ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

ベッセルフィルタ

索引 ベッセルフィルタ

ベッセルフィルタ(Bessel filter)は、電子工学や信号処理における線形フィルタの一種で、群遅延が最大限平坦(線形位相応答)であることが特徴である。ベッセルフィルタはクロスオーバー(高音域と低音域などの分離を行う回路)によく使われる。アナログのベッセルフィルタは通過帯域ではほぼ一定の群遅延を示すので、通過帯域の信号の波形をそのまま保つことができる。名称の由来は、ドイツの数学者フリードリヒ・ヴィルヘルム・ベッセル。 また、特定のフィルタ回路構成を指す用語ではなく、フィルタの応答特性を指す用語であるため、ベッセルフィルタ特性(あるいはベッセル特性)と呼ぶ場合もある。.

16 関係: 多項式伝達関数法信号処理チェビシェフフィルタバターワースフィルタローパスフィルタテイラー展開フリードリヒ・ヴィルヘルム・ベッセルフィルタ回路ベッセル関数コムフィルタ群遅延と位相遅延遮断周波数電子工学通過帯域楕円フィルタ

多項式

数学における多項式(たこうしき、poly­nomial)は、多数を意味するpoly- と部分を意味する -nomen あるいは nomós を併せた語で、定数および不定元(略式ではしばしば変数と呼ぶ)の和と積のみからなり、代数学の重要な対象となる数学的対象である。歴史的にも現代代数学の成立に大きな役割を果たした。 不定元がひとつの多項式は、一元多項式あるいは一変数多項式 と呼ばれ、不定元を とすれば のような形をしている。各部分 "", "", "", "" のことを項(こう、)と呼ぶ。一つの項だけからできている式を単項式 (monomial)、同様に二項式 (binomial)、三項式 (trinomial) などが、-nomial にラテン配分数詞を付けて呼ばれる。すなわち、多項式とは「多数」の「項」を持つものである。単項式の語が頻出であることに比べれば、二項式の語の使用はやや稀、三項式あるいはそれ以上の項数に対する語の使用はごく稀で一口に多項式として扱う傾向があり、それゆえ単項式のみ多項式から排他的に分類するものもある。また多項式のことを整式 (integral expression) と呼ぶ流儀もある。 多項式同士の等式として与えられる方程式は多項式方程式と呼ばれ、特に有理数係数の場合において代数方程式という。多項式方程式は多項式函数の零点を記述するものである。 不定元がふたつならば二元 (bivariate), 三つならば三元 (trivariate) というように異なるアリティを持つ多元多項式が同様に定義できる。算術あるいは初等代数学において、数の計算の抽象化として実数(あるいは必要に応じてより狭く有理数、整数、自然数)を代表する記号としての「文字」変数を伴う「」およびその計算を扱うが、それは大抵の場合多変数の多項式である。 本項では主として一元多項式を扱い、多元の場合にも多少触れるが、詳細は多元多項式の項へ譲る。.

新しい!!: ベッセルフィルタと多項式 · 続きを見る »

伝達関数法

伝達関数法(でんたつかんすうほう)とは、複素関数論(ラプラス変換など)を用いた制御系の解析法である。.

新しい!!: ベッセルフィルタと伝達関数法 · 続きを見る »

信号処理

信号処理(しんごうしょり、signal processing)とは、光学信号、音声信号、電磁気信号などの様々な信号を数学的に加工するための学問・技術である。 アナログ信号処理とデジタル信号処理に分けられる。 基本的には、信号から信号に変換するものであり、信号とは別の形式の情報を得るもの(例えば、カテゴリ分けや関連づけ、推論的な情報を得る認識や理解など)は含まれない。圧縮も含まれないことが多い。但し、認識や理解、圧縮の前段階としての信号の変換は信号処理と呼ばれる。そのため、信号処理はそれらの技術に対して非常に重要であるとともに関連が強い。なお、また入力と出力が同じ種類(物理量)の信号である場合(例えば入力と出力ともに同じ音圧である場合)には、フィルタリングとも呼ばれる。 信号処理の例としては、ノイズの載った信号から元の信号を推定するノイズ除去や、時間的な先の値を推定する予測、時間周波数解析などを行う直交変換、信号の特徴を得る特徴抽出、特定の周波数成分のみを得るフィルタなどがある。 高速フーリエ変換、ウェーブレット変換、畳み込み等のアルゴリズムがあり、以前はそれぞれ専用のハードウェアで処理していたが、近年ではDSPや汎用のハードウェアでソフトウェアで処理したり、FPGAによる再構成可能コンピューティングによって処理する方法が開発されつつある。 さまざまな応.

新しい!!: ベッセルフィルタと信号処理 · 続きを見る »

チェビシェフフィルタ

チェビシェフフィルタ(Chebyshev filter)は、フィルタの一種で、バターワースフィルタに比べてロールオフが急勾配で、通過帯域にリップル (en) がある場合(第一種)と除去帯域にリップルがある場合(第二種)がある。チェビシェフフィルタは、理想的なフィルタ特性と実装との間で誤差を最小化するという特徴を持つが、通過帯域にリップルがある。その数学的特性がチェビシェフ多項式から導き出されたものであることから、パフヌティ・チェビシェフの名を冠せられている。 チェビシェフフィルタには通過帯域のリップルがつきものであるため、方形波など高調波を含む信号については通過帯域の応答特性、特に群遅延特性が劣るチェビシェフフィルタの使用は難しい。一方、リップルは通過帯域におけるVSWR(電圧定在波比)を保証する作用があるため、他の回路に接続した際にバターワースフィルタなどよりも信号のあばれが少なくなる。 また、特定のフィルタ回路構成を指す用語ではなく、フィルタの応答特性を指す用語であるため、チェビシェフフィルタ特性(あるいはチェビシェフ特性)と呼ぶ場合もある。.

新しい!!: ベッセルフィルタとチェビシェフフィルタ · 続きを見る »

バターワースフィルタ

バターワースフィルタ(Butterworth filter)は、フィルタ回路設計の一種。通過帯域が数学的に可能な限り平坦な周波数特性となるよう設計されている。 バターワースフィルタは1930年、イギリスの技術者 スティーブン・バターワースが論文 "On the Theory of Filter Amplifiers" で発表した(Experimental Wireless and the Radio Engineer, vol.

新しい!!: ベッセルフィルタとバターワースフィルタ · 続きを見る »

ローパスフィルタ

想的なフィルタ回路の周波数特性(実際にはこのような周波数特性は取れない) ローパスフィルタ(、低域通過濾波器)とは、フィルタの一種で、なんらかの信号のうち、遮断周波数より低い周波数の成分はほとんど減衰させず、遮断周波数より高い周波数の成分を逓減させるフィルタである。ハイカットフィルタ等と呼ぶ場合もある。電気回路・電子回路では、フィルタ回路の一種である。 ローパスフィルタはハイパスフィルタと対称の関係にある。こういったフィルタには他にバンドパスフィルタとバンドストップフィルタがある。.

新しい!!: ベッセルフィルタとローパスフィルタ · 続きを見る »

テイラー展開

数学において、テイラー級数 (Taylor series) は関数のある一点での導関数たちの値から計算される項の無限和として関数を表したものである。そのような級数を得ることをテイラー展開という。 テイラー級数の概念はスコットランドの数学者ジェームズ・グレゴリーにより定式化され、フォーマルにはイギリスの数学者ブルック・テイラーによって1715年に導入された。0 を中心としたテイラー級数は、マクローリン級数 (Maclaurin series) とも呼ばれる。これはスコットランドの数学者コリン・マクローリンにちなんでおり、彼は18世紀にテイラー級数のこの特別な場合を積極的に活用した。 関数はそのテイラー級数の有限個の項を用いて近似することができる。テイラーの定理はそのような近似による誤差の定量的な評価を与える。テイラー級数の最初のいくつかの項として得られる多項式はと呼ばれる。関数のテイラー級数は、その関数のテイラー多項式で次数を増やした極限が存在すればその極限である。関数はそのテイラー級数がすべての点で収束するときでさえもテイラー級数に等しいとは限らない。開区間(あるいは複素平面の開円板)でテイラー級数に等しい関数はその区間上の解析関数と呼ばれる。.

新しい!!: ベッセルフィルタとテイラー展開 · 続きを見る »

フリードリヒ・ヴィルヘルム・ベッセル

フリードリヒ・ヴィルヘルム・ベッセル フリードリヒ・ヴィルヘルム・ベッセル(Friedrich Wilhelm Bessel, 1784年7月22日 - 1846年3月17日)はドイツの数学者、天文学者。 恒星の年周視差を発見し、ベッセル関数を分類したことで知られる(関数の発見者はダニエル・ベルヌーイである)。ヴェストファーレン地方のミンデンに生まれ、ケーニヒスベルク(現在のロシアのカリーニングラード)で癌のために没した。同じく数学者で天文学者でもあったカール・フリードリヒ・ガウスと同時代を生きた人物である。.

新しい!!: ベッセルフィルタとフリードリヒ・ヴィルヘルム・ベッセル · 続きを見る »

フィルタ回路

フィルタ回路(フィルタかいろ)とは、入力された電気信号に帯域制限をかけたり、特定の周波数成分を取り出すための電気回路(または電子回路)、つまりフィルタの役割をする電気回路のことを言う。濾波器(ろはき)ともいう。.

新しい!!: ベッセルフィルタとフィルタ回路 · 続きを見る »

ベッセル関数

ベッセル関数(ベッセルかんすう、Bessel function)とは、最初にスイスの数学者ダニエル・ベルヌーイによって定義され、フリードリヒ・ヴィルヘルム・ベッセルにちなんで名づけられた関数。円筒関数と呼ばれることもある。以下に示す、ベッセルの微分方程式におけるy(x)の特殊解の1つである。 上の式において、\alphaは、任意の実数である(次数と呼ばれる)。\alphaが整数nに等しい場合がとくに重要である。 \alpha及び-\alphaはともに同一の微分方程式を与えるが、慣例としてこれら2つの異なる次数に対して異なるベッセル関数が定義される(例えば、\alphaの関数としてなるべく滑らかになるようにベッセル関数を定義する、など)。 そもそもベッセル関数は、惑星軌道の時間変化に関するケプラー方程式を、ベッセルが解析的に解いた際に導入された。.

新しい!!: ベッセルフィルタとベッセル関数 · 続きを見る »

コムフィルタ

ムフィルタ(comb filter)は、信号にそれ自身を遅延させたものを追加することで干渉を生じさせるフィルタ回路の一種である。くし形フィルタまたはくし型フィルタとも。コムフィルタの周波数特性は一定間隔のスパイク状になり、図示すると櫛のように見える。.

新しい!!: ベッセルフィルタとコムフィルタ · 続きを見る »

群遅延と位相遅延

フィルタ回路において、入力波形と出力波形の位相差から遅延時間を計算する手法として、位相遅延を求める方法と、群遅延を求める方法がある。 波形にひずみが生じないようにするためには、できるかぎりフィルタ回路の遅延時間を一定にする必要がある。 この一例としてベッセルフィルタがある。.

新しい!!: ベッセルフィルタと群遅延と位相遅延 · 続きを見る »

遮断周波数

バターワースフィルタの周波数特性を表したボーデ図。遮断周波数が示してある。 遮断周波数(しゃだんしゅうはすう)またはカットオフ周波数(Cutoff frequency)とは、物理学や電気工学におけるシステム応答の限界であり、それを超える周波数を持つ入力エネルギーは減衰または反射する。典型例として次のような定義がある。.

新しい!!: ベッセルフィルタと遮断周波数 · 続きを見る »

電子工学

電子工学(でんしこうがく、Electronics、エレクトロニクス)は、電気工学の一部ないし隣接分野で、電気をマクロ的に扱うのではなく、またそのエネルギー的な側面よりも信号などの応用に関して、電子の(特に量子的な)働きを活用する工学である。なお、電気工学の意の英語 electrical engineering に対し、エレクトロニクス(electronics)という語には、明確に「工学」という表現が表面には無い。.

新しい!!: ベッセルフィルタと電子工学 · 続きを見る »

通過帯域

通過帯域(つうかたいいき)またはパスバンド(Passband)は、フィルタ回路が減衰させずに通過させる周波数または波長の範囲である。.

新しい!!: ベッセルフィルタと通過帯域 · 続きを見る »

楕円フィルタ

楕円フィルタ(Elliptic filter)またはカウアーフィルタ(Cauer filter)は、通過帯域と除去帯域で等リップル性(equiripple)を示すフィルタ回路の一種。各帯域のリップル量は個別に調整可能で、リップルの値が同じ同一次数の他のフィルタと比較すると、通過帯域から除去帯域への利得の変化が最も素早い。逆に通過帯域と除去帯域のリップルの個別調整をせず、成分変動に影響されないフィルタとして設計することもある。 除去帯域のリップルをほぼゼロにしたものを第一種チェビシェフフィルタと呼ぶ。通過帯域のリップルをほぼゼロにしたものを第二種チェビシェフフィルタと呼ぶ。両方のリップルをゼロにしたフィルタはバターワースフィルタとなる。 ローパス楕円フィルタの利得を各周波数 ω の関数として表すと次のようになる。 ここで Rn はn次楕円有理関数(チェビシェフ有理関数)、\omega_0 は遮断周波数、\epsilon はリップル係数、\xi は選択係数である。 リップル係数の値で通過帯域のリップルが決まり、リップル係数と選択係数の組み合わせで除去帯域のリップルが決まる。.

新しい!!: ベッセルフィルタと楕円フィルタ · 続きを見る »

ここにリダイレクトされます:

ベッセル特性

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »