光X線 · 続きを見る »

電力中央研究所

一般財団法人電力中央研究所(いっぱんざいだんほうじんでんりょくちゅうおうけんきゅうしょ)は、電気事業に関連する研究開発を行う研究機関である。電中研、電研などと略して呼ばれる場合もある。英語名はCentral Research Institute of Electric Power Industry。CRIEPI(クリエピ)と略される。50年以上にわたる研究活動をもとに、電気事業に関して先駆的な提言を行っている。.

新しい!!: ベリリウムと電力中央研究所 · 続きを見る »

電力用半導体素子

電力用半導体素子(でんりょくよう はんどうたいそし)は、電力機器向けの半導体素子である。電力制御用に最適化されており、パワーエレクトロニクスの中心となる電子部品である。家庭用電化製品やコンピュータなどに使われている半導体素子に比べて、高電圧で大電流を扱えるのが特徴で、高周波動作が可能なものも多い。.

新しい!!: ベリリウムと電力用半導体素子 · 続きを見る »

電子ボルト

物理学において、電子ボルト(エレクトロンボルト、electron volt、記号: eV)とはエネルギーの単位のひとつ。 素電荷(そでんか)(すなわち、電子1個分の電荷の符号を反転した値)をもつ荷電粒子が、 の電位差を抵抗なしに通過すると得るエネルギーが 。.

新しい!!: ベリリウムと電子ボルト · 続きを見る »

電子配置

電子配置(でんしはいち、)とは、多電子系である原子や分子の電子状態が「一体近似で得られる原子軌道あるいは分子軌道に複数の電子が詰まった状態」として近似的に表すことができると考えた場合に、電子がどのような軌道に配置しているのか示したもので、これによって各元素固有の性質が決定される。.

新しい!!: ベリリウムと電子配置 · 続きを見る »

電子捕獲

電子捕獲(でんしほかく、electron capture、EC)とは、原子核の放射性崩壊の一種である。電子捕獲では、電子軌道の電子が原子核に取り込まれ、捕獲された電子は原子核内の陽子と反応し中性子となり、同時に電子ニュートリノが放出される。捕獲される電子は普通はK軌道の電子であるが、L軌道やM軌道の電子が捕獲される場合もある。.

新しい!!: ベリリウムと電子捕獲 · 続きを見る »

電子殻

電子殻(でんしかく、electron shell)は、原子構造の模型において、原子核を取り巻く電子軌道の集まりをいう。言わば電子の収容場所のことで、それにいかに電子が入っているかを示すのが電子配置である。.

新しい!!: ベリリウムと電子殻 · 続きを見る »

電荷

電荷(でんか、electric charge)は、素粒子が持つ性質の一つである。電気量とも呼ぶ。電荷の量を電荷量という。電荷量のことを単に電荷と呼んだり、電荷を持つ粒子のことを電荷と呼んだりすることもある。.

新しい!!: ベリリウムと電荷 · 続きを見る »

電気分解

電気分解(でんきぶんかい)英語:Electrolysisは、化合物に電圧をかけることで、陰極で還元反応、陽極で酸化反応を起こして化合物を化学分解する方法である。略して電解ともいう。同じ原理に基づき、電気化学的な酸化還元反応によって物質を合成する方法は電解合成と呼ばれ、特に生成物が高分子となる場合は電解重合という。 塩素やアルミニウムなど様々な化学物質が電気分解によって生産されている。水の電気分解は初等教育の中でも取り上げられる典型的な化学実験であるとともに、エネルギー源として期待される水素の製造法として研究が進められている。.

新しい!!: ベリリウムと電気分解 · 続きを見る »

電気通信

電気通信(でんきつうしん)とは、電気信号・電磁波・光波等の電磁的手段により映像・音声・データなどの情報を伝える通信である。.

新しい!!: ベリリウムと電気通信 · 続きを見る »

通信衛星

通信衛星(つうしんえいせい、communications satellite)とは、マイクロ波帯の電波を用いた無線通信を目的として、宇宙空間に打ち上げられた人工衛星である。CSやCOMSAT(コムサット)などと略される。その出力が大きく、使用目的が人工衛星から直接放送するものを放送衛星(BSまたはDBS)という。.

新しい!!: ベリリウムと通信衛星 · 続きを見る »

送信機

送信機(そうしんき)は情報を送り出す電気通信装置を意味する。日本語では電波を使った送信機を指す場合が多く、本項ではこの無線通信における送信機について記述する。.

新しい!!: ベリリウムと送信機 · 続きを見る »

透磁率

透磁率(とうじりつ、magnetic permeability)または導磁率(どうじりつ)は、磁場(磁界)の強さ H と磁束密度 B との間の関係を B.

新しい!!: ベリリウムと透磁率 · 続きを見る »

透過率 (光学)

透過率(とうかりつ、英語: transmittance)または透過度(とうかど)とは、光学および分光法において、特定の波長の入射光が試料を通過する割合である。 ここで、I_0 は入射光の放射発散度、I は試料を通過した光の放射発散度である。試料の透過率は百分率で示すこともある。 透過率は吸光度 A と次の関係にある。 あるいは、自然対数を使うと、次のようになる。 この式とランベルト・ベールの法則から、透過率は次のようにも表せる。 ここで \alpha は吸収係数、x は経路長である。 光学材料では、表面(界面)で光が反射されるため、素材自体の透過率のことを内部透過率、界面をふくめた全体の透過率を外部透過率と呼ぶ。.

新しい!!: ベリリウムと透過率 (光学) · 続きを見る »

進行波管

進行波管(Traveling Wave Tube)とは、大電力の高周波増幅用として使われる電子管である。.

新しい!!: ベリリウムと進行波管 · 続きを見る »

陽子

陽子(ようし、())とは、原子核を構成する粒子のうち、正の電荷をもつ粒子である。英語名のままプロトンと呼ばれることも多い。陽子は電荷+1、スピン1/2のフェルミ粒子である。記号 p で表される。 陽子とともに中性子によって原子核は構成され、これらは核子と総称される。水素(軽水素、H)の原子核は、1個の陽子のみから構成される。電子が離れてイオン化した水素イオン(H)は陽子そのものであるため、化学の領域では水素イオンをプロトンと呼ぶことが多い。 原子核物理学、素粒子物理学において、陽子はクォークが結びついた複合粒子であるハドロンに分類され、2個のアップクォークと1個のダウンクォークで構成されるバリオンである。ハドロンを分類するフレーバーは、バリオン数が1、ストレンジネスは0であり、アイソスピンは1/2、超電荷は1/2となる。バリオンの中では最も軽くて安定である。.

新しい!!: ベリリウムと陽子 · 続きを見る »

III-V族半導体

III-V族半導体(さんごぞくはんどうたい)は、III族元素とV族元素を用いた半導体である。III-V族化合物半導体とも呼ぶ。代表的なIII族元素としてはアルミニウム(Al)・ガリウム(Ga)・インジウム(In)、V族元素としては窒素(N)・リン(P)・ヒ素(As)・アンチモン(Sb)がある。この他にホウ素(B)・タリウム(Tl)・ビスマス(Bi)もIII-V族半導体を構成する元素である。またV族元素として窒素を用いた窒化ガリウム(GaN)・窒化アルミニウム(AlN)・窒化インジウム(InN)などを特に窒化物半導体と呼ぶ。 代表的な半導体であるケイ素(Si)と比較して、III-V族化合物半導体はその多くが直接遷移型の半導体であるため、発光ダイオード・レーザダイオードをはじめとする発光素子に用いられる。またケイ素とはバンドギャップエネルギーが異なるため、フォトダイオードといった受光素子にも用いられる。例えば現在の赤・緑・青色などの発光ダイオードは、ほぼすべてIII-V族半導体を材料としている。また高い電子移動度を利用して、極超短波以上の増幅には、ガリウムヒ素(GaAs)を用いた電界効果トランジスタが広く使われている。 これらIII族元素とV族元素を1種類ずつ組み合わせたガリウムヒ素・リン化インジウム(InP)・窒化ガリウムといった化合物半導体を2元系混晶と呼ぶ。さらに結晶基板(ガリウムヒ素・リン化インジウム・エピタキシャル窒化ガリウムなど)の上での結晶成長により、インジウム・ガリウム・ヒ素(InGaAs)・ゲイナス(GaInNAs)といった3元系・4元系の化合物半導体も作成できる。3元以上の混晶では、その組成比によってバンドギャップエネルギー・格子定数・光学特性を連続的に変化させられる。また結晶成長の際に格子定数を一定に保ったままバンドギャップエネルギーを変化させた層を組み合わせれば、量子井戸構造などの量子効果も得られる。.

新しい!!: ベリリウムとIII-V族半導体 · 続きを見る »

ITER

ITER(イーター)は、国際協力によって核融合エネルギーの実現性を研究するための実験施設である。この核融合実験炉は核融合炉を構成する機器を統合した装置であり、ブランケットやダイバータなどのプラズマ対向機器にとって総合試験装置でもある。計画が順調に行けば原型炉、実証炉または商業炉へと続く。名称は、過去にはInternational Thermonuclear Experimental Reactorの略称と説明された時期もあったが、現在は公式にはiter(羅:道)に由来する、とされている。 日本では「国際熱核融合実験炉(こくさいねつかくゆうごうじっけんろ)」または「イーター(後述する協定の和文正文等における呼称)」と呼ばれている。 建設候補地として青森県六ヶ所村(日本)とカダラッシュ(フランス)が挙げられていたが、2005年6月、カダラッシュに建設することが決定された。2006年11月にはプロジェクトの実施主体となる国際機関を設立する国際協定である「イーター事業の共同による実施のためのイーター国際核融合エネルギー機構の設立に関する協定(Agreement on the Establishment of the ITER International Fusion Energy Organization for the Joint Implementation of the ITER Project)」に対する署名が行われた後、2007年10月24日に協定の効力が発生し、イーター国際核融合エネルギー機構が国際機関として正式に設立された。.

新しい!!: ベリリウムとITER · 続きを見る »

NFPA 704

NFPA 704は、化学薬品の危険性を表示するための規格であり、全米防火協会(NFPA)が策定・管理している。ファイア・ダイアモンド(Fire Diamond)と呼ばれる表示により、危険物質を扱う人が素早く簡単に危険性を判断でき、必要な専用器具・手順・防護措置を知ることができるようになっている。.

新しい!!: ベリリウムとNFPA 704 · 続きを見る »

P型半導体

p型半導体(ピーがたはんどうたい)とは、電荷を運ぶキャリアとして正孔(ホール)が使われる半導体である。正の電荷を持つ正孔が移動することで電流が生じる。つまり、正孔が多数キャリアとなる半導体である。 例えばシリコンなど4価元素の真性半導体に、微量の3価元素(ホウ素、アルミニウムなど)を添加することでつくられる。不純物半導体に含まれる。.

新しい!!: ベリリウムとP型半導体 · 続きを見る »

Ppm

ppm(パーツ・パー・ミリオン)は、100万分のいくらであるかという割合を示すparts-per表記による数値。主に濃度を表すために用いられるが、不良品発生率などの確率を表すこともある。「parts per million」の頭文字をとったもので、100万分の1の意。百万分率とも。.

新しい!!: ベリリウムとPpm · 続きを見る »

Public Address

Public Address(パブリック・アドレス)とは、一般に英語で放送設備を意味する。略してPA(ピーエー)とも呼ばれ、電気的な音響拡声装置の総称である。しばしば、これらのオペレータに対してもPAと呼ぶこともある。また公衆伝達(こうしゅうでんたつ)と呼ばれることもあるが、あまり一般的ではない。.

新しい!!: ベリリウムとPublic Address · 続きを見る »

SLAC国立加速器研究所

タンフォード大学構内にあるSLACの入り口 線形加速器内部の様子 3kmにも及ぶ線形加速器を上空から望んだ航空写真 SLAC国立加速器研究所(スラックこくりつかそくきけんきゅうじょ、SLAC National Accelerator Laboratory)は、1962年にスタンフォード大学によりカリフォルニア州メンローパークに設立された国立研究所。電子の線形加速器によって高エネルギー物理学(high-energy physics)の実験を行っている。アメリカ合衆国エネルギー省(DOE)が所有し、同省との契約のもとスタンフォード大学が運営する、GOCO(Government Owned, Contractor Operated)形式の国立研究所である。 最近では、円形加速器によってシンクロトロン輻射(synchrotron radiation)の実験研究を行う部門(スタンフォード・シンクロトロン放射光施設、SSRL)もある。スタンフォード線形加速器センター(Stanford Linear Accelerator Center;SLAC)として設立されたが、2008年に現在の名称に変更された。 素粒子物理学の分野の人たちは、SLACを「スラック」と発音している。.

新しい!!: ベリリウムとSLAC国立加速器研究所 · 続きを見る »

X線

透視画像。骨と指輪の部分が黒く写っている。 X線(エックスせん、X-ray)とは、波長が1pm - 10nm程度の電磁波のことを言う。発見者であるヴィルヘルム・レントゲンの名をとってレントゲン線と呼ばれる事もある。放射線の一種である。X線撮影、回折現象を利用した結晶構造の解析などに用いられる。.

新しい!!: ベリリウムとX線 · 続きを見る »

X線天文学

X線天文学(エックスせんてんもんがく、X-ray astronomy)は、観測天文学の一分野で、天体から放射されるX線の研究を行なう。X線放射は地球の大気によって吸収されるため、X線の観測装置は高い高度へ運ばなければならない。そのためにかつては気球やロケットが用いられた。現在ではX線天文学は宇宙探査の一分野となっており、X線検出器は人工衛星に搭載されるのが普通である。 X線は一般に、100万~1億Kという極端な高温のガスから放射される。このような天体では原子や電子が非常に高いエネルギーを持っている。1962年の最初の宇宙X線源の発見は驚くべきものであった。このX線源はさそり座で最初に発見されたX線源であることからさそり座X-1と呼ばれ、天の川の中心方向に位置していた。発見者のリカルド・ジャコーニはこの発見によって2002年のノーベル物理学賞を受賞した。後に、このX線源から放出されているX線は可視光での放射強度より1万倍も強いことが明らかになった。さらに、このX線の放射エネルギーは太陽の全波長での放射エネルギーの10万倍に達するものであった。現在では、このようなX線源は中性子星やブラックホールといったコンパクト星であることが分かっている。このような天体のエネルギー源は重力エネルギーである。天体の強い重力場によって落ち込んだガスが加熱されて高エネルギーのX線を放射している。 現在までに数千個のX線源が知られている。加えて、銀河団にある銀河同士の間の空間は約1億Kという非常に高温でしかも非常に希薄なガスで満たされているらしいことが分かっている。この高温ガスの総量は観測できる銀河の質量の5~10倍に達する。この意味で我々はまさに高温の宇宙に住んでいると言える。.

新しい!!: ベリリウムとX線天文学 · 続きを見る »

恒星

恒星 恒星(こうせい)は、自ら光を発し、その質量がもたらす重力による収縮に反する圧力を内部に持ち支える、ガス体の天体の総称である。人類が住む地球から一番近い恒星は、太陽系唯一の恒星である太陽である。.

新しい!!: ベリリウムと恒星 · 続きを見る »

恒星内元素合成

恒星内元素合成(こうせいないげんそごうせい、stellar nucleosynthesis)は、水素よりも重い元素が恒星によって生成される核反応の総称的な用語である。ただし、超新星爆発の時に行われる元素の生成については、超新星元素合成と呼ばれ区別される。恒星内元素合成は、たいてい恒星の中心部で起こる。.

新しい!!: ベリリウムと恒星内元素合成 · 続きを見る »

核実験

核実験(かくじっけん)とは、核爆弾の新たな開発や性能維持を確認したり、維持技術を確立したりするために、実験的に核爆弾を爆発させることを指す。1945年から約半世紀の間に2379回(その内大気圏内は502回)の核実験が各国で行われた。そのエネルギーはTNT換算で530メガトン(大気圏内は440メガトン)でこれは広島へ投下されたリトルボーイの3万5千発以上に相当する。.

新しい!!: ベリリウムと核実験 · 続きを見る »

核兵器

核兵器(かくへいき、nuclear weapon)は、核分裂の連鎖反応、または核融合反応で放出される膨大なエネルギーを利用して、爆風、熱放射や放射線効果などの作用を破壊に用いる兵器の総称。原子爆弾、水素爆弾、中性子爆弾等の核爆弾(核弾頭)とそれを運搬する運搬兵器で構成されている。 核兵器は生物兵器、化学兵器と合わせてNBC兵器(又はABC兵器)と呼ばれる大量破壊兵器である。一部放射能兵器も含めて核兵器と称する場合があるが、厳密には放射能兵器を核兵器に分類するのは誤りである。 核兵器は、人類が開発した最も強力な兵器の一つであり、その爆発は一発で都市を壊滅させる事も可能である。そのような威力ゆえに、20世紀後半に配備数が増えるにつれ核戦争の脅威が想定されるようになり、単なる兵器としてだけではなく、国家の命運、人類の存亡にも影響するものとして、開発・配備への動きのみならず、規制・廃棄の動きなど様々な議論の対象となってきた。また、実戦使用されたのがアメリカ合衆国による、第二次世界大戦における二発(広島・長崎)のみであり、使用ではなく、主に配備による抑止力として、その意義が評価されている側面を持つ。 核兵器は核分裂を主とする原子爆弾と核融合を主とする水素爆弾の大きく二つに分類される。原子爆弾は大威力化に限界があり、水素爆弾の方が最大威力は大きくすることができる。また、兵器の形態としても、開発当初は大型航空爆弾のみであったが、プルトニウム型の場合高度な製造技術を必要とする反面、小型化が可能でありミサイルや魚雷の弾頭、砲弾までも様々なものが開発されている。.

新しい!!: ベリリウムと核兵器 · 続きを見る »

核磁気共鳴画像法

頭部のMRI(T1)画像 頭の頂部から下へ向けて連続撮影し、動画化したもの 核磁気共鳴画像法(かくじききょうめいがぞうほう、, MRI)とは、核磁気共鳴(, NMR)現象を利用して生体内の内部の情報を画像にする方法である。磁気共鳴映像法とも。.

新しい!!: ベリリウムと核磁気共鳴画像法 · 続きを見る »

核爆発

23ktの核爆弾「バッジャー」の核爆発(アップショット・ノットホール作戦) 225ktの核爆弾「ジョージ」の核爆発初期の火球(グリーンハウス作戦) 核爆発(かくばくはつ, )とは、核分裂連鎖反応または核融合反応を連続して短時間に起こすことにより、生成される爆発現象のこと。人類の技術においては、軍事用途のみが実用化されており、核兵器の主要な効果として用いられている。.

新しい!!: ベリリウムと核爆発 · 続きを見る »

核燃料

核燃料(かくねんりょう、nuclear fuel)とは、核分裂連鎖反応を起こし、エネルギーを発生させるために相当期間原子炉に入れて使うものを言う。ウラン233 (U)、ウラン235 (U)、プルトニウム239 (Pu) などを指す。.

新しい!!: ベリリウムと核燃料 · 続きを見る »

核融合反応

核融合反応(かくゆうごうはんのう、nuclear fusion reaction)とは、軽い核種同士が融合してより重い核種になる核反応を言う。単に核融合と呼ばれることも多い。.

新しい!!: ベリリウムと核融合反応 · 続きを見る »

核融合炉

QUEST(九州大学) QUESTへの電源供給施設 核融合炉(かくゆうごうろ)は、現在開発中の原子炉の一種で、原子核融合反応を利用したもの。21世紀後半における実用化が期待される未来技術の1つである。 重い原子たるウランやプルトニウムの原子核分裂反応を利用する核分裂炉に対して、軽い原子である水素やヘリウムによる核融合反応を利用してエネルギーを発生させる装置が核融合炉である。現在、日本を含む各国が協力して国際熱核融合実験炉ITERのフランスでの建設に向けて関連技術の開発が進められている。ITERのように、核融合技術研究の主流のトカマク型の反応炉が高温を利用したものであるので、特に熱核融合炉とも呼ばれることがある。太陽をはじめとする恒星が輝きを放っているのは、すべて核融合反応により発生する熱エネルギーによるものである。これは核融合炉が「地上の太陽」と呼ばれる由縁である。恒星の場合は自身の巨大な重力によって反応が維持されるが、地球上で核融合反応を発生させるためには、人工的に極めて高温か、あるいは極めて高圧の環境を作り出す必要がある。 核融合反応の過程で高速中性子をはじめ、さまざまな高エネルギー粒子の放射が発生するため、その影響を最小限に留める必要がある。そういった安全に反応を継続する技術、プラズマの安定的なコントロールの技術、超伝導電磁石の技術、遠隔操作保守技術、リチウムや重水素、三重水素を扱う技術、プラズマ加熱技術、これらを支えるコンピュータ・シミュレーション技術などが必要とされ開発が進められている。.

新しい!!: ベリリウムと核融合炉 · 続きを見る »

格子定数

格子定数(こうしていすう、こうしじょうすう、lattice constant)とは、結晶軸の長さや軸間角度のこと。単位格子の各稜間の角度 α,β,γ と、各軸の長さ a,b,c を表す6個の定数である。格子の形状等によっては、aの値のみを表すこともある。 軸の長さの単位は普通オングストロームを用い、自明として単位を付けずに数値のみを書く場合が多い。.

新しい!!: ベリリウムと格子定数 · 続きを見る »

標準状態

標準状態(ひょうじゅんじょうたい)とは、物理学、化学や工学などの分野で、測定する平衡状態に依存する熱力学的な状態量を比較するときに基準とする状態である。標準状態をどのように設定するかは完全に人為的なものであり、理論的な裏付けはないが、歴史的には人間の自然認識に立脚する。 一般的には気体の標準状態のことを指すことが多く、圧力と温度を指定することで示される。科学の分野により、また学会、国際規格団体によって、その定義は様々であり混乱が見られる。このため、日本熱測定学会は統一した値として、地球の大気の標準的な圧力である標準大気圧()を用いるべきであると主張し啓蒙活動を展開している日本熱測定学会 ICCT2008で発表したポスター。.

新しい!!: ベリリウムと標準状態 · 続きを見る »

機雷

EODにより爆破処分される係維機雷。 機雷(きらい)とは、水中に設置されて艦船が接近、または接触したとき、自動または遠隔操作により爆発する水中兵器をいう。水中で人為的に仕掛けられる爆発装置のリムペットマインなどは含まない。機雷は機械水雷の略である。機雷に触れることを触雷(しょくらい)、機雷を設置した海域を機雷原(きらいげん)、機雷を撤去することを掃海という。.

新しい!!: ベリリウムと機雷 · 続きを見る »

欧州連合

欧州連合(おうしゅうれんごう、、略称:)は、マーストリヒト条約により設立されたヨーロッパの地域統合体。 欧州連合では欧州連合条約の発効前に調印されていた単一欧州議定書によって市場統合が実現し、またシェンゲン協定により域内での国境通過にかかる手続きなどの負担を大幅に削減した。さらに欧州連合条約発効後によって外交・安全保障分野と司法・内務分野での枠組みが新たに設けられ、ユーロの導入による通貨統合が進められている。このほかにも欧州議会の直接選挙が実施されたり、欧州連合基本権憲章が採択されたりするなど、欧州連合の市民の概念が具現化されつつある。加盟国数も欧州経済共同体設立を定めたローマ条約発効時の6か国から、2013年7月のクロアチア加盟により28か国にまで増えている。.

新しい!!: ベリリウムと欧州連合 · 続きを見る »

比熱容量

比熱容量(ひねつようりょう、英語:specific heat capacity)とは、圧力または体積一定の条件で、単位質量の物質を単位温度上げるのに必要な熱量のこと。単位は J kg−1 K−1 もしくは J g−1 K−1 が用いられる。水の比熱容量(18℃)は、1 cal g−1 K−1.

新しい!!: ベリリウムと比熱容量 · 続きを見る »

水素

水素(すいそ、hydrogenium、hydrogène、hydrogen)は、原子番号 1 、原子量 1.00794の非金属元素である。元素記号は H。ただし、一般的には「水素」と言っても、水素の単体である水素分子(水素ガス) H を指していることが多い。 質量数が2(原子核が陽子1つと中性子1つ)の重水素(H)、質量数が3(原子核が陽子1つと中性子2つ)の三重水素(H)と区別して、質量数が1(原子核が陽子1つのみ)の普通の水素(H)を軽水素とも呼ぶ。.

新しい!!: ベリリウムと水素 · 続きを見る »

水素イオン指数

水素イオン指数(すいそイオンしすう、Wasserstoffionenexponent)とは、溶液の液性(酸性・アルカリ性の程度)を表す物理量で、記号pHで表す。水素イオン濃度指数または水素指数とも呼ばれる。1909年にデンマークの生化学者セレン・セーレンセンが提案した『化学の原典』 p. 69.

新しい!!: ベリリウムと水素イオン指数 · 続きを見る »

水酸化ナトリウム

水酸化ナトリウム(すいさんかナトリウム、sodium hydroxide)は化学式 NaOH で表される無機化合物で、ナトリウムの水酸化物であり、常温常圧ではナトリウムイオンと水酸化物イオンからなるイオン結晶である。苛性ソーダ(かせいソーダ、caustic soda)と呼ばれることも多い。 強塩基(アルカリ)として広汎かつ大規模に用いられ、工業的に非常に重要な基礎化学品の1つである。毒物及び劇物取締法により原体および5 %を超える製剤が劇物に指定されている。.

新しい!!: ベリリウムと水酸化ナトリウム · 続きを見る »

水酸化ベリリウム

水酸化ベリリウム(すいさんかベリリウム、beryllium hydroxide)は、化学式 Be(OH)2 で表されるベリリウムの水酸化物である。.

新しい!!: ベリリウムと水酸化ベリリウム · 続きを見る »

水酸化アルミニウム

水酸化アルミニウム(すいさんかアルミニウム、Aluminium hydroxide)は化学式 Al(OH)3 で表される無機化合物である。比重は約2.42。酸やアルカリに溶け、水、アルコールに不溶。アルミニウム塩の水溶液にアンモニアを加えると白色ゲル状沈殿を起こすが、これが水酸化アルミニウムである。主に医薬品や吸着剤などに使用される。また、緑色顔料・ピーコックの原料でもある。 熱すると酸化アルミニウムになるが、その際に水が発生するため、水酸化アルミニウムを添加した紙は燃えない(炎を出さない)。この「不燃紙」は防火性の高い建築材料(壁紙)として使用されている。.

新しい!!: ベリリウムと水酸化アルミニウム · 続きを見る »

水酸化物

水酸化物(すいさんかぶつ、)とは、塩のうち、陰イオンとして水酸化物イオン (OH-) を持つ化合物のこと。陽イオンが金属イオンの場合、一般式は Mx(OH)y と表される。一般に塩基性(アルカリ性)もしくは両性を持ち、水酸化ナトリウム (NaOH) など、アルカリ金属やアルカリ土類金属の水酸化物は強塩基性を示す。組成式が水酸化物と相同することから、金属酸化物の水和物 MxOy•(H2O)z を含む場合もある。 アルカリ金属以外の水酸化物は、一般に加熱により水を失い酸化物となる。 英語の "hydroxide" にはアルコールやフェノールなどのヒドロキシ基を持つ有機化合物も含まれるが、日本語の「水酸化物」にはこれらの化合物は含まれない。有機化合物のヒドロキシ基は共有結合により母骨格と結びついている。.

新しい!!: ベリリウムと水酸化物 · 続きを見る »

氷床コア

氷床コア(ひょうしょうコア、英語:ice core)は氷床から取り出された筒状の氷の柱である。 氷は下に向かうにつれて古くなり、過去に降り積もった雪を保存している。氷床コアはコア掘削機によって南極やグリーンランドなど様々な氷床・氷河の深層に向かって掘り出されており、樹木の年輪や堆積物の年縞(年に一枚ずつ縞状に堆積したもの)など他の自然物の記録のように、気候に関する様々な情報を含んでいる。その記録は(地質学的には)短い時間だが、高精度の情報を得ることが出来る。 氷床コアの上層は一枚一年に相当するが、場合によっては一シーズンに一枚など、それぞれの年に降った雪が残っており、風成塵、火山灰、大気成分、放射性物質を含んでいる。氷の深度が深くなるにつれ、自重により一年分に相当する氷の層は厚さは薄くなり、年縞は不明瞭になってゆく。 適切な場所から得られるコアは撹乱が少ないので、数十万年にさかのぼる詳細な気候変化の記録が得られる。その記録には、気温、海水量、蒸発量、化学物質や低層大気の成分、火山活動、太陽活動、海洋の生物生産量等様々な気候に関する指標が含まれる。これらの記録は同じ層では同じ年の状態を保存しており、氷床コアを古気候研究に非常に有用なものにしている。.

新しい!!: ベリリウムと氷床コア · 続きを見る »

気管支鏡

気管支鏡(きかんしきょう)は、気管および気管支に挿入する内視鏡の一種(Bronchoscope)、またはそれを用いる手技(Bronchoscopy)。気管支鏡を用いて気道病変に対して行う治療行為全般は気管支鏡インターベンション()と呼ばれる。.

新しい!!: ベリリウムと気管支鏡 · 続きを見る »

気象衛星

気象衛星(きしょうえいせい)とは、気象観測を行う人工衛星である。衛星軌道上から観測を行うことにより、広域の気象状況を短時間に把握することができる。.

新しい!!: ベリリウムと気象衛星 · 続きを見る »

沸点

沸点(ふってん、)とは、液体の飽和蒸気圧が外圧液体の表面にかかる圧力のこと。と等しくなる温度であるアトキンス第8版 p.122.

新しい!!: ベリリウムと沸点 · 続きを見る »

沈殿

溶液中の物質に化学反応を起こし、沈殿する成分と溶けたままである成分に分ける。 沈殿(ちんでん、沈澱とも、precipitation、沈殿反応とも、precipitation reaction)は、溶液中の微粒子が集積することで、大きくなった集積体が重力に引かれて液の底に沈む現象である。底に沈んだ物質を沈殿物という。 沈殿を構成する固体の微粒子は微結晶の場合もあれば、固体と溶液とから構成された固体でゲル様の状態の時もある。 沈殿現象が発生する前の溶液は分散体であり、分散体となる固体微粒子が極く小さい場合はコロイド溶液として安定してしまい沈殿が発生しない場合もある。分散体が安定化するのに微粒子の表面エネルギーやその近傍に発生する電気二重層が大きく関与している。(記事 コロイドに詳しい).

新しい!!: ベリリウムと沈殿 · 続きを見る »

液体燃料ロケット

液体燃料ロケット(えきたいねんりょうロケット)は、液体の燃料と酸化剤をタンクに貯蔵し、それをエンジンの燃焼室で適宜混合して燃焼させ推力を発生させるロケットである。単に液体ロケットとも呼ばれる。人工衛星の姿勢制御エンジンなど一部には過酸化水素やヒドラジンのように自己分解を起こす推進剤を触媒等で分解して噴射する、簡単な構造の一液式のものもある。 液体燃料は一般的に燃焼ガスの平均分子量が小さく、固体燃料に比べて比推力に優れているうえ、推力可変機能、燃焼停止や再着火などの燃焼制御機能を持つことができる。また、エンジン以外のタンク部分は単に燃料を貯蔵しているだけなので、特に大型のロケットでは構造効率の良いロケットが製作できる。一方、燃焼室や噴射器、ポンプなどの機構は複雑で小型化が困難なので、小型のロケットでは同規模の固体ロケットに比べて構造効率は悪化する。また、推進剤の種別によっては、腐食性や毒性を持ち貯蔵が困難であったり、極低温なため断熱や蒸発したガスの管理、蒸発した燃料の補充などで取り扱いに難があるものもある。.

新しい!!: ベリリウムと液体燃料ロケット · 続きを見る »

液滴模型

液滴模型(えきてきもけい、)とは、原子核の性質を記述するモデルのひとつである。原子核を液体のしずくとして説明する。.

新しい!!: ベリリウムと液滴模型 · 続きを見る »

減速材

減速材(げんそくざい、)とは原子力発電において核分裂後に放出される中性子の速度を下げる役割を果たすもの。.

新しい!!: ベリリウムと減速材 · 続きを見る »

溶媒抽出法

水と油のように互いに分離する性質を持つ溶媒では、油溶性の成分と、水溶性の成分が分離して溶けるため、分離後にいずれかの溶媒だけを移し替えて蒸発させることで目的とする成分を残すことができる。このような形状をした分液漏斗は、下層の溶液を取り出すための蛇口がついた器具である。 溶媒抽出法(ようばいちゅうしゅつほう、Solvent Extraction Method)または液液抽出(Liquid–liquid extraction)は、水と油のように互いに混じり合わない二液間における溶質の分配(どちらに溶けやすいか)を利用した分離・濃縮方法である。抽出方法のひとつ。分離工学の一つである。 古典的な手法であり、有機化学にも無機化学にも応用可能で、小スケールの実験室から大規模な工業にも幅広く利用される。実際の利用例では、食用油、食用香料、DNA、レアメタル、ウラン等の濃縮・精製・抽出と、人間の生活には無くてはならない技術である。 p.

新しい!!: ベリリウムと溶媒抽出法 · 続きを見る »

溶融塩原子炉

溶融塩原子炉(ようゆうえんげんしろ、molten salt reactor, MSR)は、溶融塩を一次冷却材として使用する原子炉である。 多数の設計が行われたがそのうち少数が建設された。第4世代原子炉としてのひとつの概念である。 フッ化ウラン(IV) (UF4) など溶融状態のフッ化物塩を一次冷却剤としてそこへ核分裂物質を混合させ、黒鉛を減速材とした炉心に低圧で送り臨界に到達させる。高温の溶融塩は炉心の外へ循環させ二次冷却材と熱を交換させる。燃料の設計はさまざまである。液体燃料原子炉特有の複雑な問題の発生を回避するため、溶融塩内に核分裂生成物を含まない構造の新型高温原子炉 (AHTR) も設計されている。.

新しい!!: ベリリウムと溶融塩原子炉 · 続きを見る »

溶融塩電解

溶融塩電解(ようゆうえんでんかい、molten salt electrolysis)または融解塩電解(ゆうかいえんでんかい)は、イオン性の固体を高温にして融解させ、これを電気分解する方法である。イオン化傾向が大きく水溶液では析出しないアルミニウムやナトリウムがこの方法で工業生産される。.

新しい!!: ベリリウムと溶融塩電解 · 続きを見る »

振動板

振動板(Diaphragm:ダイアフラム)は、音波と電気信号を相互に変換する機構。 マイクロホンやスピーカーの音波とのインターフェイスで、マイクロホンの場合は音波を受けて振動し、これを電気変換系に伝える役目をし、スピーカーの場合は電気信号を受けて振動し、空中に音波を放射する役目をするもの。 ダイナミックマイクロホンの場合は薄いプラスチックフィルムを用いて、周辺に襞を設けたドーム状円板に成形したものが多く用いられる。 コンデンサマイクロホンの場合は、更に薄いプラスチックフィルムの片面に金属をコートした膜が用いられる。 ダイナミックスピーカーの場合は、パルプやプラスチック、軽金属などをコーン状やドーム状に成形したものが用いられる。 聴診器の場合では、集音のためにチェストピースに張られた膜のことを指す。低音域をカットし、高音域を強調する役目がある。呼吸音、心音、心雑音、血管雑音など、高調音を聴くのに適しており、チェストピースを押さえる圧を調節することで、高調音と低調音を聞き分ける機能をもたせたダイアフラムもある。 空気圧縮機や燃料ポンプ等にも使用される。後者は振動板が吸気による負圧で振動する事により燃料をエンジンに供給する。.

新しい!!: ベリリウムと振動板 · 続きを見る »

有効核電荷

有効核電荷(ゆうこうかくでんか、effective nuclear charge)とは、多電子原子系において、最外殻電子(または着目する電子)が感じる中心原子核の電荷のこと。別名カーネル電荷。他の個々の電子から受ける静電反発ポテンシャルを原子核をおおうひとつの殻として扱い、原子核本来の正電荷を部分的に遮蔽すると近似する。これを有効核遮蔽(ゆうこうかくしゃへい)という。.

新しい!!: ベリリウムと有効核電荷 · 続きを見る »

成層圏

成層圏(せいそうけん、stratosphere)とは、地球の大気の鉛直構造において対流圏と中間圏の間に位置する層である。対流圏と成層圏との境目は対流圏界面(高度は極地で約8km、緯度が低くなるに従って高くなり赤道付近で約17km)、成層圏と中間圏との境目は成層圏界面(高度約50km)と呼ばれる。.

新しい!!: ベリリウムと成層圏 · 続きを見る »

星形成

星形成(ほしけいせい、star formation)は、高密度の分子雲が重力で収縮して球状のプラズマとなり恒星が形成される過程のことをいう。星形成研究は天文学の一分野であり、星形成の前段階としての星間物質・巨大分子雲の研究や、その生成物としての若い恒星や惑星形成の研究とも関連する分野である。星形成の理論は一恒星の形成ばかりではなく、連星の統計的研究や初期質量関数を説明するものでもある。.

新しい!!: ベリリウムと星形成 · 続きを見る »

昭和

昭和(しょうわ)は日本の元号の一つ。大正の後、平成の前。昭和天皇の在位期間である1926年(昭和元年)12月25日から1989年(昭和64年)1月7日まで。20世紀の大半を占める。 昭和は、日本の歴代元号の中で最も長く続いた元号であり、元年と64年は使用期間が共に7日間であるため実際の時間としては62年と14日となる。なお、外国の元号を含めても最も長く続いた元号であり、歴史上60年以上続いた元号は日本の昭和(64年)、清の康熙(61年)および乾隆(60年)しかない。 第二次世界大戦が終結した1945年(昭和20年)を境にして近代と現代に区切ることがある。.

新しい!!: ベリリウムと昭和 · 続きを見る »

海水

海面上から見た海水(シンガポール) スクーバダイビング中に見る海水の深い青(タイのシミランにて) 海水(かいすい)とは、海の水のこと。水を主成分とし、3.5 %程度の塩(えん)、微量金属から構成される。 地球上の海水の量は約13.7億 km3で、地球上の水分の97 %を占める。密度は1.02 - 1.035 g/cm3。.

新しい!!: ベリリウムと海水 · 続きを見る »

放射線

放射線(ほうしゃせん、radiation、radial rays)とは、高い運動エネルギーをもって流れる物質粒子(アルファ線、ベータ線、中性子線、陽子線、重イオン線、中間子線などの粒子放射線)と高エネルギーの電磁波(ガンマ線とX線のような電磁放射線)の総称をいう。「放射線」に全ての電磁波を含め、電離を起こすエネルギーの高いものを電離放射線、そうでないものを非電離放射線とに分けることもあるが、一般に「放射線」とだけいうと、高エネルギーの電離放射線の方を指していることが多い 。 なお、広辞苑には「放射性元素の放射性崩壊に伴い放出される粒子放射線と電磁放射線(主にアルファ線、ベータ線、ガンマ線)を指す」広辞苑第五版 p.2432【放射線】、とあるが、これは放射性物質の放射能を問題とする文脈ではそれを指す、というくらいの意味である。.

新しい!!: ベリリウムと放射線 · 続きを見る »

放射性同位体

放射性同位体(ほうしゃせいどういたい、radioisotope、RI)とは、ある元素の同位体で、その核種の不安定性から放射線を放出して放射性崩壊を起こす能力(放射能)を持つ元素を言う。.

新しい!!: ベリリウムと放射性同位体 · 続きを見る »

慣性航法装置

慣性航法装置(かんせいこうほうそうち、Inertial Navigation System, INS)は、潜水艦、航空機やミサイルなどに搭載される装置で、外部から電波による支援を得ることなく、搭載するセンサ(慣性計測装置、Inertial Measurement Unit, IMU、Inertial Navigation Unit; INU, Inertial Guidance Unit; IGU, Inertial Reference Unit; IRUなども使用される)のみによって自らの位置や速度を算出する。慣性誘導装置(Inertial Guidance System, IGS)、慣性基準装置(Inertial Reference System, IRS)などとも呼ばれる。.

新しい!!: ベリリウムと慣性航法装置 · 続きを見る »

曲げ強さ

曲げ強さ(まげつよさ、)とは、曲げ試験において試験片が破壊に至るまでの最大荷重を基に算出した曲げ応力の値。抗折力(こうせつりょく)とも呼ぶ。引張試験における引張強さに相当する。材料定数の一つとしてみなされ、曲げ強さを求める曲げ試験方法は規格で標準化されている。曲げ試験のことを抗折試験とも呼ぶ。.

新しい!!: ベリリウムと曲げ強さ · 続きを見る »

1 E13 s

1013 - 1014 s(32万 年 - 320万 年)の時間のリスト.

新しい!!: ベリリウムと1 E13 s · 続きを見る »

1 E6 s

106 - 107 s(11.6 日 - 116 日)の時間のリスト.

新しい!!: ベリリウムと1 E6 s · 続きを見る »

1797年

記載なし。

新しい!!: ベリリウムと1797年 · 続きを見る »

1828年

記載なし。

新しい!!: ベリリウムと1828年 · 続きを見る »

1930年代

1930年代(せんきゅうひゃくさんじゅうねんだい)は、西暦(グレゴリオ暦)1930年から1939年までの10年間を指す十年紀。.

新しい!!: ベリリウムと1930年代 · 続きを見る »

1933年

記載なし。

新しい!!: ベリリウムと1933年 · 続きを見る »

1946年

記載なし。

新しい!!: ベリリウムと1946年 · 続きを見る »

1949年

記載なし。

新しい!!: ベリリウムと1949年 · 続きを見る »

1950年代

1950年代(せんきゅうひゃくごじゅうねんだい)は、西暦(グレゴリオ暦)1950年から1959年までの10年間を指す十年紀。この項目では、国際的な視点に基づいた1950年代について記載する。.

新しい!!: ベリリウムと1950年代 · 続きを見る »

1952年

この項目では、国際的な視点に基づいた1952年について記載する。.

新しい!!: ベリリウムと1952年 · 続きを見る »

1983年

この項目では、国際的な視点に基づいた1983年について記載する。.

新しい!!: ベリリウムと1983年 · 続きを見る »

1987年

この項目では、国際的な視点に基づいた1987年について記載する。.

新しい!!: ベリリウムと1987年 · 続きを見る »

2001年

また、21世紀および3千年紀における最初の年でもある。この項目では、国際的な視点に基づいた2001年について記載する。.

新しい!!: ベリリウムと2001年 · 続きを見る »

2004年

この項目では、国際的な視点に基づいた2004年について記載する。.

新しい!!: ベリリウムと2004年 · 続きを見る »

2007年

この項目では、国際的な視点に基づいた2007年について記載する。.

新しい!!: ベリリウムと2007年 · 続きを見る »

20世紀

摩天楼群) 20世紀(にじっせいき、にじゅっせいき)とは、西暦1901年から西暦2000年までの100年間を指す世紀。2千年紀における最後の世紀である。漢字で二十世紀の他に、廿世紀と表記される場合もある。.

新しい!!: ベリリウムと20世紀 · 続きを見る »

ここにリダイレクトされます:

Beryllium

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »