ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

ベッチ数

索引 ベッチ数

代数的位相幾何学において、ベッチ数 (Betti numbers) は、位相空間に対する不変量であり、自然数に値をもつ。 右の図のようなトーラスを考える。このトーラスに切り口が円周になるように切れ込みをいれたとき、その結果二つのピースに分かれない切り方が、穴のまわりにそって一周する方法と、縦に切断する方法の二通りある。このことからトーラスの 1 次ベッチ数は 2 である。直感的な言葉を使うと、ベッチ数は様々な次元の「穴」の数である。例えば、円の 1 次ベッチ数は 1であり、一般的なプレツェル(pretzel)の場合は、1 次ベッチ数は穴の数の 2 倍となる。 ベッチ数は、今日、数学のみならず計算機科学やデジタル画像などの分野でも研究されている。 「ベッチ数」ということばは、エンリコ・ベッチ (Enrico Betti) にちなみ、アンリ・ポアンカレ (Henri Poincaré) により命名された。.

33 関係: 射影空間不変量二項定理代数的位相幾何学位相空間循環的複雑度ポアンカレ双対モース理論トーラスデジタル画像ド・ラームコホモロジーホモロジー (数学)ホッジ理論アンリ・ポアンカレアーベル群のランクエンリコ・ベッチエドワード・ウィッテンオイラー標数グスタフ・キルヒホフソフトウェア工学複体計算機科学調和微分形式閉多様体臨界点 (数学)Tor関手捩れ (代数学)捩れ部分群標数母関数有理数数学的帰納法普遍係数定理

射影空間

射影空間(しゃえいくうかん、projective space) とは、その次元が n であるとき、(n + 1)個の「数」の比全体からなる空間の事をさす。比を構成する「数」をどんな体(あるいは環)にとるかによって様々な空間が得られる。非ユークリッド幾何学のひとつである射影幾何学がその概念の端緒であるが、射影空間は位相幾何学、微分幾何学、代数幾何学など幾何学のあらゆる分野にわたって非常に重要な概念である。.

新しい!!: ベッチ数と射影空間 · 続きを見る »

不変量

不変量(ふへんりょう、invariant)とは、数学的対象を特徴付ける別種の数学的対象のことである。一般に、不変量は数や多項式など、不変量同士の同型性判定がもとの対象の同型性判定より簡単であるものをとる。良い不変量とは、簡単に計算でき、かつなるべく強い同型性判別能力をもつものである。.

新しい!!: ベッチ数と不変量 · 続きを見る »

二項定理

初等代数学における二項定理(にこうていり、binomial theorem)または二項展開 (binomial expansion) は二項式の冪の代数的な展開を記述するものである。定理によれば、冪 は の形の項の和に展開できる。ただし、冪指数 は を満たす非負整数で、各項の係数 は と に依存して決まる特定の正整数である。例えば の項の係数 は二項係数 \tbinom (.

新しい!!: ベッチ数と二項定理 · 続きを見る »

代数的位相幾何学

代数的位相幾何学(だいすうてきいそうきかがく、英語:algebraic topology、代数的トポロジー)は代数的手法を用いる位相幾何学の分野のことをいう。 古典的な位相幾何学は、図形として取り扱い易い多面体を扱っていたが、1900年前後のポワンカレの一連の研究を契機として20世紀に発展した。 ポワンカレは 1895年に出版した "Analysis Situs" の中で、ホモトピーおよびホモロジーの概念を導入した。これらはいまや代数的位相幾何学の大きな柱であると考えられている。 多様体、基本群、ホモトピー、ホモロジー、コホモロジー、ファイバー束などの、位相空間の不変量として代数系を対応させ、位相的性質を代数的性質に移して研究する..

新しい!!: ベッチ数と代数的位相幾何学 · 続きを見る »

位相空間

数学における位相空間(いそうくうかん, topological space)とは、集合にある種の情報(位相、topology)を付け加えたもので、この情報により、連続性や収束性といった概念が定式化可能になる。 位相空間論は位相空間の諸性質を研究する数学の分野である。.

新しい!!: ベッチ数と位相空間 · 続きを見る »

循環的複雑度

循環的複雑度(英: Cyclomatic complexity)とは、ソフトウェア測定法の一種である。Thomas McCabe が開発したもので、プログラムの複雑度を測るのに使われる。プログラムのソースコードから、線形的に独立した経路の数を直接数える。 手法としてではなく、そのコンセプトは文章の可読性(複雑度)を測定する Flesch-Kincaid Readability Test に似ている。 循環的複雑度は、プログラムの制御フローをグラフとして描くことで計算される。グラフのノードはプログラムのコマンドに相当する。2つのノードを結ぶ有向エッジは、第一のコマンドを実行後、次に第二のコマンドが実行される可能性があることを示している。.

新しい!!: ベッチ数と循環的複雑度 · 続きを見る »

ポアンカレ双対

数学において,ポワンカレ双対性定理は,多様体のホモロジー群とコホモロジー群の構造に関する基本的な結果である.名前はアンリ・ポワンカレにちなむ.定理の主張は以下のようである. を 次元の向き付けられた閉多様体(コンパクトかつ境界を持たない)とすると, の 次コホモロジー群はすべての整数 に対して 次ホモロジー群と同型である: ポワンカレ双対性は,係数環に関して向きを取る限り,任意の係数環に対して成り立つ.特に,すべての多様体は 2 を法として一意的な向き付けを持つので,ポワンカレ双対性は向きの仮定なしに 2 を法として成り立つ..

新しい!!: ベッチ数とポアンカレ双対 · 続きを見る »

モース理論

微分トポロジーにおいて、モース理論(モースりろん、Morse theory)は、多様体上の微分可能函数を研究することにより、多様体の位相的性質の分析を可能とする。 (Marston Morse) の基本的な見方に従うと、多様体上の典型的な微分可能函数はその位相的性質を極めて直接的に反映する。モース理論は、多様体上のやを見つけたり、多様体のホモロジーの本質的な情報をもたらす。 モース以前は、アーサー・ケイリー (Arthur Cayley) とジェームズ・クラーク・マクスウェル (James Clerk Maxwell) がの脈絡で、モース理論のいくつかのアイデアを考え出した。モースの元来の応用は、測地線の理論(経路上のエネルギー汎函数の臨界点への応用であった。これらのテクニックは、ラウル・ボット (Raoul Bott) のの証明に使われた。 モース理論の複素多様体での類似が、ピカール・レフシェッツ理論である。.

新しい!!: ベッチ数とモース理論 · 続きを見る »

トーラス

初等幾何学におけるトーラス(torus, 複数形: tori)、円環面、輪環面は、円周を回転して得られる回転面である。 いくつかの文脈では、二つの単位円周の直積集合 (に適当な構造を入れたもの)を「トーラス」と定義する。特に、位相幾何学における「トーラス」は、直積位相を備えた に同相な図形の総称として用いられ、 の(コンパクト二次元多様体)として特徴づけられる。このようなトーラスは三次元ユークリッド空間 に位相的に埋め込めるが、各生成円をそれぞれ別の平面 に埋め込んで、それら埋め込みを保つような直積空間としての「トーラス」をユークリッド空間に埋め込むことは では不可能で、 で考える必要がある。これは と呼ばれる、四次元空間内の曲面を成す。 混同すべきでない関連の深い図形として、トーラスに囲まれた領域(三次元図形)すなわち「中身の詰まったトーラス」(solid torus) を、トーラス体、輪環体、円環体などと(対してもとのトーラスをトーラス面 (toroid) と)呼ぶこともある。また、中身の詰まったトーラスを単に「トーラス」(toroid) と呼ぶ場合があるので注意が必要である。また、同様に「円環」などと呼ばれる別の図形アニュラス(annulus、環帯)とも混同してはならない。.

新しい!!: ベッチ数とトーラス · 続きを見る »

デジタル画像

デジタル画像とは、2次元画像を1と0(二進法)を使って表したもの。解像度が固定か否かによって、ベクターイメージとラスターイメージに分けられる。特に断らない限り、「デジタル画像」と言ったときラスターイメージを指すことが多い。.

新しい!!: ベッチ数とデジタル画像 · 続きを見る »

ド・ラームコホモロジー

ド・ラームコホモロジー(de Rham cohomology)とは可微分多様体のひとつの不変量で、多様体上の微分形式を用いて定まるベクトル空間である。多様体の位相不変量である特異コホモロジーとド・ラームコホモロジーは同型になるというド・ラームの定理がある。.

新しい!!: ベッチ数とド・ラームコホモロジー · 続きを見る »

ホモロジー (数学)

数学、とくに代数的位相幾何学や抽象代数学において、ホモロジー (homology) (「同一である」ことを意味するギリシャ語のホモス (ὁμός) に由来)は与えられた数学的対象、例えば位相空間や群に、アーベル群や加群の列を対応させる一つの一般的な手続きをいう。より詳しい背景については ホモロジー論 を見られたい。また、ホモロジーの手法の位相空間に対する具体的な適用については特異ホモロジーを、群についてのそれは群コホモロジーを、それぞれ参照されたい。 位相空間に対しては、ホモロジー群は一般にホモトピー群よりもずっと計算しやすく、したがって、空間を分類する道具としてはより手軽に扱えるものといえるだろう。.

新しい!!: ベッチ数とホモロジー (数学) · 続きを見る »

ホッジ理論

数学におけるホッジ理論(ホッジりろん、Hodge theory )とは可微分多様体 上の微分形式に関する理論である。特に、 上のリーマン計量に付随する(一般化された)ラプラス作用素に関する偏微分方程式論をもちいて得られる 上の実係数コホモロジー群の性質のことをいう。 1930年代にによってド・ラームコホモロジーの拡張として開発され、3つのレベルで大きな応用を持っている。.

新しい!!: ベッチ数とホッジ理論 · 続きを見る »

アンリ・ポアンカレ

ュール=アンリ・ポアンカレ(、1854年4月29日 – 1912年7月17日)はナンシー生まれのフランスの数学者。数学、数理物理学、天体力学などの重要な基本原理を確立し、功績を残した。フランス第三共和制大統領・レーモン・ポアンカレはアンリの従弟(いとこ)。.

新しい!!: ベッチ数とアンリ・ポアンカレ · 続きを見る »

アーベル群のランク

数学において、アーベル群 A のランク (rank)、階数、プリューファーランク (Prüfer rank)、あるいは捩れなしランク (torsion-free rank) は極大線型独立部分集合の濃度である。A のランクは A に含まれる最大の自由アーベル群のサイズを決定する。A が捩れなしであれば次元がランク A の有理数体上のベクトル空間に埋め込まれる。有限生成アーベル群に対して、ランクは強い不変量でありすべてのそのような群はそのランクと捩れ部分群によって同型を除いて決定される。は完全に分類されている。しかしながら、より高いランクのアーベル群の理論はより難解である。 用語ランクは基本アーベル群の文脈では異なる意味を持つ。.

新しい!!: ベッチ数とアーベル群のランク · 続きを見る »

エンリコ・ベッチ

ンリコ・ベッチ(Enrico Betti、1823年10月21日 - 1892年8月11日)は、イタリアの数学者である。1871年に書かれ、後にベッチの名前を取ってベッチ数と呼ばれることになる概念を導いた、位相幾何学に関する論文で有名である他、方程式論の研究も行いガロア理論に初期の説明を与えた。物理学(構造力学)の研究の仕事もあり、弾性力理論の帰結としての相反作用の定理を発見した。.

新しい!!: ベッチ数とエンリコ・ベッチ · 続きを見る »

エドワード・ウィッテン

ドワード・ウィッテン(Edward Witten, 1951年8月26日 - )は超弦理論においてM理論を提唱した理論物理学者。現在はプリンストン高等研究所教授。 メリーランド州ボルチモア生まれ。父親は一般相対性理論の研究者で元シンシナティ大学教授のルイス・ウィッテン。当初はジャーナリストを志望し、ブランダイス大学時代は歴史学や言語学を専攻。米国雑誌『The Nation』や『THE NEW REPUBLIC』に寄稿する他、1972年の大統領選で大敗したジョージ・マクガヴァンの選挙運動に携わった。 ウィスコンシン大学マディソン校大学院で経済学を専攻するが中退し、1973年にプリンストン大学大学院で応用数学を専攻。後に物理学に移り、デビッド・グロスの下で1976年に博士号を取得した。 その後ハーヴァード大学のフェローなどを経て、1980年から1987年までプリンストン大学物理学科の教授を務めた。1995年に南カリフォルニア大学で開かれたスーパーストリング理論国際会議で、仮説M理論を発表し学会に衝撃を与える。1990年、数学に関する最高権威を有するフィールズ賞を受賞。 ネーサン・サイバーグとは友人で共同研究者。米制作ドキュメンタリー「美しき大宇宙」(原題:The Elegant Universe)に出演している。.

新しい!!: ベッチ数とエドワード・ウィッテン · 続きを見る »

オイラー標数

イラー標数(オイラーひょうすう、)とは、位相空間のもつある種の構造を特徴付ける位相不変量のひとつ。オイラーが多面体の研究においてこの不変量を用いたことからこの名がある。オイラー数と呼ばれることもあるが、オイラー数は別の意味で使われることも多い。.

新しい!!: ベッチ数とオイラー標数 · 続きを見る »

グスタフ・キルヒホフ

分光器を使っているキルヒホフ グスタフ・ロベルト・キルヒホフ(Gustav Robert Kirchhoff, 1824年3月12日 - 1887年10月17日)は、プロイセン(現在のロシアのカリーニングラード州)生まれの物理学者。電気回路におけるキルヒホッフの法則、放射エネルギーについてのキルヒホッフの法則、反応熱についてのキルヒホッフの法則は、どれも彼によってまとめられた法則である。 グスタフ・キルヒホフは1824年、ケーニヒスベルク(現在のカリーニングラード)で生まれた。ケーニヒスベルクにあるケーニヒスベルク大学で学び、1850年にブレスラウ大学員外教授に就任した。 学生時代にオームの法則を拡張した電気法則を提唱。1849年に電気回路におけるキルヒホフの法則として纏め上げた。この法則は電気工学において広く応用されている。 1859年、黒体放射におけるキルヒホフの放射法則を発見した。 ロベルト・ブンゼンとともに、分光学研究に取り組み、セシウムとルビジウムを発見した。フラウンホーファーが発見した太陽光スペクトルの暗線(フラウンホーファー線)がナトリウムのスペクトルと同じ位置に見られることを明らかにし、分光学的方法により太陽の構成元素を同定できることを示した。 このほか音響学、弾性論に関しても研究を行った。.

新しい!!: ベッチ数とグスタフ・キルヒホフ · 続きを見る »

ソフトウェア工学

フトウェア工学(ソフトウェアこうがく、Software engineering)は、コンピュータのプログラム、およびその作成行為であるプログラミングを対象とした工学である。.

新しい!!: ベッチ数とソフトウェア工学 · 続きを見る »

複体

単体複体(たんたいふくたい、simplicial complex)(略して複体(ふくたい、complex)ということもある)とは、複数の単体を、同じ次元の面(部分単体)同士で貼り合わせてできる図形である。代数的位相幾何学における単体集合は単体複体と混同されやすいが、単体集合は単体複体の圏論的な抽象化であり、単体圏からの関手として定義される概念として区別されるべきである。むしろ単体複体の性質から、各々の単体はその頂点の集合で完全に決定され、複体を頂点全体の集合とその部分集合の族の組として組合せ論的に表示することができる。この様に組合せ論的に表示された複体を抽象単体複体と呼ぶ。.

新しい!!: ベッチ数と複体 · 続きを見る »

計算機科学

計算機科学(けいさんきかがく、computer science、コンピュータ科学)とは、情報と計算の理論的基礎、及びそのコンピュータ上への実装と応用に関する研究分野である。計算機科学には様々な下位領域がある。コンピュータグラフィックスのように特定の処理に集中する領域もあれば、計算理論のように数学的な理論に関する領域もある。またある領域は計算の実装を試みることに集中している。例えば、プログラミング言語理論は計算を記述する手法に関する学問領域であり、プログラミングは特定のプログラミング言語を使って問題を解決する領域である。.

新しい!!: ベッチ数と計算機科学 · 続きを見る »

調和微分形式

調和微分形式とは数学において曲面上の実 1-形式 ω として、ω とその共役 1-形式( ω*と書くことにすると)両方が閉形式のことをいう。.

新しい!!: ベッチ数と調和微分形式 · 続きを見る »

閉多様体

数学において、閉多様体 (closed manifold) とは、境界を持たないコンパクトな多様体のことである。境界が存在しえない文脈では、任意のコンパクト多様体が閉多様体である。 コンパクト多様体は、直感的な意味で、「有限」である。コンパクト性の基本的な性質により、閉多様体は連結閉多様体の有限個の非交和である。幾何学的トポロジーの最も基本的な目的の 1 つは、閉多様体がどのくらいあるかを理解することである。.

新しい!!: ベッチ数と閉多様体 · 続きを見る »

臨界点 (数学)

数学において,あるいはの可微分関数の臨界点(りんかいてん,critical point)あるいは(ていりゅうてん,stationary point)とは,微分が 0 あるいは未定義となる定義域内の任意の値である.に対して,臨界点はすべての偏微分が 0 になるような定義域内の値である.関数の臨界点における値は臨界値(りんかいち,critical value)である. この概念の興味は,関数が極値をとる点は臨界点であるという事実にある. この定義は と の間の可微分写像に拡張し,臨界点はこの場合ヤコビ行列の階数が最大でない点である.さらに,可微分多様体の間の可微分写像にも同様に拡張される.この場合,臨界点は とも呼ばれる. 特に, が陰方程式 で定義される平面曲線のとき, 軸に平行な 軸への射影の臨界点は の接線が 軸に平行な点,つまり,\frac(x,y).

新しい!!: ベッチ数と臨界点 (数学) · 続きを見る »

Tor関手

ホモロジー代数において、Tor 関手 (Tor functor, torsion functor) はテンソル積の関手の導来関手である。それらは最初一般に代数トポロジーにおいてと普遍係数定理を表現するために定義された。 特に R を環とし、R-Mod で左 R-加群の圏を、Mod-R で右 R-加群の圏を表す。R-Mod の加群 B をひとつ選んで固定する。Mod-R の対象 A に対し、T(A).

新しい!!: ベッチ数とTor関手 · 続きを見る »

捩れ (代数学)

抽象代数学において、捩れ(ねじれ、torsion)は、群の場合は、有限位数の元を言い、また環上の加群の場合は、環のある正則元によって零化される加群の元を言う。.

新しい!!: ベッチ数と捩れ (代数学) · 続きを見る »

捩れ部分群

アーベル群の理論において、アーベル群 A の捩れ部分群(ねじれぶぶんぐん、torsion subgroup) AT は A の部分群であって有限の位数をもつすべての元からなるものである。アーベル群 A が捩れ (torsion) 群(あるいは'''周期的''' (periodic) 群であるとは、A のすべての元の位数が有限であることで、torsion-free であるとは、単位元を除く A のすべての元の位数が無限であることである。 AT が加法で閉じていることの証明は加法の可換性によっている(例の節を見よ)。 A がアーベル群であれば、捩れ部分群 T は A の fully characteristic subgroup であり、剰余群 A/T は torsion-free である。すべての群をその捩れ部分群に送りすべての準同型をその捩れ部分群への制限に送る、アーベル群の圏から捩れ群の圏への共変関手が存在する。すべての群をその捩れ部分群による商に送りすべての準同型をその明らかな誘導写像(well-defined であることは容易に確かめられる)に送る、アーベル群の圏から torsion-free な群の圏への共変関手も存在する。 A が有限生成アーベル群であれば、その捩れ部分群 T と torsion-free な部分群の直和として書くことができる(しかしこれはすべての非有限生成アーベル群に対して正しくない)。A の捩れ部分群 S と torsion-free な部分群の直和としての任意の分解において、S は T と等しくなければならない(しかし torsion-free 部分群は一意的には定まらない)。これは有限生成アーベル群の分類において重要なステップである。.

新しい!!: ベッチ数と捩れ部分群 · 続きを見る »

標数

標数(ひょうすう、characteristic)は、環あるいは体の特徴を表す非負整数のひとつ。整域の標数は 0 または素数に限られる。.

新しい!!: ベッチ数と標数 · 続きを見る »

母関数

数学において、母関数(ぼかんすう、generating function; 生成関数)は、(自然数で添字付けられた)数列 に関する情報を内包した係数を持つ、形式的冪級数である。母関数は、一般線型回帰問題の解決のためにド・モアブルによって1730年に初めて用いられた。複数の自然数で添字付けられる数の配列(多重数列)の情報を取り込んだ多変数冪級数を同様に考えることもできる。 母関数には、通常型母関数、指数型母関数、ランベルト級数、ベル級数、ディリクレ級数 など様々なものがある。これらについては定義と例を後述する。原理的にはあらゆる列についてそれぞれの種類の母関数が存在する(ただし、ランベルト級数とディリクレ型は添字を 1 から始めることが必要)が、扱い易さについてはそれぞれの種類で相当異なるかもしれない。どの母関数が最も有効かは、その列の性質と解くべき問題の詳細に依存する。 母関数を、形式的冪級数に対する演算・操作を用いるなどして(級数の形ではなく)の式で表すこともよく行われる。このような母関数の表示は、母関数の不定元を x とすれば、四則演算、母関数のx に関する微分、他の母関数へ代入すること、などを行った結果として得られる。これらの操作は関数に対しても定義されるものであるし、結果として得られる式もやはり x の関数であるかのように見える。実際、母関数を x の(十分小さい)具体的な値で評価することのできる関数として解釈することができる場合も少なくない(このとき、母関数の冪級数表示は、母関数の閉じた形の式のテイラー級数と解釈される)のであり、それがこの式が「母関数」と呼ばれる所以でもある。しかし、形式的冪級数は x に何らかの数値を代入したときに収束するかどうかは問題にしないのであって、母関数についてそのような関数としての解釈が可能であるということは必ずしも要求されるものではないし、同様に x の関数として意味を持つ式がいずれも形式的冪級数に対して意味を持つわけではない。 慣例的に母「関数」と呼ばれてはいるが、始域から終域への写像という関数の厳密な意味に照らして言えば母関数は関数ではなく、今日的には生成級数(母級数)と呼ぶこともしばしばである。.

新しい!!: ベッチ数と母関数 · 続きを見る »

有理数

有理数(ゆうりすう、rational number) とは、二つの整数 a, b (ただし b は 0 でない)をもちいて a/b という分数で表せる数のことをいう。b.

新しい!!: ベッチ数と有理数 · 続きを見る »

数学的帰納法

数学的帰納法(すうがくてききのうほう、mathematical induction)は自然数に関する命題 が全ての自然数 に対して成り立っている事を証明するための、次のような証明手法である自然数の定義は を含む流儀とそうでない流儀があるが、ここでは後者を採用した。。.

新しい!!: ベッチ数と数学的帰納法 · 続きを見る »

普遍係数定理

代数トポロジーにおいて、普遍係数定理(ふへんけいすうていり、universal coefficient theorems)はホモロジー論とコホモロジー論の間の関係を確立する。例えば、位相空間 の整係数ホモロジー論と、任意のアーベル群 に係数をもつホモロジーは以下のように関連する。整係数ホモロジー群 は群 を完全に決定する。ここで はあるいはより一般の特異ホモロジー論でもよい: 結果自体は自由アーベル群のチェイン複体についてのホモロジー代数の純粋な成果である。結果の形は、Tor関手を使うという代償を払って、他の係数 を使うことができる形である。 例えば を に取って係数が modulo 2 であるようにすることは一般的である。これはホモロジーに 2-捩れがないことによって straightforward になる。極めて一般的に、結果は のベッチ数 と体 に係数をもつベッチ数 の間に成り立つ関係を示す。これらは異なるかもしれないが、 の標数がホモロジーに -捩れがある素数 であるときのみである。.

新しい!!: ベッチ数と普遍係数定理 · 続きを見る »

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »