ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
インストール
ブラウザよりも高速アクセス!
 

ブレイド群

索引 ブレイド群

数学において、 本の糸のブレイド群(braid group)(組みひも群とも呼ぶ)は、と記し、直感的には幾何学的に描かれる群であり、ある意味で 対称群 を一般化する。ここに は自然数であり、 であれば、 は(infinite group)である。ブレイド群は、結び目をあるブレイド(組みひも)の閉じた形として表現することができるので、結び目理論に応用を持つ。 n, is a group which has an intuitive geometrical representation, and in a sense generalizes the symmetric group.

62 関係: 基本群半直積単位円板単位元同型写像完備距離空間完全系列対称群射影極限巡回群帰納極限三葉結び目一般線型群代数的位相幾何学位相空間位数 (群論)忠実表現モノドロミーモノイド圏ローラン級数ヒルベルト立方体テンソル積フランク・ウィルチェックホモトピーアレクサンダーの定理アーベル群アドルフ・フルヴィッツアニュラスエミール・アルティンコクセター群内部自己同型商群全射全順序剰余類群 (数学)群の生成系群の表現群の表示群作用群準同型結び目結び目 (数学)結び目理論結び目群組み紐 (数学)行列群複素数部分群量子ホール効果...自由群自然数自明群逆元GAP (数式処理システム)Permutation暗号理論捩れ (代数学)正規化 (項書き換え)正規部分群数学数理物理学 インデックスを展開 (12 もっと) »

基本群

数学、特に代数トポロジーにおいて、基本群(きほんぐん、fundamental group)とは、ある固定された点を始点と終点にもつふたつのループが互いに連続変形可能かを測る点付き位相空間に付帯する群である。直観的には、それは位相空間にある穴についての情報を記述している。基本群はホモトピー群の最初で最も単純な例である。基本群は位相不変量である。つまり同相な位相空間は同じ基本群を持っている。 基本群は被覆空間の理論を用いて研究することができる。なぜなら、基本群は元の空間に付帯する普遍被覆空間の被覆変換群に一致するからである。基本群のアーベル化は、その空間の第一ホモロジー群と同一視することできる。位相空間が単体複体に同相のとき、基本群は群の生成子と関係式のことばで明示的に記述することができる。 基本群はアンリ・ポアンカレによって1895年に論文"Analysis situs"で定義された。ベルンハルト・リーマンとポアンカレとフェリックス・クラインの仕事でリーマン面の理論において基本群の概念が現れた。基本群は閉曲面の位相的な完全な分類を提供するだけでなく、複素函数のモノドロミー的性質の記述もする。.

新しい!!: ブレイド群と基本群 · 続きを見る »

半直積

群論において、群の半直積(はんちょくせき、semidirect product)とは、ふたつの群から新たな群を作り出す方法の一種。 群の直積の一般化であり、通常の直積をその特別な場合として含む。.

新しい!!: ブレイド群と半直積 · 続きを見る »

単位円板

数学における平面上の点 P の周りの(あるいは P を中心とする)単位開円板(たんいかいえんばん)もしくは開単位円板(かいたんいえんばん、open unit disk/disc)とは、点 P からの距離が 1 より小さい点全体の成す集合 を言う。同様に点 P を中心とする単位閉円板(たんいへいえんばん)もしくは閉単位円板(へいたんいえんばん、closed unit disk)とは、点 P からの距離が 1 以下となるような点の軌跡 を言う。単位円板は円板や単位球体の特別な場合である。 特段の限定なしに単に単位円板と言ったときは、原点中心の通常のユークリッド計量に関する開円板 D_1(0) を意味するのが普通である。これは原点を中心とする半径 1 の円周が囲む領域の内部である。またガウス平面 C を考えれば、絶対値が 1 より小さい複素数全体の成す集合とも同一視される。C の部分集合と見たときの単位円板はしばしば \mathbb で表される。.

新しい!!: ブレイド群と単位円板 · 続きを見る »

単位元

数学、とくに抽象代数学において、単位元(たんいげん, )あるいは中立元(ちゅうりつげん, )は、二項演算を備えた集合の特別な元で、ほかのどの元もその二項演算による単位元との結合の影響を受けない。.

新しい!!: ブレイド群と単位元 · 続きを見る »

同型写像

数学において,同型写像(isomorphismfrom the Ancient Greek: ἴσος isos "equal", and μορφή morphe "form" or "shape")あるいは単に同型とは,は準同型写像あるいは射であって,逆射を持つものである逆関数ではない..2つの数学的対象が同型 (isomorphic) であるとは,それらの間に同型写像が存在することをいう.自己同型写像は始域と終域が同じ同型写像である.同型写像の興味は2つの同型な対象は写像を定義するのに使われる性質のみを使って区別できないという事実にある.したがって同型な対象はこれらの性質やその結果だけを考える限り同じものと考えてよい. 群や環を含むほとんどの代数的構造に対して,準同型写像が同型写像であることと全単射であることは同値である. 位相幾何学において,射とは連続写像のことであるが,同型写像は同相写像あるいは双連続写像とも呼ばれる.解析学において,射は可微分関数であり,同型写像は微分同相とも呼ばれる. 標準的な同型写像 (canonical isomorphism) は同型であるようなである.2つの対象が標準的に同型 (canonically isomorphic) であるとは,それらの間に標準的な同型写像が存在することをいう.例えば,有限次元ベクトル空間 から二重双対空間への標準的な写像は標準的な同型写像である.一方, は双対空間に同型であるが,一般には標準的にではない. 同型写像は圏論を用いて形式化される.ある圏の射 が同型射であるとは,両側逆射を持つことをいう,すなわち,その圏における別の射 があって, かつ となる,ただし と はそれぞれ と の恒等射である..

新しい!!: ブレイド群と同型写像 · 続きを見る »

完備距離空間

位相空間論あるいは解析学において、距離空間 M が完備(かんび、complete)またはコーシー空間(コーシーくうかん、Cauchy space)であるとは、M 内の任意のコーシー点列が M に属する極限を持つ(任意のコーシー点列が収束する)ことを言う。 直観的に言えば、空間が完備であるというのは(その内側や境界において)点を追いかけると「空間からはみ出してしまう」ということが起きないということである。例えば、有理数全体の成す集合 Q は完備でないが、これは例えば 2 の正の平方根は、それに収束する有理コーシー数列が構成できるにも拘らず、有理数ではないので Q からははみ出してしまう(後述)。「こういった抜けを全て埋めてしまう」という考えは後述するように、空間の完備化 (completion) として常に可能である。.

新しい!!: ブレイド群と完備距離空間 · 続きを見る »

完全系列

ホモロジー代数における完全系列(かんぜんけいれつ、exact sequence)あるいは完全列(かんぜんれつ)とは、環上の加群や群などの系列で各射の像空間が次の射の核空間と正確に合致するという意味で完全であるものをいう。.

新しい!!: ブレイド群と完全系列 · 続きを見る »

対称群

対称群(たいしょうぐん、)とは、「ものを並べ替える」という操作を元とする群である。この場合の「ものを並べ替える」操作のことを置換(ちかん、)という。数学の議論の様々な場面で「番号づけられて並んでいるものを入れ替える」「入れ替えの可能性すべてを調べる」ことが問題となり、対称群はそのような議論を定式化するために用いられる。置換のうちで特別なものだけを集めて得られる群は置換群(ちかんぐん、)と呼ばれる。置換群が空間 の変換群として与えられているとき、 の元 の置換は で与えられる の部分群の分だけ潰れているが、これは のなかに と「同じ」元が複数含まれている場合に対応しており、 の中でこれらを区別することができれば の元の置換から対称群 が回復される。.

新しい!!: ブレイド群と対称群 · 続きを見る »

射影極限

数学における逆極限(ぎゃくきょくげん、inverse limit)あるいは射影極限(しゃえいきょくげん、projective limit)は、正確な言い方ではないが、いくつかの関連する対象を「貼合せる」ような構成法であり、貼合せの具体的な方法は対象の間の射によって決められている。逆極限は任意の圏において考えることができる。.

新しい!!: ブレイド群と射影極限 · 続きを見る »

巡回群

群論における巡回群(じゅんかいぐん、cyclic group、monogenous group)とは、ただ一つの元で生成される群(単項生成群)のことである。ここで群が「ただ一つの元で生成される」というのは、その群の適当な元 g をとれば、その群のどの元も(群が乗法的に書かれている場合は)g の整数冪として(群が加法的に書かれている場合は g の整数倍として)表されるということであり、このような元 g はこの群の生成元 (generator) あるいは原始元 (primitive) と呼ばれる。.

新しい!!: ブレイド群と巡回群 · 続きを見る »

帰納極限

数学における順極限(じゅんきょくげん)または直極限(ちょくきょくげん、direct limit)もしくは帰納極限(きのうきょくげん、inductive limit)は、「対象の向き付けられた族」の余極限である。本項ではまず群や加群などの代数系に対する帰納極限の定義から始めて、あらためて任意の圏において通用する一般的な定義を与える。.

新しい!!: ブレイド群と帰納極限 · 続きを見る »

三葉結び目

三葉結び目(さんようむすびめ/みつばむすびめ、Trefoil knot)またはクローバー結び目とは、位相幾何学の一分野である結び目理論において、自明でない最も単純な結び目である。ロープワークでいうところの止め結びに相当する。 名前の由来は植物のクローバー。三葉結び目をあしらったデザインの彫刻やロゴなどは多く、例えばウェールズ大学の数学科は彫刻家のジョン・ロビンソンが作成した三葉結び目状の彫刻を学科のシンボルとしている。.

新しい!!: ブレイド群と三葉結び目 · 続きを見る »

一般線型群

数学において、一般線型群(いっぱんせんけいぐん、general linear group)とは線型空間上の自己同型写像のなす群のこと。あるいは基底を固定することで、正則行列のなす群のことを指すこともある。.

新しい!!: ブレイド群と一般線型群 · 続きを見る »

代数的位相幾何学

代数的位相幾何学(だいすうてきいそうきかがく、英語:algebraic topology、代数的トポロジー)は代数的手法を用いる位相幾何学の分野のことをいう。 古典的な位相幾何学は、図形として取り扱い易い多面体を扱っていたが、1900年前後のポワンカレの一連の研究を契機として20世紀に発展した。 ポワンカレは 1895年に出版した "Analysis Situs" の中で、ホモトピーおよびホモロジーの概念を導入した。これらはいまや代数的位相幾何学の大きな柱であると考えられている。 多様体、基本群、ホモトピー、ホモロジー、コホモロジー、ファイバー束などの、位相空間の不変量として代数系を対応させ、位相的性質を代数的性質に移して研究する..

新しい!!: ブレイド群と代数的位相幾何学 · 続きを見る »

位相空間

数学における位相空間(いそうくうかん, topological space)とは、集合にある種の情報(位相、topology)を付け加えたもので、この情報により、連続性や収束性といった概念が定式化可能になる。 位相空間論は位相空間の諸性質を研究する数学の分野である。.

新しい!!: ブレイド群と位相空間 · 続きを見る »

位数 (群論)

数学の分野である群論において、m.

新しい!!: ブレイド群と位数 (群論) · 続きを見る »

忠実表現

数学、特に表現論という抽象代数学の一分野において、群 のベクトル空間 上の忠実表現(ちゅうじつひょうげん、faithful representation) とは、 の異なる元 が異なる線型写像 によって表現される線型表現のことである。 より抽象的な言葉では、これが意味するのは群準同型 が単射であるということである。 注意: の体 上の表現は事実上 加群と同じである( は群 の群環を表す)が、 の忠実表現が群環の忠実加群であるとは限らない。実は任意の忠実 加群は の忠実表現であるが、逆は成り立たない。例えば対称群 の置換行列による 次元の自然表現を考えると、これは確かに忠実であるが、群の位数は である一方 行列の全体は 次元のベクトル空間をなすので、 が 以上であれば、次元勘定により( だから)置換行列の間に線型独立性が生じなければならず、したがって群環上の加群は忠実ではない。.

新しい!!: ブレイド群と忠実表現 · 続きを見る »

モノドロミー

数学では、モノドロミー (monodromy) は、解析学、代数トポロジー、代数幾何学や微分幾何学の観点から特異点の周りで対象がどのように振舞うかを研究する。名前が意味しているように、モノドロミーの基本的な意味は、「ひとりで回る」という意味である。被覆写像と被覆写像の分岐点への退化とは密接に関係している。モノドロミー現象が生ずることは、定義したある函数が一価性に失敗することを意味し、特異点の周りを回る経路を動くことである。このモノドロミーの失敗は、モノドロミー群を定義することによりうまく測ることができる。モノドロミー群は、「回る」ことに伴い起きることをエンコードするデータに作用する群である。.

新しい!!: ブレイド群とモノドロミー · 続きを見る »

モノイド圏

数学におけるモノイド圏(モノイドけん、monoidal category; モノイド的圏、モノイダル圏)あるいはテンソル圏(テンソルけん、tensor category)は、(自然同型の違いを除いて結合的な と、 について(再び自然同型の違いを除いて)左および右単位元となる対象 を備えた圏 である。この圏における自然同型は、関連する全ての図式を可換にすることを保証した(一貫性条件、整合条件)に従わなければならない。したがって、モノイド圏は抽象代数におけるモノイドの圏論的な緩い類似物である。 ベクトル空間、アーベル群、-加群、-多元環などの間に定義される通常のテンソル積は、それぞれの概念に付随する圏にモノイド構造を与える。ゆえにモノイド圏をこれら、あるいは他の例の一般化として見ることもできる。 圏論において、モノイド圏はモノイド対象の概念とそれに付随する作用を定義する。また、豊穣圏を定義する際にも使われる。 モノイド圏は圏論以外の分野において多数の応用を持つ。直観的線型論理の multiplicative fragment のモデルを定義し、物性物理学においてトポロジカル秩序相の数学的な基盤を与え、は場の量子論やひも理論に応用をもつ。.

新しい!!: ブレイド群とモノイド圏 · 続きを見る »

ローラン級数

ーラン級数(ローランきゅうすう、Laurent series)とは負冪の項も含む形での冪級数としての関数の表示のことである。テイラー級数展開できない複素関数を表示する場合に利用される。ローラン級数の名は、最初の発表が1843年にピエール・アルフォンス・ローランによってなされたことに由来する。ローラン級数の概念自体はそれより先の1841年にカール・ワイエルシュトラスによって発見されていたが公表されなかった。 特定の点 ''c'' および閉曲線 γ に関して定義されたローラン級数。 積分路である γ は赤で塗ったアニュラスの内側に載っており、アニュラスの内側で ''f''(''z'') は正則である.

新しい!!: ブレイド群とローラン級数 · 続きを見る »

ヒルベルト立方体

数学において、ヒルベルト立方体(Hilbert cube)は位相空間のひとつであり、トポロジーにおけるいくつかのアイデアの示唆的な例を与える。名称はダフィット・ヒルベルトに因む。多くの興味のある位相空間はヒルベルト立方体に埋め込むことができる。すなわちヒルベルト立方体の部分空間と見做すことができる(後述)。.

新しい!!: ブレイド群とヒルベルト立方体 · 続きを見る »

テンソル積

数学におけるテンソル積(テンソルせき、tensor product)は、線型代数学で多重線型性を扱うための線型化を担う概念で、既知のベクトル空間・加群など様々な対象から新たな対象を作り出す操作の一つである。そのようないずれの対象に関しても、テンソル積は最もな双線型乗法である。 共通の体 上の二つの ベクトル空間 のテンソル積 (基礎の体 が明らかな時には とも書く)はふたたびベクトル空間を成す。ベクトル空間のテンソル積を繰り返して得られるテンソル空間は物理的なテンソルを数学的に定式化する。テンソル空間に種々の積を入れてさまざまな多重線型代数・クリフォード代数が定式化されるが、その基本となる演算がテンソル積である。.

新しい!!: ブレイド群とテンソル積 · 続きを見る »

フランク・ウィルチェック

フランク・ウィルチェック(Frank Wilczek、1951年5月15日 - )は、ポーランド、イタリア系のアメリカ合衆国の物理学者。ニューヨーク州出身。シカゴ大学、プリンストン大学で学ぶ。プリンストン大を経て1980年よりカリフォルニア大学サンタバーバラ校教授、2000年よりマサチューセッツ工科大学教授を歴任。 2004年デイビッド・グロス 、H. デビッド・ポリツァー とともに「強い相互作用の理論における漸近的自由性の発見」の功績によりノーベル物理学賞を受賞した。 1973年にプリンストン大学で, デイビッド・グロスとともに漸近的自由性を発見した。素粒子物理学における漸近的自由性とは、素粒子間の「強い相互作用」は、近距離ないし高エネルギー下では相互作用が弱くなるという性質で、陽子や中性子の構成要素とされるクォークが単独で観測できないことなどを説明する量子色力学の理論である。H・デイヴィッド・ポリツァーの論文とウィルチェックらの論文がPhysical Review Lettersの同じ号に掲載され、公式には、3人が同時に漸近自由性を発見したことになった。.

新しい!!: ブレイド群とフランク・ウィルチェック · 続きを見る »

ホモトピー

数学におけるホモトピー (homotopy)とは、点や線や面などの幾何学的対象、あるいはそれらの間の連続写像が連続的に移りあうということを定式化した位相幾何学における概念のひとつである。位相幾何学では、2 つの対象 A と X との関係のうち、連続的な変形によって保たれるものを問題とすることが多い。これらの関係はふつう連続写像 A → X を通して定義され、ホモトピーの概念は連続的に変形する連続写像の族によって定式化される。ホモトピー的な種々の不変量は位相幾何学の研究における基本的な道具となる。 考察している幾何学的対象に「穴」が開いていれば、端を固定された曲線はそれを越えて連続的に変形することができない。したがって、ホモトピーによって「穴」の有無や、単純な構成要素に分解したときのそれらの組み合わせ的なつながり具合といった構造を調べることができる。ホモトピーが威力を発揮するのは、空間や写像といった幾何学的な対象に対し群や準同型などという代数的な対象を対応づけることであり、またそのような代数的な対象がしばしばもとの幾何学的な対象よりも単純化されているということにある。 このように、代数的な道具によって空間と写像の位相的性質を調べるという方法をとる幾何学は、代数的位相幾何学と呼ばれる。.

新しい!!: ブレイド群とホモトピー · 続きを見る »

アレクサンダーの定理

数学において、アレクサンダーの定理(Alexander's theorem)は、すべての結び目、あるいは絡み目は閉じたブレイドとして表現することができるという定理である。定理の命名は、(J. W. Alexander)に因んでいる。 (closed braid)は、最初はアレクサンダーにより結び目理論のツールとして考え出された。このことから結び目とブレイドに関する 2つの次のような基本的な問題を直接、定式化することができる。第一に、 アレクサンダーの定理 は、この問題への肯定的な答えを与える。結び目とブレイドの間の対応が1対1でないことは明らかであり(たとえば、共役ブレイドは同値な結び目をもたらす)、このことから第二の問題が自然に導かれる。 この問題へ答えるのが、マルコフの定理であり、任意の 2つのブレイドを関係つける「移動」(move)を与える。.

新しい!!: ブレイド群とアレクサンダーの定理 · 続きを見る »

アーベル群

数学、とくに抽象代数学におけるアーベル群(アーベルぐん、abelian group)または可換群(かかんぐん、commutative group)は、群演算が可換な群、すなわちどの二つの元の積も掛ける順番に依らず定まる群を言う。名称は、ノルウェーの数学者ニールス・アーベルに因む。 アーベル群は環や体、環上の加群やベクトル空間といった抽象代数学の概念において、その基礎となる加法に関する群(加法群)としてしばしば生じる。任意の抽象アーベル群についても、しばしば加法的な記法(例えば群演算は "+" を用いて表され、逆元は負符号を元の前に付けることで表す)が用いられ、その場合に用語の濫用で「加法群」と呼ばれることがある。また任意のアーベル群は整数全体の成す環 上の加群とみることができ、その意味でやはり用語の濫用だがアーベル群のことを「加群」と呼ぶこともある。 一般に可換群はに比べて著しく容易であり、とくに有限アーベル群の構造は具さに知られているが、それでも無限アーベル群論はいまなお活発な研究領域である。.

新しい!!: ブレイド群とアーベル群 · 続きを見る »

アドルフ・フルヴィッツ

アドルフ・フルヴィッツ(1880年から1890年頃) アドルフ・フルヴィッツ(Adolf Hurwitz, 1859年3月26日 - 1919年11月18日)はドイツのユダヤ人数学者。 整数論、代数学、代数幾何学で業績がある。はじめミュンヘン大学でクライン、次にベルリン大学でクンマー、ワイエルシュトラス、クロネッカー等の当時を代表する数学者たちの講義に出席しドイツ数学を学んだ。 クラインに師事するために、一度ミュンヘン大学に戻り、クラインがライプツィヒ大学に異動するのに伴いライプツィヒへ、そこでクラインの指導のもと楕円モジュラー関数に関する論文で博士号を取得。 ゲッティンゲン大学を経てリンデマン(円周率\piが超越数となることの証明で著名)に誘われケーニヒスベルク大学へ。 ケーニヒスベルク大学時代にダフィット・ヒルベルトとヘルマン・ミンコフスキーを育てたことも有名。その後スイス連邦工科大学チューリヒ校の教授。 業績として、リーマン面に関する基礎的な貢献、代数曲線の種数に関するリーマン・フルヴィッツの公式。フルヴィッツのゼータ関数の発見。虚数乗法を持つ楕円モジュラー関数において非常に重要な数であるフルヴィッツ数の構成など。 楕円モジュラー関数と虚数乗法論における貢献が大きい。.

新しい!!: ブレイド群とアドルフ・フルヴィッツ · 続きを見る »

アニュラス

数学において、アニュラス(annulus, ラテン語で「小さい環」を意味する)あるいは円環とは、輪の形をした対象、特に 2 つの同心円によって囲まれた領域である。 開アニュラスは円柱側面(円筒) や に同相である。 アニュラスの面積は半径 の大きい円の面積から半径 の小さい円の面積を引いたものである: アニュラスの面積はアニュラスの中に完全に置ける最長の線分の長さ(添付図の )として得られる。これはピタゴラスの定理によって証明できる。アニュラスの中に完全に置ける最長の線分は小さい円に接し、その点における半径と直角をなす。したがって と は斜辺 の直角三角形の残りの辺の長さであり、面積は次で与えられる: 面積は微分積分学によっても計算できる。アニュラスを幅 、面積 の無限個の無限小アニュラスに分割し、 から まで積分する: ラジアンに対する "扇形"(円環扇形)の面積は.

新しい!!: ブレイド群とアニュラス · 続きを見る »

エミール・アルティン

ミール・アルティン(Emil Artin, 1898年3月3日 - 1962年12月20日 )は、オーストリア出身でのちにドイツ、アメリカ合衆国で活躍した数学者。20世紀を代表する数学者の一人といえる。での業績で著名で、類体論やL-函数の構築に貢献した。群、環、体論にも優れた業績を残している。 同じく数学者のは息子である。ドイツのハンブルクでキャリアを積んでいたが、妻がユダヤ系のためナチスに追われ、1937年アメリカに移住した。1938年から1946年まではインディアナ大学で、1946年から1958年まではプリンストン大学で教鞭をとった。戦後、再びハンブルクに戻った後は、1962年に死亡するまで、そこで働いた。 による抽象代数学の手法は、エミー・ネーターだけでなくアルティンにも部分的に由来するといわれている。弟子には、サージ・ラング、ジョン・テイトなどがいる。.

新しい!!: ブレイド群とエミール・アルティン · 続きを見る »

コクセター群

数学においてコクセター群(コクセターぐん、Coxeter group)とは鏡映変換で表示できる抽象群のことである。ハロルド・スコット・マクドナルド・コクセターに因んで名づけられた。有限コクセター群は何らかのユークリッド鏡映群(たとえば一般次元正多胞体の対称変換群など)になっている。もちろん、すべてのコクセター群が有限群とは限らないし、すべてのコクセター群をユークリッド的な鏡映や対称変換として記述できるわけでもない。コクセター群は鏡映群の抽象化として導入され、有限コクセター群の分類は完了している 。 コクセター群は数学のいくつもの分野に現れる。一般次元正多胞体の対称変換群や単純リー代数のワイル群は有限コクセター群の例であり、ユークリッド平面や双曲平面の正則三角形分割 (regular tessellation) に対応する三角群や無限次元カッツ-ムーディ代数のワイル群は無限コクセター群の例である。 コクセター群に関する標準的な文献としては や などがある。.

新しい!!: ブレイド群とコクセター群 · 続きを見る »

内部自己同型

抽象代数学において、内部自己同型写像 (inner automorphism) は、ある操作をして、次に別の操作をして、次に最初の操作の逆をするような写像である。記号では、f^ \circ g \circ f (X) のように書ける。最初の行動と後に続くその逆の行動は、全体として得る結果を変えることもあれば(「傘をさして、雨の中を歩いて、傘をとじる」というのは単に「雨の中を歩く」のとは異なる結果になる)、変えないこともある(「左手の手袋を外し、右手の手袋を外し、左手の手袋をつける」のは「右手の手袋のみを外す」のと同じ結果になる)。 より正確には、群 の内部自己同型写像 は、 の任意の元 に対し によって定義される写像である。ここで a は G の与えられた固定された元であり、群の元の作用は右に起こると考える(なのでこれを読むとすれば「a かける x かける a−1」ということになる)。 元 を一つ固定して考えるとき、元 を の による共軛 (conjugate) (あるいは は によって と共軛である)と言い、 から を得る操作 を の による共役変換 (conjugation) または相似変換 (similarity transformation) と呼ぶ(共役類も参照)。また適当な によって の形に書けるような元を総称して の共軛元 (conjugate element) と呼ぶ。 1 つの元による共役が別の 1 つの元を変えない場合(上の「手袋」の場合)と共役によって新しい元が得られる場合(「傘」の場合)を区別することはしばしば興味の対象となる。 事実、 と言うことと と言うことは同値である。したがって、恒等写像でない内部自己同型の存在と個数は、群における交換法則の成り立たなさを測るようなものである。.

新しい!!: ブレイド群と内部自己同型 · 続きを見る »

商群

数学において,商群(しょうぐん,quotient group, factor group)あるいは剰余群,因子群とは,群構造を保つ同値関係を用いて,大きい群から似た元を集めて得られる群である.例えば,n を法とした加法の巡回群は,整数から,差が の倍数の元を同一視し,そのような各類(合同類と呼ばれる)に1つの実体として作用する群構造を定義することによって得られる.群論と呼ばれる数学の分野の一部である. 群の商において,単位元の同値類はつねにもとの群の正規部分群であり,他の同値類たちはちょうどその正規部分群の剰余類たちである.得られる商は と書かれる,ただし はもとの群で は正規部分群である.(これは「(ジーモッドエヌ)」と読まれる."mod" は modulo の略である.) 商群の重要性の多くはその準同型との関係に由来する.第一同型定理は任意の群 の準同型による像はつねに のある商と同型であると述べている.具体的には,準同型 による の像は と同型である,ただし は の核 を表す. 商群の双対概念は部分群であり,これらが大きい群から小さい群を作る2つの主要な方法である.任意の正規部分群 は,大きい群から部分群 の元の間の差異を除去して得られる,対応する商群を持つ.圏論では,商群は商対象の例であり,これは部分対象の双対である.商対象の他の例は,商環,商線型空間,商位相空間,商集合を参照..

新しい!!: ブレイド群と商群 · 続きを見る »

全射

数学において、写像が全射的(ぜんしゃてき、surjective, onto)であるとは、その終域となる集合の元は何れもその写像の像として得られることを言う。即ち、集合 から集合 への写像 について、 の各元 に対し となるような の元 が(一般には複数あってもよいが)対応させられるとき、写像 は全射 (surjection, onto mapping/function) であるという。全写(あるいは全写像)とも書く。 全射(および単射、双射)の語は20世紀フランスの数学結社ブルバキ(1935年以降『数学原論』シリーズを刊行している)により導入されたものである。接頭辞 sur- はフランス語で「上の」を意味し、写像の始域が終域全体をすっぽり覆い尽くすように写し込まれるイメージを反映したものになっている。sur, in, bi, jection いずれもラテン語源である。.

新しい!!: ブレイド群と全射 · 続きを見る »

全順序

数学における線型順序(せんけいじゅんじょ、linear order)、全順序(ぜんじゅんじょ、total order)または単純順序(たんじゅんじゅんじょ、simple order)は、推移的、反対称かつ完全な二項関係を言う。集合と全順序を組にしたものは、全順序集合 (totally ordered set), 線型順序集合 (linearly ordered set), 単純順序集合 (simply ordered set) あるいは鎖 (chain) と呼ばれる。 即ち、集合 X が関係 ≤ によって全順序付けられるとき、X の任意の元 a, b, c に対して、以下の条件 が満足される。 反対称性によって a < b でも b < a でもあるような不確定な状態は排除される。完全性を持つ関係は、その集合の任意の二元がその関係でであることを意味する。これはまた、元を直線に並べた図式によってその集合が表せるということでもあり、それは「線型」順序の名の由来である。また完全性から反射性 (a ≤ a) が出るから、全順序は半順序の公理を満たす。半順序は(完全性の代わりに反射性のみが課されるという意味で)全順序よりも弱い条件である。与えられた半順序を拡張して全順序をえることは、半順序のと呼ばれる。.

新しい!!: ブレイド群と全順序 · 続きを見る »

剰余類

数学、特に群論における剰余類(じょうよるい、residue class)あるいは傍系(ぼうけい、coset; コセット)とは、特定の種類の同値関係に関する同値類である。.

新しい!!: ブレイド群と剰余類 · 続きを見る »

群 (数学)

数学における群(ぐん、group)とは最も基本的と見なされる代数的構造の一つである。群はそれ自体興味深い考察対象であり、群論における主要な研究対象となっているが、数学や物理学全般にわたってさまざまな構成に対する基礎的な枠組みを与えている。.

新しい!!: ブレイド群と群 (数学) · 続きを見る »

群の生成系

抽象代数学において、群の生成系、生成集合 (generating set of a group) は部分集合であって群のすべての元が(群演算のもとで)その部分集合の有限個の元とそれらの逆元の結合として表現できるものである。 言い換えると、S が群 G の部分集合であれば、、S で生成される部分群 (subgroup generated by S)、は S のすべての元を含む G の最小の部分群である、すなわち S のすべての元を含む部分群すべてに渡る共通部分である。同じことだが、<S> は S の元とそれらの逆元の有限積として書ける G のすべての元からなる部分群である。 G.

新しい!!: ブレイド群と群の生成系 · 続きを見る »

群の表現

数学において、群の表現(ぐんのひょうげん、group representation)とは、抽象的な群 の元 に対して具体的な線形空間 の正則な線形変換としての実現を与える準同型写像 のことである。線型空間 の基底を取ることにより、 をより具体的な正則行列として表すことができる。.

新しい!!: ブレイド群と群の表現 · 続きを見る »

群の表示

数学のとくに群論における、生成元と基本関係による群の表示(ぐんのひょうじ、presentation of group)とは、群をその生成元と生成元の間に成り立つ関係によって特定することを言う。一般に群はある自由群の全射準同型像なので必ず表示を持つが、それは一意的ではない。.

新しい!!: ブレイド群と群の表示 · 続きを見る »

群作用

数学における群作用(ぐんさよう、group action)は、群を用いて物体の対称性を記述する方法である。.

新しい!!: ブレイド群と群作用 · 続きを見る »

群準同型

数学、特に群論における群の準同型写像(じゅんどうけいしゃぞう、group homomorphism)は群の構造を保つ写像である。準同型写像を単に準同型とも呼ぶ。.

新しい!!: ブレイド群と群準同型 · 続きを見る »

結び目

結び目(むすびめ)とは、一般に紐や糸を結び合わせたところ、結んで作った瘤(こぶ)のことである。.

新しい!!: ブレイド群と結び目 · 続きを見る »

結び目 (数学)

数学の特に低次元位相幾何学における結び目(むすびめ、knot; 結び糸)は、円周 の三次元ユークリッド空間 への埋め込みを、適当なホモトピーの違いを除いて考えるものである。このような数学における標準的な結び目の概念と、日常的な概念としての結び目との間の著しい違いは、数学的な結び目は閉曲線—つまり、結んだり解いたりするための「端」が存在しない—となっている点である。また、数学的な結び目に摩擦や厚みと言った物理学的性質も持っていない(そのような性質を勘案した結び目の数学的定義が無いわけではないが)。また、より高次化した の への埋め込み—特に、 のとき—をも「結び目」と呼ぶことがある。結び目を研究する数学の分野は結び目理論と呼ばれ、グラフ理論にも多くの単純な関係がある。.

新しい!!: ブレイド群と結び目 (数学) · 続きを見る »

結び目理論

結び目理論(むすびめりろん、knot theory)とは、紐の結び目を数学的に表現し研究する学問で、低次元位相幾何学の1種である。組合せ的位相幾何学や代数的位相幾何学とも関連が深い。.

新しい!!: ブレイド群と結び目理論 · 続きを見る »

結び目群

数学において、結び目とは、1次元円周の3次元ユークリッド空間の中への埋め込みのことである。結び目 K の結び目群 (knot group) とは、R3 における K の結び目補空間の基本群 として定義される。 他にも結び目を3次元球面の中へ埋め込んで考えることもあり、その場合、結び目群は、S3 における結び目の補空間の基本群である。 3, Other conventions consider knots to be embedded in the 3-sphere, in which case the knot group is the fundamental group of its complement in S^3.-->.

新しい!!: ブレイド群と結び目群 · 続きを見る »

組み紐 (数学)

ブレイドの例 数学における組み紐(くみひも)またはブレイド (braid) とは、垂れ下がる何本かの紐を適当に編んでできる図形を抽象化した数学的対象である。組み紐全体の集合が群を成すこと、幾何的対象の絡みを表す様子として次元がもっとも低いものであることなどから多様な分野に姿を現す。.

新しい!!: ブレイド群と組み紐 (数学) · 続きを見る »

行列群

数学において、行列群 (matrix group) はある体 K、通常は前もって固定される、上の可逆行列からなる群 G で、行列の積と逆の演算をもつ。より一般に、可換環 R 上の n × n 行列を考えることができる。(行列のサイズは有限に制限される、なぜならば任意の群は任意の体上の無限行列の群として表現することができるからだ。)線型群 (linear group) は体 K 上の行列群に同型な抽象群である、言い換えれば、K 上の忠実な有限次元表現をadmitする。 任意の有限群は線型である、なぜならばそれはを使って置換行列によって実現できるからだ。の中で、線型群は面白く扱いやすいクラスをなす。線型でない群の例はすべての「十分大きい」群を含む。例えば、無限集合の置換からなる無限対称群。.

新しい!!: ブレイド群と行列群 · 続きを見る »

複素数

数学における複素数(ふくそすう、complex number)は、実数の対 と と線型独立な(実数ではない)要素 の線型結合 の形に表される数(二元数: 実数体上の二次拡大環の元)で、基底元 はその平方が になるという特別な性質を持ち虚数単位と呼ばれる。 複素数全体の成す集合を太字の あるいは黒板太字で と表す。 は、実数全体の成す集合 と同様に、可換体の構造を持ち、とくに を含む代数閉体を成す。複素数体はケイリー–ディクソン代数(四元数、八元数、十六元数など)の基点となる体系であり、またさまざまな超複素数系の中で最もよく知られた例である。 複素数の概念は、一次元の実数直線を二次元の複素数平面に拡張する。複素数は自然に二次元平面上に存在すると考えることができるから、複素数全体の成す集合上に自然な大小関係(つまり全順序)をいれることはできない。すなわち は順序体でない。 ある数学的な主題や概念あるいは構成において、それが複素数体を基本の体構造として考えられているとき、そのことはしばしばそれら概念等の名称に(おおくは接頭辞「複素-」を付けることで)反映される。例えば、複素解析、複素行列、複素(係数)多項式、複素リー代数など。.

新しい!!: ブレイド群と複素数 · 続きを見る »

部分群

二項演算 * に関して群 G が与えられたとする。 G の部分集合である H が G の部分群であるということは、 H が演算 * に関して群になるということである。より正確に表現すると、 H が G の部分群であるということは、群の演算 * を H×H (Hの直積)に制限したときに、 H における群の演算になっているということである。この関係は通常、 H ≤ G という記号で表現し、「 H は G の部分群である」と読む。 G の真部分群とは、部分群 H が G の真部分集合である(つまり H≠G である)ことである。任意の群 G に対し、G 自身と単位元のみからなる集合 は常に G の部分群である。 H が G の部分群であるとき、 G は H の拡大群であると表現する場合がある。 G が任意の半群であるときも、G の部分群の定義はそのまま通用するが、本項では群の部分群についてのみを扱うにとどめる。群 G は順序対 (G, &lowast) として記述されることもあるが、このように書くのは普通、G を台となる集合としてその上に演算 "∗" が代数的構造(あるいはもっとほかの構造)を定めるということを強調するためである。 以下では、通常の慣習に倣って ∗ を省略し、積 a ∗ b を単に ab と表記する。また、群の演算を単に「積」と表記する場合もある。.

新しい!!: ブレイド群と部分群 · 続きを見る »

量子ホール効果

量子ホール効果(りょうしホールこうか、quantum hall effect)は、半導体‐絶縁体界面や半導体のヘテロ接合などで実現される、2次元電子系に対し強い磁場(強磁場)を印加すると、電子の軌道運動が量子化され、エネルギー準位が離散的な値に縮退し、ランダウ準位が形成される現象を指す。ランダウ準位の状態密度は実際の試料では不純物の影響によってある程度の広がりを持つ。この時、フェルミ準位の下の電子は、波動関数が空間的に局在するようになる。これをアンダーソン局在という。 そして絶対温度がゼロ度(.

新しい!!: ブレイド群と量子ホール効果 · 続きを見る »

自由群

自由群(じゆうぐん、free group)とは、公理から来る自明なもの以外に元の間の等式がない群のことである。ただし、二つの元を取り出したとき、同じ元であるかどうか、および一方が他方の逆元であるかどうかは判定できる。.

新しい!!: ブレイド群と自由群 · 続きを見る »

自然数

自然数(しぜんすう、natural number)とは、個数、もしくは順番を表す一群の数のことである。集合論においては、自然数は物の個数を数える基数のうちで有限のものであると考えることもできるし、物の並べ方を示す順序数のうちで有限のものであると考えることもできる。 自然数を 1, 2, 3, … とする流儀と、0, 1, 2, 3, … とする流儀があり、前者は数論などでよく使われ、後者は集合論、論理学などでよく使われる(詳しくは自然数の歴史と零の地位の節を参照)。いずれにしても、0 を自然数に含めるかどうかが問題になるときは、その旨を明記する必要がある。自然数の代わりに非負整数または正整数と言い換えることによりこの問題を避けることもある。 数学の基礎付けにおいては、自然数の間の加法についての形式的な逆元を考えることによって整数を定義する。正の整数ないしは負でない整数を自然数と同一視し、自然数を整数の一部として取扱うことができる。自然数と同様に整数の全体も可算無限集合である。 なお、文脈によっては、その一群に属する個々の数(例えば 3 や 18)を指して自然数ということもある。.

新しい!!: ブレイド群と自然数 · 続きを見る »

自明群

数学において、自明群、自明な群 (trivial group)、単位群 はただ1つの元からなる群である。すべてのそのような群は同型であるので、英語などではしばしば定冠詞をつけて the trivial group などと呼ばれる。自明群のただ1つの元は単位元であるので普通 0, 1, e のように文脈に応じて表記される。群の演算が ∗ であれば によって定義される。 同様に定義される自明モノイド (trivial monoid) もまた群である。その唯一の元がそれ自身の逆元でありしたがって自明群と同じであるからである。 自明群を空集合と混同してはならない。(これは元を全くもたず、単位元を欠くため、群にはなりえない。) 任意の群 G が与えられると、単位元のみからなる部分集合は、それ自身が自明群である G の部分群であり、G の自明な部分群 (trivial subgroup) と呼ばれる。また、G 自身も明らかに G の部分群であるので、G も自明な部分群と呼ばれることがあるが、これは著者によって異なるので注意が必要である。群によってはこれら以外にも自明に部分群になるものがあるが、それらは自明な部分群とは呼ばれない。 "G は非自明な真の部分群をもたない" (G has no nontrivial proper subgroups) という言い回しが意味するのは、G のすべての部分群は自明群 および群 G 自身であるということである。.

新しい!!: ブレイド群と自明群 · 続きを見る »

逆元

逆元 (ぎゃくげん、)とは、数学、とくに抽象代数学において、数の加法に対する反数や乗法に関する逆数の概念の一般化で、直観的には与えられた元に結合してその効果を「打ち消す」効果を持つ元のことである。逆元のきちんとした定義は、考える代数的構造によって少し異なるものがいくつか存在するが、群を考える上ではそれらの定義する概念は同じものになる。.

新しい!!: ブレイド群と逆元 · 続きを見る »

GAP (数式処理システム)

GAP (ギャップ、Groups, Algorithms and Programming) は計算機で群を扱うために開発された計算機代数システムである。アーヘン工科大学の数学部D (Lehrstuhl D für Mathematik, LDFM) で開発が始まり、その後スコットランドのセント・アンドルーズ大学の数学情報科学部と共同で開発が行われた。2005年の夏に開発拠点はそれぞれ同等の4カ所 (英セント・アンドルーズ大学、独アーヘン工科大学、 独ブラウンシュヴァイク工科大学、米フォート・コリンズのコロラド州立大学) に増やされた。 GAP の配布パッケージには、そのソースの他に、多くの利用者から寄贈されたプログラム、データライブラリ、マニュアルが含まれており、GPL にしたがって自由に再配布することができる。GAP はどの Unix系 OS でも実行でき、また Windows や macOS でも利用できる。GAP の標準的な構成では約 300 MB である (すべてのパッケージをインストールする場合は 400 MB である)。GAP を実行するには、RAM は 128 MB あれば十分である。 利用者の寄贈によるパッケージにより多くの機能が提供されており、これは GAP の大きな特徴の一つであると言える。開発者の元に送られてきたパッケージは査読プロセスにより GAP システムの機能や品質向上に有用かどうかが判断される。パッケージの作成者が論文を投稿する場合と同じである。2006年8月現在、GAP の配布パッケージにはそういったパッケージが 58 含まれており、35 のパッケージが査読を経たものである。 GAP からSINGULAR を使うためのインターフェイスが用意されている。.

新しい!!: ブレイド群とGAP (数式処理システム) · 続きを見る »

Permutation

Permutation.

新しい!!: ブレイド群とPermutation · 続きを見る »

暗号理論

暗号理論(あんごうりろん)の記事では暗号、特に暗号学に関係する理論について扱う。:Category:暗号技術も参照。.

新しい!!: ブレイド群と暗号理論 · 続きを見る »

捩れ (代数学)

抽象代数学において、捩れ(ねじれ、torsion)は、群の場合は、有限位数の元を言い、また環上の加群の場合は、環のある正則元によって零化される加群の元を言う。.

新しい!!: ブレイド群と捩れ (代数学) · 続きを見る »

正規化 (項書き換え)

項書き換えなどにおいて正規化(せいきか、)とは、項をそれ以上書き換えられなくなるまで書き換えることや、あるいはこのような操作が可能だという性質のことである。ある項がそのような性質を持つこと指して「項が正規化する」(normalizing) あるいは「項が正規化可能である」(normalizable) ともいう。また、そのような操作の末に辿り着いたそれ以上書き換えできない項のことを正規形 (normal form) とよぶ。.

新しい!!: ブレイド群と正規化 (項書き換え) · 続きを見る »

正規部分群

数学、とくに抽象代数学における正規部分群(せいきぶぶんぐん、normal subgroup)は、群の任意の元による内部自己同型のもとで不変な部分群である。正規部分群は、与えられた群から剰余群を構成するのに用いることができる。 正規部分群の重要性は、エヴァリスト・ガロアによって最初に明らかにされた。.

新しい!!: ブレイド群と正規部分群 · 続きを見る »

数学

数学(すうがく、μαθηματικά, mathematica, math)は、量(数)、構造、空間、変化について研究する学問である。数学の範囲と定義については、数学者や哲学者の間で様々な見解がある。.

新しい!!: ブレイド群と数学 · 続きを見る »

数理物理学

数理物理学(すうりぶつりがく、Mathematical physics)は、数学と物理学の境界を成す科学の一分野である。数理物理学が何から構成されるかについては、いろいろな考え方がある。典型的な定義は、Journal of Mathematical Physicsで与えているように、「物理学における問題への数学の応用と、そのような応用と物理学の定式化に適した数学的手法の構築」である。 しかしながら、この定義は、それ自体は特に関連のない抽象的な数学的事実の証明にも物理学の成果が用いられている現状を反映していない。このような現象は、弦理論の研究が数学の新地平を切り拓きつつある現在、ますます重要になっている。 数理物理には、関数解析学/量子力学、幾何学/一般相対性理論、組み合わせ論/確率論/統計力学などが含まれる。最近では弦理論が、代数幾何学、トポロジー、複素幾何学などの数学の重要分野と交流を持つようになってきている。.

新しい!!: ブレイド群と数理物理学 · 続きを見る »

ここにリダイレクトされます:

組みひも群組み紐群

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »